March 2006

The Steiner k-Cut Problem

Chandra Chekuri
Bell Laboratories

Sudipto Guha
University of Pennsylvania, sudipto@cis.upenn.edu

Joseph Naor
Technion

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Recommended Citation
Chandra Chekuri, Sudipto Guha, and Joseph Naor, "The Steiner k-Cut Problem", March 2006.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/252
For more information, please contact repository@pobox.upenn.edu.
The Steiner k-Cut Problem

Abstract
We consider the Steiner k-cut problem which generalizes both the k-cut problem and the multiway cut problem. The Steiner k-cut problem is defined as follows. Given an edge-weighted undirected graph $G = (V,E)$, a subset of vertices $X \subseteq V$ called terminals, and an integer $k \leq |X|$, the objective is to find a minimum weight set of edges whose removal results in k disconnected components, each of which contains at least one terminal. We give two approximation algorithms for the problem: a greedy $(2 - 2/k)$-approximation based on Gomory–Hu trees, and a $(2 - 2/|X|)$-approximation based on rounding a linear program. We use the insight from the rounding to develop an exact bidirected formulation for the global minimum cut problem (the k-cut problem with $k = 2$).

Keywords
multiway cut, k-cut, Steiner tree, minimum cut, linear program, approximation algorithm

Comments

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/252
THE STEINER k-CUT PROBLEM*

CHANDRA CHEKURI†, SUDIPTO GUHA‡, AND JOSEPH (SEFFI) NAOR§

Abstract. We consider the Steiner k-cut problem which generalizes both the k-cut problem and the multiway cut problem. The Steiner k-cut problem is defined as follows. Given an edge-weighted undirected graph $G = (V,E)$, a subset of vertices $X \subseteq V$ called terminals, and an integer $k \leq |X|$, the objective is to find a minimum weight set of edges whose removal results in k disconnected components, each of which contains at least one terminal. We give two approximation algorithms for the problem: a greedy $(2 - \frac{2}{k})$-approximation based on Gomory–Hu trees, and a $(2 - \frac{2}{|X|})$-approximation based on rounding a linear program. We use the insight from the rounding to develop an exact bidirected formulation for the global minimum cut problem (the k-cut problem with $k = 2$).

Key words. multiway cut, k-cut, Steiner tree, minimum cut, linear program, approximation algorithm

AMS subject classifications. 68Q25, 68W25, 90C27, 90C59

DOI. 10.1137/S0895480104445095

1. Introduction. The k-cut problem and the multiway cut problem are fundamental graph partitioning problems. In both problems we are given an undirected edge-weighted graph $G = (V,E)$ with $w(e)$ denoting the weight of edge $e \in E$. In the k-cut problem the goal is to find a minimum weight set of edges whose removal separates the graph into k disconnected components. In the multiway cut problem we are given a set of k terminals, $X \subseteq V$, and the goal is to find a minimum weight set of edges whose removal separates the graph into components such that each terminal is in a different connected component. In this paper we consider a generalization of the two problems, namely, the Steiner k-cut problem. In this problem, we are given an undirected weighted graph G, a set of terminals $X \subseteq V$, and an integer $k \leq |X|$. The goal is to find a minimum weight set of edges whose removal separates the graph into k components with vertex sets V_1, V_2, \ldots, V_k, such that $V_i \cap X \neq \emptyset$ for $1 \leq i \leq k$. If $X = V$, we obtain the k-cut problem. If $|X| = k$, we obtain the multiway cut problem.

The k-cut problem can be solved in polynomial time for fixed k [5, 6], but it is NP-complete when k is part of the input [5]. In contrast, the multiway cut problem is NP-complete for all $k \geq 3$ and is also APX-hard for all $k \geq 3$ [2]. It follows that the Steiner k-cut problem is NP-complete and APX-hard for all $k \geq 3$. For the multiway cut problem Calinescu, Karloff, and Rabani [1] gave a $1.5 - 1/k$ approximation using an interesting geometric relaxation. Karger et al. [7] improved the analysis of the

*Received by the editors July 12, 2004; accepted for publication (in revised form) September 26, 2005; published electronically March 24, 2006. A preliminary version appeared in Proceedings of the 30th International Colloquium on Automata, Languages, and Programming (ICALP), 2003, pp. 189–199.

