Core Excitation in ^{14}C and Two-proton Pickup

H Terry Fortune

University of Pennsylvania, fortune@physics.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/physics_papers

Part of the Physics Commons

Recommended Citation

© 2012 American Physical Society

This paper is posted at ScholarlyCommons. http://repositoryupenn.edu/physics_papers/267

For more information, please contact libraryrepository@pobox.upenn.edu.
Core Excitation in 14C and Two-proton Pickup

Abstract
In two-proton pickup from 14C, the calculated cross-section ratio for the first two 0$^+$ states of 12Be depends on the configuration mixing in these two states and on the amount of core excitation in the ground state (g.s.) of 14C. Using the 12Be wave functions that are reasonably well known, I have calculated this ratio as a function of the core excitation in 14C(g.s.). A measurement of this ratio should allow an independent determination of the 14C mixing—previously estimated to be about 12%.

Disciplines
Physical Sciences and Mathematics | Physics

Comments

© 2012 American Physical Society

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/physics_papers/267
Core excitation in 14C and two-proton pickup

H. T. Fortune

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, 19104

(Received 13 August 2012; revised manuscript received 27 September 2012; published 7 December 2012)

In two-proton pickup from 14C, the calculated cross-section ratio for the first two 0$^+$ states of 12Be depends on the configuration mixing in these two states and on the amount of core excitation in the ground state (g.s.) of 14C. Using the 12Be wave functions that are reasonably well known, I have calculated this ratio as a function of the core excitation in 14C(g.s.). A measurement of this ratio should allow an independent determination of the 14C mixing—previously estimated to be about 12%.

DOI: 10.1103/PhysRevC.86.067303 PACS number(s): 21.60.Cs, 25.55.Hp, 25.70.Hi, 27.20.+n

Introduction. The ground state (g.s.) of 14C contains some core excitation. The predominantly p-shell wave function has, in addition, an amplitude of 12C x ν (sd)2. The intensity of this configuration has been estimated from an analysis of the 12C(t,p) cross sections to the g.s. and excited 0$^+$ state (called 0$^+$ here). In a two-state model, the (sd)2 component in the g.s. is the same as the p-shell component in 0$^+$. The result is 0.12(3) [1]. Of course, 14C has more than two 0$^+$ states. The appropriateness of a two-state model in this case is demonstrated by the obvious nonparticipation of the next (third) 0$^+$ state in 14C, as can be seen clearly [2] by the fact that its [the second (sd)2 0$^+$ state] behaves nearly identically to the second 0$^+$ state in 16C, which has no p-shell state. (Their cross-section magnitudes and angular-distribution shapes are the same.)

In a theoretical calculation in connection with the analysis of 14C($\pi^+\pi^0$) inelastic scattering, Hayes et al. [3] obtained an estimate of 8% (sd)2 in the 14C(g.s.) and 13% p-shell component in the excited 0$^+$ state. These are different because the shell-model calculation is not a two-state model, as was the other analysis mentioned above, where these two percentages were equal. These estimates are summarized in Table 1. Here I investigate the possibility of another experimental determination of this mixing.

112Be, the two 0$^+$ states (g.s. and 2.251(1) MeV [4]) are thought to be linear combinations of two basis states—the normal p-shell 12Be(g.s.) and an intruder with two neutrons in the sd shell. It is now widely accepted from several different analyses [5–9] that the latter is about 68% of the 12Be(g.s.). A calculation [6] of the 12Be-12O Coulomb energy difference gave an s^2 parentage of 0.53(3) in the g.s. A simple (sd)2 shell-model calculation [6] gave a d^2/s^2 ratio of 0.22/0.78 and hence 0.68(4) for the (sd)2 component [6]. A very recent measurement [10] of the Gamow-Teller (GT) strengths of the two 0$^+$ states from the 1+ g.s. of 12B was made using the reaction 12B(3Li, 7Be) in inverse kinematics. This experiment is the first to directly measure the p-shell component of the excited 0$^+$ state. Other investigations had inferred it from orthogonality with the g.s. or through destructive interference in (t,p) and $B(E2)$. These new results have clearly indicated that the commonly accepted wave functions are approximately correct: Their intensities of 0.25(5) and 0.60(5) for the p-shell component of the g.s. and excited 0$^+$ state, respectively, are to be compared to our 0.32(4) and 0.68(4). This uncertainty is from the combined shell-model and Coulomb-energy calculations [6]. However, considering the wide variety of processes (see Summary in Ref. [9]) that have confronted these wave functions and the remarkable agreement between experiments and calculations, the actual uncertainty is probably smaller than this.