†Bell Labs, Lucent Technologies, 600 Mountain Ave., Murray Hill, NJ 07974 (chekuri@research.bell-labs.com). This author’s research was supported in part by US-Israel BSF grant 2002276.

‡Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104 (sudipto@cis.upenn.edu). This author’s research was supported in part by an Alfred P. Sloan Research Fellowship and by NSF Award CCF-0430376.

§Computer Science Dept., Technion, Haifa 32000, Israel (naor@cs.technion.ac.il). This author’s research was supported in part by US-Israel BSF grant 2002276 and by EU contract IST-1999-14084 (APPOL II).
The authors have learned of related independent work of Maeda, Nagamochi, and Ibaraki [8] in Japanese and Zhao, Nagamochi, and Ibaraki [14]. The Steiner k-cut problem was considered in [8], where it is shown that a greedy algorithm similar to the one described in this paper has an approximation ratio of $2 - 2/k$. In [14], the authors define a generalization of the Steiner k-cut problem which they refer to as the multiway partition problem (MPP). MPP is defined as follows. We are given a finite set V, a set of terminals $X \subseteq V$, and an integer k such that $|X| \geq k$. We are also given a submodular function f on V that assigns a real value $f(S)$ to each subset $S \subseteq V$. The function f is provided as an oracle. The goal is to partition V into k sets V_1, V_2, \ldots, V_k such that $V_i \cap X \neq \emptyset$ for $1 \leq i \leq k$ and minimize $f(V_1) + f(V_2) + \cdots + f(V_k)$. It is shown in [14] that the greedy algorithm that iteratively increases the size of the partition yields a $(2 - \frac{2}{k})$-approximation for MPP. The Steiner k-cut problem can be seen to be a special case of MPP: given an edge-weighted graph $G = (V, E)$, we can define a submodular function f where $f(S) = \frac{1}{2} \sum_{e \in E(S)} w_e$.

1.1. Results. We provide two approximation algorithms for the Steiner k-cut problem. The first algorithm we present is combinatorial and has an approximation ratio of $(2 - \frac{2}{k})$. This algorithm is based on choosing cuts from the Gomory–Hu tree of the given graph and is similar to approximation algorithms developed for the k-cut problem and the multiway cut problem [12]. Maeda, Nagamochi, and Ibaraki [8] obtained the same result earlier, but our proof is considerably simpler. Also, as we mentioned earlier, Zhao, Nagamochi, and Ibaraki [14] show that the greedy algorithm yields a $(2 - \frac{2}{k})$ approximation for MPP. Our main result is a 2-approximation algorithm for the Steiner k-cut problem which is based on rounding a linear programming (LP) formulation. Although our formulation is a straightforward generalization of the formulation in [9] (for the k-cut problem), our rounding scheme differs substantially. The rounding in [9] exploits the properties of optimal solutions to the LP relaxation. These properties do not hold for the relaxation of the Steiner k-cut problem. Instead, we rely on the primal dual algorithm and the analysis of Goemans and Williamson [4] for the Steiner tree problem. As a consequence, our rounding algorithm extends to any feasible solution of the LP formulation. This interesting new connection might have future applications.

We conclude with a bidirected formulation for the global minimum cut problem and prove that the linear relaxation of this formulation is exact. The formulation and analysis are inspired by our analysis for the Steiner k-cut problem. This formulation and its integrality gap may have been known previously; however, we could not find a published reference and hence include it here.

2. Combinatorial $(2 - \frac{2}{k})$-approximation algorithm. We assume without loss of generality that the given graph G is connected. A natural greedy algorithm for the Steiner k-cut problem is the following iterative algorithm. In each iteration, find a minimum weight cut that increases the number of distinct components that contain a terminal. This algorithm has been shown to achieve a $(2 - \frac{2}{k})$-approximation algorithm.
for both the k-cut problem and the multiway cut problem (see, e.g., [12]) and for MPP [14]. However, the analysis of this algorithm is nontrivial. As in [11, 12], we consider an alternative algorithm that is based on the Gomory–Hu tree representation of the minimum cuts in a graph. Recall that a Gomory–Hu tree for an edge-weighted undirected graph $G = (V, E)$ is an edge-weighted tree $T = (V, E_T)$ with weight function c that has the following property: for all $u, v \in V$, the weight of a minimum cut separating u and v in G is equal to the smallest edge weight on the unique path between u and v in T. In particular, for $(u, v) \in E_T$, $c(u, v)$ is the weight of the minimum cut separating u and v in G, and the partition of V induced by the removal of (u, v) from T induces such a minimum cut. We run the natural greedy algorithm mentioned above on the tree T: Iteratively, pick the smallest weight edge in T separating a pair of terminals that are not already separated until k components, each of which contains a terminal, are generated.

It is easy to see that we pick $k - 1$ edges in T. We take the union of the cuts associated with these edges and this defines our solution for the Steiner k-cut problem in G.

Proposition 2.1. The algorithm produces a feasible solution to the Steiner k-cut problem.

We need a simple proposition about Gomory–Hu trees.

Proposition 2.2. Let $T = (V, E_T)$ be a Gomory–Hu tree for a connected graph $G = (V, E)$. For any pair of vertices (s, t) in G and an $s - t$ cut $(S, V - S)$ in G, there is an edge $(u, v) \in E_T$ such that $u \in S$, $v \in V - S$, and (u, v) lies on the path between s and t in T.

Now we argue about the cost of the solution produced by the Gomory–Hu tree based algorithm. Our analysis is similar to that of the analysis for the Gomory–Hu tree based algorithm for the k-cut problem (see Theorem 4.8 in [12, page 42]). However, the analysis is not a straightforward extension; in the Steiner k-cut problem, the terminals constrain the choice of cuts, and we need to identify a mapping to the optimal set of cuts in a careful manner.

Lemma 2.3. The cost of the $(k - 1)$ edges picked by the algorithm is at most $(2 - 2/k)$ times the cost of the optimal solution.

Proof. Fix an optimal solution A to the Steiner k-cut problem. Let V_1, V_2, \ldots, V_k be the partitioning of V defined by A. Clearly, each set V_i ($i = 1, \ldots, k$) contains at least one terminal from X. From each set V_i we arbitrarily choose a terminal t_i contained in V_i. Define cuts $A_i = (V_i, V \setminus V_i)$ for $i = 1, \ldots, k$, and let $w(A_i)$ denote the weight of cut A_i. Assume without loss of generality that $w(A_1) \leq w(A_2) \leq \cdots \leq w(A_k)$. Observe that each edge in the optimum solution A participates in exactly two of the cuts A_1, \ldots, A_k; hence the weight of the optimal solution A is $w(A) = \sum_{i=1}^{k} w(A_i)/2$. Let $B_1, B_2, \ldots, B_{k-1}$ denote the $k - 1$ cuts chosen by the above Gomory–Hu tree based algorithm. We claim that

\[(1) \quad w(B_i) \leq w(A_i), \quad 1 \leq i \leq k - 1.\]

Assuming the claim, we have that

\[\sum_{i=1}^{k-1} w(B_i) \leq \left(1 - \frac{1}{k}\right) \sum_{i=1}^{k} w(A_i) \leq 2 \left(1 - \frac{1}{k}\right) w(A),\]

which proves the desired bound on the performance of the algorithm.

To prove (1), we identify a set of edges $e_1, e_2, \ldots, e_{k-1}$ of the Gomory–Hu tree T with the following properties:
1. \(w(A_i) \geq c(e_t) \), for \(1 \leq i \leq k - 1 \), and since \(w(A_1) \leq w(A_2) \leq \cdots \leq w(A_k) \), it follows that \(w(A_i) \geq \max_{1 \leq j \leq i} c(e_t) \).

2. The removal of \(e_1, e_2, \ldots, e_i \) creates \(i + 1 \) components in \(T \), each containing a terminal.

Assuming the existence of \(e_1, e_2, \ldots, e_{k-1} \) as above, let \(f_1, f_2, \ldots, f_{k-1} \) be the edges of \(T \) picked by the algorithm. We claim that \(c(f_i) \leq \max_{1 \leq j \leq i} c(e_t) \); this follows by observing that there is some edge in \(\{e_1, e_2, \ldots, e_i\} \) that when added to \(\{f_1, \ldots, f_{i-1}\} \) would yield a new component containing a terminal. If not, removing the edges in \(\{f_1, f_2, \ldots, f_{i-1}\} \cup \{e_1, \ldots, e_i\} \) would result in at most \(i \) components each containing a terminal which contradicts the definition of the \(e_t \). Therefore,

\[
w(B_i) = c(f_i) \leq \max_{1 \leq j \leq i} c(e_t) \leq w(A_i).
\]