In two-proton pickup from 14C, both components will contribute to the reaction, even though all the pickup will still be from the p shell, as demonstrated previously [11]. The pickup reaction amplitude to the excited 0$^+$ state will be destructive, causing a large decrease in the excited state/g.s. ratio from the value it would have for a pure p-shell 14C(g.s.). Because of the sensitivity of this destructive interference to the magnitudes and phases of these mixings, the excited state/g.s. cross-section ratio expected in two-proton pickup from 14C(g.s.) as a function of the assumed core excitation in the latter.

The model. I use the subscript CK to denote pure p-shell states, as in Cohen and Kurath [12]. Wave functions are then

$14C(g.s.) = u^{14}CC + v^{14}CC(x(sd)2),

12Be(g.s.) = a^{10}BeCK(g.s.)x(sd)2 + b^{12}BeCK(g.s.), and

12Be(exc) = $-b^{10}$BeCK(g.s.)x(sd)2 + a^{12}BeCK(g.s.).

The two-proton pickup amplitudes are

$$A(\text{exc}) = uaA^{(14}CC\rightarrow^{12}$BeCK),$$

$$A(\text{g.s.}) = ubA^{(14}CC\rightarrow^{12}$BeCK) + vaA^{(12}$CC\rightarrow^{10}BeCK).$$

In both cases, the second term needs to be multiplied by a factor of $(\sqrt{5})/3$ for isospin uncoupling and recoupling. If we take the individual amplitudes from Cohen and Kurath [12], then the squares of the A’s above are equal to their S_{mag}’s, where S_{mag} is the L = 0 two-nucleon cluster spectroscopic factor. These are listed in Table II. The quantity D_{mag} is for $L = 2$. Then with $x = v/u$, y = b/a, and $r^2 = \sigma(\text{exc})/\sigma(\text{g.s.)}$, we have

$$r = (1.336 - 1.235xy)/(1.336y + 1.235x).$$

Results. Using $a^2 = 0.68$ and $b^2 = 0.32$, the dependence of this ratio (r^2) on the 14C(g.s.) admixture is plotted as a solid curve vs v^2 in Fig. 1. The short-dashed curves above and below
TABLE I. Estimates of core excitation in 14C(g.s.).

<table>
<thead>
<tr>
<th>Source</th>
<th>Core excitation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>12C(t,p) 14C</td>
<td>12(3)%</td>
<td>[1]</td>
</tr>
<tr>
<td>14O(p,t) 12O</td>
<td>$>$6%</td>
<td>[14], present work</td>
</tr>
<tr>
<td>Hayes et al. 3</td>
<td>8%, 13%</td>
<td>[3]</td>
</tr>
</tbody>
</table>

*The first number is the 2 $h\omega$ mixture in the g.s.; the second number is the amount of 0 $h\omega$ in the first excited 0$^+$ state.

With good isospin, the wave functions of 14C and 14O are equal, as are those for 12Be, 12O, and 12C ($T = 2$). With isospin conservation, the excited state/g.s. ratio will be the same in 14C → 12Be, 14O → 12O, and 14C → 12C ($T = 2$). In the reaction 14C(p,t), the 0$^+$, $T = 2$ state at $E_x = 27.595$(3) MeV was clearly observed [13], with an $L = 0$ angular distribution, as expected. This state is the double analog of the ground state (g.s.) of 12Be. Another peak was observed [13] at an excitation energy of 29.630(50)–2.035(50) MeV above the lowest 0$^+$, $T = 2$ state. This peak probably contains both the first 2$^+$ $T = 2$ state and the second 0$^+$ $T = 2$ state—double analogs of the 12Be first two excited states.

In an experimental tour-de-force, the 14O(p,t) reaction was performed, in reverse kinematics [14]. Here, too, the g.s. was clearly observed with an $L = 0$ angular distribution, but the 2$^+$ and 0$^{+'}$ states were not resolved. A single excited-state peak was seen at $E_x = 1.8$(4) MeV [14]. Resolution in that experiment was about 1 MeV. There is some difference of opinion [15,16] as to whether these excited peaks in 12C and 12O are predominantly 0$^+$ or mostly 2$^+$, or a more nearly equal combination of the two. In 12O, the angular distributions of the excited peak and the g.s. were virtually identical, and the ratio of cross sections was σ(exc)/σ(g.s.) ≈ 0.86.