We obtain \(e_1, \ldots, e_{k-1} \) as follows. Let \(E' \subseteq E_T \) be the set of edges of \(T \) that cross the partition of \(V \) induced by the optimum solution \(V_1, V_2, \ldots, V_k \). In other words, \((u, v) \in E'\) if and only if \((u, v) \in E_T\), \(u \in V_i\), \(v \in V_j\), and \(i \neq j\); root the tree at \(t_k\). For each \(t_i, 1 \leq i \leq k - 1 \), we let \(e_i \) be first edge in the directed path from \(t_i \) to the root \(t_k \) that is in \(E' \); by Proposition 2.2, \(e_i \) exists. Also, for \(i \neq j\), \(e_i \) and \(e_j \) are distinct; otherwise, the path between \(t_i \) and \(t_j \) in \(T \) would not have any edges in \(E' \) and this contradicts Proposition 2.2. Further, since \(e_i \) crosses the partition \(V_i \) from the Gomory–Hu tree property, \(w(A_i) \geq c(e_i) \). We claim that removing \(e_1, e_2, \ldots, e_i \) from \(T \) will disconnect the set \(\{t_1, t_2, \ldots, t_i, t_k\} \) in \(T \). Suppose that this is not the case. Clearly, \(t_k \) is separated from \(t_1, \ldots, t_i \); therefore for some \(h, \ell \leq i \), \(t_h \) and \(t_\ell \) are connected by a path \(P \) after removing \(e_1, \ldots, e_i \). Let \(v \) be the least common ancestor of \(t_h \) and \(t_\ell \) in \(T \) rooted at \(t_k \). From our assumption \(e_h \) and \(e_\ell \) are both above \(v \). This implies that no edge in \(P \) is in \(E' \), and therefore \(P \) connects \(t_h \) and \(t_\ell \) even after \(e_1, \ldots, e_{k-1} \) are removed, contradicting Proposition 2.2. \(\square \)

Given a Gomory–Hu tree for the input graph, the iterative greedy algorithm that we described can be easily implemented in \(O(n^2) \) time. This potentially could be improved, but we do not attempt it since the running time to build a Gomory–Hu tree is currently \(\Omega(n^2) \) even for sparse graphs. We conclude with the following theorem.

Theorem 2.4. There is a \((2 - \frac{\tau}{2}) \)-approximation algorithm for the Steiner \(k \)-cut problem that runs in \(O(n^2 + \tau) \) time, where \(\tau \) is the time required to build a Gomory–Hu tree for the input graph.

3. LP formulation and a 2-approximation. We consider the following integer programming formulation for the Steiner \(k \)-cut problem. For each edge \(e \) we have a binary variable \(d(e) \) which is 1 if the edge \(e \) belongs to the cut and 0 otherwise. Let \(T \) be a Steiner tree on the terminal set \(X \) in \(G \). In any feasible Steiner \(k \)-cut, at least \(k - 1 \) edges of \(T \) have to be cut. Based on this we obtain the following integer program for the Steiner \(k \)-cut problem:

\[
\begin{align*}
(K) \quad & \min \sum_{e \in E} w(e) \cdot d(e) \quad \text{subject to:} \\
& \sum_{e \in T} d(e) \geq k - 1 \quad \forall T : T \text{ Steiner tree on } X \\
& d(e) \in \{0, 1\} \quad \forall e \in E.
\end{align*}
\]

A relaxation of this integer program is obtained by allowing the variables \(d(e) \) to assume values in \([0, 1]\). The variables \(d(e) \) are to be interpreted as inducing a seminet-
In other words, we are solving the following relaxation:

\[\text{min} \sum_{uv \in \mathcal{E}(G)} w(uv) \cdot d(uv) \quad \text{subject to:} \]

\[\sum_{uv \in \mathcal{E}(T)} d(uv) \geq k - 1 \quad T \text{ spanning tree in } G_X \]

\[d(uw) + d(vw) \geq d(uv) \quad u, v, w \in V \]

\[d(uv) \in [0,1] \quad u, v \in V. \]

For an edge \(e \in \mathcal{E}(G) \) with \(e = uv \), we use \(d(e) \) and \(d(uv) \) interchangeably. The next lemma follows from the discussion.

Lemma 3.1. The LP \((K')\) is a valid relaxation for the Steiner \(k\)-cut problem and it can be solved optimally in polynomial time.

For the multiway cut problem we note that the LP \((K')\) is equivalent to a LP that constrains the terminals to be at a distance of at least 1 from each other. This latter LP has been shown to have an integrality gap of \(2(1 - 1/k) \) \cite{2}. We will obtain the same result as well for the Steiner \(k\)-cut problem. We now prove a property of feasible solutions to \((K')\) that will be useful later.

Lemma 3.2. In any feasible solution to \((K')\) there is \(X' \subseteq X \) such that \(|X'| \geq k \), and for any two distinct vertices \(u \) and \(v \) in \(X' \), \(d(uv) > 0 \).

Proof. For any two, not necessarily distinct, vertices \(u \) and \(v \) in \(X \), define a relation \(R \) as follows: \(uRv \) if and only if \(d(uv) = 0 \). Since \(d \) is symmetric and satisfies triangle inequality (hence the relation is transitive), \(R \) defines an equivalence relation on \(X \). We need to prove that the number of equivalence classes in \(R \) is at least \(k \). Suppose this is not the case. For any two vertices \(a \) and \(b \) in \(V \), \(d_{ab} \leq 1 \). Hence, there is a spanning tree on \(X \) of cost at most \(\ell - 1 \), where \(\ell \) is the number of distinct equivalence classes. If \(\ell < k \), we get a contradiction to the feasibility of the solution to \((K')\). \(\square \)

3A semimetric is a distance function that is symmetric and satisfies triangle inequality. It differs from a metric in that it need not satisfy reflexivity, that is, distinct points can be at distance 0 from each other.
Note that the above proof is constructive and a set \(X' \) satisfying the required properties can be easily computed. In the rest of the paper it is convenient to assume that \(X' = X \) and that for each \(u, v \in X \), \(d(uv) > 0 \).

3.1. A strategy to round the LP. We show how to round a solution to \((K')\) to yield a 2-approximation to the Steiner \(k \)-cut problem. To this end, we use the Goemans and Williamson primal-dual approximation algorithm for the Steiner tree problem [4] (henceforth referred to as the GW algorithm) to find a family of cuts.

Let \(\bar{d} \) be any feasible solution to the LP \((K')\). Then, \(\bar{d} \) defines a weight function on the edges of \(G \). Let \(G_{\bar{d}} \) denote the resulting edge-weighted graph. We run the GW primal-dual algorithm on the graph \(G_{\bar{d}} \) to create a Steiner tree on \(X \). To find a minimum Steiner tree on \(X \) in \(G_{\bar{d}} \), the GW algorithm uses the following cut based LP relaxation of the Steiner tree problem. Let \(x(e) \) be 1 if \(e \) is in the Steiner tree and 0 otherwise: every cut that separates the terminal set has to be covered by at least one edge. This yields the following LP where the variables are relaxed to be in \([0, 1]\). Note that the variables \(\bar{d}(e) \) in the formulations below are treated as constants obtained from a solution to \((K')\).

Each subset of vertices \(S \subset V \) defines a cut which we denote by \(\delta(S) \):

\[(STP) \quad \min \sum_{e \in \delta(S)} \bar{d}(e) \cdot x(e) \quad \text{subject to:} \]

\[\sum_{e \in \delta(S)} x(e) \geq 1 \quad \forall \ S : S \text{ separates } X \]

\[x(e) \in [0, 1] \quad \forall \ e. \]

The dual of this LP is the following:

\[(STD) \quad \max \sum_{S} y(S) \quad \text{subject to:} \]

\[\sum_{S : e \in \delta(S)} y(S) \leq \bar{d}(e) \quad \forall \ e \]

\[y(S) \geq 0 \quad \forall \ S : S \text{ separates } X. \]

The GW algorithm is a primal-dual algorithm that incrementally grows a dual solution while maintaining feasibility and computes a corresponding feasible primal Steiner tree such that the cost of the Steiner tree computed is at most twice the value of the dual solution found. Let \(y' \) be the dual solution produced by the GW algorithm upon termination and let \(T \) be the tree returned by the algorithm. Then the following properties hold for \(y' \) and \(T \) [4].