If the g.s. of 14C and 14O were pure p shell, the second 0$^+$, $T = 2$ state in 12C and the excited 0$^+$ state in 12O would be significantly stronger than the $A = 12$, $T = 2$ g.s. (by a factor of about 0.68/0.32) in both of the (p,t) reactions mentioned above. Yet, in both, the sum of the 0$^+$ and 2$^+$ cross sections is less than that of the lower 0$^+$ (by a factor of about 0.8 to 0.9). Therefore, these reactions make it clear that 14C(g.s.) must contain an $(sd)^2$ admixture. The horizontal dashed line in Fig. 1 is the upper limit on r^2 from 14O(p,t). This limit clearly eliminates any v^2 less than about 0.06 and therefore requires some core excitation in 14C.

A good measurement of this ratio in either 14C(p,t)12C ($T = 2$) or 14O(p,t)12O probably requires better resolution than is obtainable in either case. Good resolution might not even resolve the two states because of the natural width expected for the second 0$^+$, $T = 2$ state. However, in 12Be the two states are well separated (by 144 keV [4]), and they have no natural width. Thus, the best reaction to measure this ratio is probably two-proton pickup from 14C to form 12Be. Two previous such experiments gave conflicting results. Neither of them resolved the 2$^+$ and 0$^+$ states. In the reaction [17] 14C(14C, 12Be*)16O, the summed yield to the two states was about 31% of that for the g.s. Resolution for the g.s. was 180(20) keV, and the doublet width was 240(30) keV. In the reaction [18] 14C(11B, 13N)12Be, the 1$^-$ state was also not resolved, and the ratio of all three states to the g.s. was close to unity. However, in Ref. [17], the 1$^-$ state in 12Be was only about 6% of the g.s. In a (12C, 14O) or (14C, 16O) reaction, the nuclear structure requires $L = 0$ at the projectile/ejectile vertex and hence a single L value at the target/residual vertex (also $L = 0$ for 0$^+$ states). This is not the case for the (11B, 13N) reaction, where other values of L can contribute. This difference might be responsible for the conflicting results in the two reactions mentioned above.

We need a good resolution two-proton pickup experiment on 14C, i.e., 14C(14C, 12O), 14C(15C, 14O), or 14C(15C, 16O). The 13C(12C, 14O) reaction [19] has been done, with angular distributions that were well characterized by distorted-wave calculations. So, 13C(12C, 14O) might be the best choice.

The first 2$^+$ state of 12Be is dominated by the intruder $(sd)^2 s^2$ configuration [5], with a small amount ($\sim 20\%$) of the 2$^+$ p-shell state [6]. Thus, a bonus of such a two-proton pickup experiment would be the determination of the normal-intruder mixing in the first 2$^+$ state.

TABLE II. Two-nucleon transfer strengths within the 1p shell [12].

<table>
<thead>
<tr>
<th>Initial state</th>
<th>Final state</th>
<th>S_{mag}</th>
<th>D_{mag}</th>
</tr>
</thead>
<tbody>
<tr>
<td>14C(g.s.)</td>
<td>12Be(g.s.)</td>
<td>1.784</td>
<td>—</td>
</tr>
<tr>
<td>14C(g.s.)</td>
<td>12Be(2$^+$)</td>
<td>—</td>
<td>2.761</td>
</tr>
<tr>
<td>12C(g.s.)</td>
<td>10Be(g.s.)</td>
<td>2.747a</td>
<td>—</td>
</tr>
<tr>
<td>12C(g.s.)</td>
<td>10Be(2$^+$)</td>
<td>—</td>
<td>1.215a</td>
</tr>
</tbody>
</table>

*aThese must be multiplied by a factor $(5/9)$ from isospin uncoupling and recoupling for input into the present analysis.

FIG. 1. For two-proton pickup from 14C to the first two 0$^+$ states of 12Be, the solid curve is a plot of the calculated cross-section ratio as a function of the assumed core excitation in 14C(g.s.). The dashed lines surrounding it correspond to the uncertainty from uncertainties in the 12Be amplitudes. The vertical line, and the surrounding dashed lines, indicate the estimate of 12(3)% from Ref. [1]. The horizontal dashed line is the limit from 14O(p,t) (Ref. [14] and present work).