1. \(y' \) is a feasible solution to \((STD)\).
2. \(T \) is a tree that spans the terminal set \(X \).
3. Sets \(S \) (representing cuts) with \(y'(S) > 0 \) form a laminar family. Let \(\mathcal{S} \) denote this family of sets.
4. \(\sum_{S \in \delta(S)} \bar{d}(e) \leq 2(1 - 1/|X|)\sum_{S \in \mathcal{S}} y'(S). \)
5. For any \(u \in X \), \(\sum_{S : u \in S} y'(S) \leq \frac{1}{2} \cdot \max_{v \in X, v \neq u} \bar{d}(uv) \leq \frac{1}{2}. \)
6. For any \(u, v \in X \) such that \(\bar{d}(uv) > 0 \), there exists a cut \(S \) such that \(y'(S) > 0 \) and \(|S \cap \{u, v\}| = 1 \).

With the above discussion in place, we are ready to describe our rounding procedure. For a cut \(S \), let \(w(S) = \sum_{e \in \delta(S)} w(e) \) denote the weight of \(S \) in \(G \); we observe the following claim.
Claim 3.3. \(\sum_{S \in \mathcal{S}} y'(S)w(S) \leq \sum_e w(e)\bar{d}(e) \).

Proof. We have the following:

\[
\sum_{S \in \mathcal{S}} y'(S)w(S) = \sum_{S \in \mathcal{S}} y'(S) \sum_{e \in b(S)} w(e) \\
= \sum_e w(e) \sum_{S \in \mathcal{S}} y'(S) \\
\leq \sum_e w(e)\bar{d}(e).
\]

The final inequality follows from constraint (7) since \(y' \) is a feasible solution to (STD).

Claim 3.4. \(2(1 - 1/|X|) \sum_{S \in \mathcal{S}} y'(S) \geq (k - 1) \).

Proof. The GW algorithm guarantees that \(2(1 - 1/|X|) \sum_{S \in \mathcal{S}} y'(S) \geq \sum_{e \in T} \bar{d}(e) \).
Since \(T \) is a spanning tree on \(X \), from the feasibility of \(\bar{d} \) for \((K^k) \), \(\sum_{e \in T} \bar{d}(e) \geq k - 1 \) by (2). The claim follows by combining the two equalities.

3.2. Choosing the cuts. We describe how we choose the cuts from \(\mathcal{S} \). We partition \(\mathcal{S} \) into classes \(\mathcal{S}_1, \mathcal{S}_2, \ldots, \mathcal{S}_\ell \) such that two cuts \(S \) and \(S' \) are in the same class \(\mathcal{S}_i \) if and only if \(S \cap X = S' \cap X \). Clearly, the number of classes is at least \(|X| \geq k\). For a class \(\mathcal{S}_i \), let \(C_i \) be a least weight cut in \(\mathcal{S}_i \). Let \(\mathcal{C} \) be the collection of \(C_i \), \(1 \leq i \leq \ell \). Without loss of generality assume that the classes are ordered such that \(w(C_1) \leq w(C_2) \leq \ldots \leq w(C_\ell) \).

A solution to the problem consists of a set of edges. Our algorithm outputs a collection of cuts from \(\mathcal{C} \) with the solution consisting of all edges that belong to one of the chosen cuts; we therefore think of the cuts as defining the solution. The algorithm considers classes in increasing order of their index and while considering class \(\mathcal{S}_i \), adds \(C_i \) to the solution if adding the cut produces a new component containing a terminal from \(X \). The process stops when \(k - 1 \) cuts are chosen. This procedure is well defined and yields a feasible solution for the following reason. From Lemma 3.2 and property 6 of the GW algorithm, if all the cuts \(C_1, C_2, \ldots, C_\ell \) are chosen, we obtain \(k \) (or more) components, each containing a terminal from \(X \). We now upper bound the value of the solution output by the algorithm. For \(1 = i_1 < i_2 < \cdots < i_{k-1} < i_\ell \) denote the indices of the \(k - 1 \) classes chosen by the algorithm. We let \(y'(\mathcal{S}_i) \) denote \(\sum_{S \in \mathcal{S}_i} y'(S) \).

Definition 3.5. Given a collection of distinct cuts \(\mathcal{B} \), we say that a cut \(C \in \mathcal{B} \) is basic with respect to \(\mathcal{B} \) if there is no cut \(C' \in \mathcal{B} \) such that \(C' \subsetneq C \).

From the laminarity of \(\mathcal{S} \) and hence of \(\mathcal{B} \), the set of basic cuts in \(\mathcal{B} \) is well defined and disjoint. Let \(\mathcal{A}_j \) denote the set of cuts \(C_1, C_2, \ldots, C_{q_j} \).

Lemma 3.6. Let \(q_j \) be the number of basic cuts in \(\mathcal{A}_j \) and let \(p_j \) be the number of components created by the algorithm after the first \(j \) cuts have been considered. Then

- \(\sum_{1 \leq h \leq j} y'(\mathcal{S}_h) \leq q_j/2 \),
- \(p_j \geq q_j \), and if \(p_j = q_j \), then the components are induced by the basic cuts in \(\mathcal{A}_j \) and \(X \subset \cup_{h=1}^{j} C_j \).

Proof. From the analysis of the GW algorithm we have that for any cut \(S \), \(\sum_{S' \supseteq S} y'(S') \leq \Delta/2 \), where \(\Delta \) is the diameter of \(G \). In our case \(\Delta = 1 \). Since every cut in \(\mathcal{A}_j \) is a superset of some basic cut in \(\mathcal{A}_j \), we have that \(\sum_{1 \leq h \leq j} y'(\mathcal{S}_h) \leq q_j/2 \).

Let \(r_1 < r_2 < \cdots < r_{q_j} \) be the indices of the basic cuts in \(\mathcal{A}_j \). Note that the cuts in \(\mathcal{S} \) are laminar and hence these basic cuts are disjoint. We now argue that \(p_j \geq q_j \).

Let \(X_h = X \cap C_{r_h} \), \(1 \leq h \leq q_j \), and let \(X' = X - \cup_{h=1}^{q_j} X_h \). We claim that for \(h < h' \), \(X_h \) and \(X_{h'} \) are in separate components; otherwise, the algorithm when processing
denote the terminals in C and X_h; therefore $p_j \geq q_j$. By the same argument, it follows that if X' is not empty, X_h and X' are in separate components as well and in this case $p_j \geq q_j + 1$. Thus, if $p_j = q_j$, $X' = \emptyset$, and each X_h is in a separate component. \hfill \Box

Let $\alpha = 1/(1-1/|X|)$. From the analysis of the GW algorithm we have that $\sum_{h=1}^{\ell} y'(S_h) = \sum_S y'(S) \geq \alpha(k-1)/2$. The main tool in our analysis is the following lemma.

Lemma 3.7. For $1 \leq r \leq k-1$, $\sum_{j \geq i_r} y'(S_j) \geq \alpha(k-r)/2$.

Proof. Let $f = i_r - 1$, then $p_f = r$. We consider two cases based on q_f.

If $p_f > q_f$, we have that $q_f \leq r-1$, and by Lemma 3.6, $\sum_{1 \leq h \leq f} y'(S_h) \leq (r-1)/2$. Since $\sum_{1 \leq h \leq \ell} y'(S_h) \geq \alpha(k-1)/2$ it follows that $\sum_{i_r \leq h \leq \ell} y'(S) \geq \alpha(k-r)/2$.

Now we consider the case $p_f = q_f$. From Lemma 3.6, the components at this stage are induced by the basic cuts in A_f. Let the basic cuts be $C_{j_1}, C_{j_2}, \ldots, C_{j_r}$. Let X_h denote the terminals in C_{j_h}. Recall that $X = \cup_h X_h$ and hence $\sum_{1 \leq h \leq r} |X_h| = |X|$. The tree T created by the GW algorithm is of cost $k-1$. We note that the part of the tree that connects the components $C_{j_1}, C_{j_2}, \ldots, C_{j_r}$ costs at most $r-1$ since the diameter of the graph is at most 1. For $1 \leq h \leq r$, let T_h be the minimal subtree of T that connects X_h. It follows that $\sum_{1 \leq h \leq r} \sum_{e \in T_h} d_e \geq k - 1 - (r-1) \geq k - r$. Let $L_h = \{ i \mid (C_i \cap X) \subseteq X_h \}$ be the indices of classes that contain a proper subset of terminals from X_h. From the analysis of the GW algorithm applied to tree T_h and terminals set X_h, we obtain that

$$\sum_{i \in L_h} y'(S_i) \geq \frac{1}{2(1-1/|X_h|)} \sum_{e \in T_h} d_e;$$

therefore

$$\sum_{1 \leq h \leq r} \sum_{i \in L_h} y'(S_i) \geq \sum_{1 \leq h \leq r} \frac{1}{2(1-1/|X_h|)} \sum_{e \in T_h} d_e \geq \frac{1}{2(1-1/|X|)} (k-r).$$

We now claim that if $i \in \cup_h L_h$, then $i > f = i_r - 1$. For if $i \in L_h$, then C_{j_h} would not be basic in C_1, C_2, \ldots, C_f; therefore

$$\sum_{j \geq i_r} y'(S_j) \geq \sum_{1 \leq h \leq r} \sum_{i \in L_h} y'(S_i).$$

This finishes the proof of the lemma. \hfill \Box

Corollary 3.8. $\sum_{r=1}^{k-1} w(C_{i_r}) \leq 2(1-1/|X|) \leq \sum_S y'(S) w(S)$.

Proof. For $1 \leq h \leq \ell$ let $z_h = \sum_{j \geq h} y'(S_j)$. Recall that $1 = i_1 < i_2 < \cdots < i_{k-1} < \ell$ are the indices of the cuts chosen by the algorithm and that $w(C_1) \leq w(C_2) \leq \cdots \leq w(C_\ell)$; hence,

$$\sum_S y'(S) w(S) = \sum_{h=1}^{\ell} \sum_{S \in S_h} y'(S) w(S) \geq \sum_{h=1}^{\ell} y'(S_h) w(C_h) \geq w(C_{i_{k-1}}) z_{i_{k-1}} + \sum_{r=1}^{k-2} w(C_{i_r})(z_r - z_{i_{r+1}}).$$
From Lemma 3.7 we have that \(z_i = \alpha(k - r)/2 \). The right-hand side of the last inequality above is minimized when \(z_i = \alpha(k - r)/2 \) for \(1 \leq r \leq k - 1 \). Therefore,

\[
\sum_{S} y'(S)w(S) \geq \frac{1}{2} \alpha \sum_{r=1}^{k-1} w(C_i).
\]

This yields the desired inequality. \(\square \)

From Corollary 3.8 and Claim 3.3 we obtain that

\[
\sum_{r=1}^{k-1} w(C_i) \leq 2(1 - 1/|X|) \sum_{S} y'(S)w(S) \leq 2(1 - 1/|X|) \sum_{e} w_e d_e.
\]

Thus the integrality gap of \((K')\) is upper bounded by \(2(1 - 1/|X|)\).

Lower bound on the integrality gap. The integrality gap of \((K')\) (and \((K)\)) is no better than \(2(1 - 1/|X|)\) even when \(k = 2\) and \(X = V\) (the global minimum cut problem). Consider the unit weight cycle on \(n\) vertices. Clearly, an integral solution has to cut at least two edges to separate the cycle into two components. Consider the following feasible solution to the relaxation. We set \(d(e) = 1/(n - 1)\) on each edge of the cycle; for all other edges, \(d(e)\) is the shortest path distance induced by the distances on the cycle edges. The value of this solution is \(n/(n - 1)\). Hence, the integrality gap is \(2(1 - 1/n)\).

Theorem 3.9. The integrality gap of the LP \((K')\) is \(2(1 - 1/|X|)\).

4. An exact formulation for the global minimum cut problem. In the previous section we saw that LP \((K')\) has an integrality gap of \(2(1 - 1/n)\) for the 2-cut problem, i.e., for the global minimum cut problem. Here we give a bidirected formulation of the global minimum cut problem. Given an undirected weighted graph \(G = (V, E)\), let \(G^b = (V, A)\) be the directed graph obtained by replacing each edge \(e \in E\) between \(u\) and \(v\) by two directed arcs \((u, v)\) and \((v, u)\). The weights of both \((u, v)\) and \((v, u)\) in \(G^b\) are set to \(w(e)\). Let \(r\) be any vertex in \(V(G)\). An arborescence in a directed graph rooted at a vertex \(r\) is a spanning out-tree from \(r\) (also known as a branching). Our formulation is based on \(G^b\). For an arc \(a \in A\), let \(d(a) = 1\) if \(a\) is chosen to the cut, and let \(d(a) = 0\) otherwise. The following is a valid integer program for the global minimum cut problem:

\[
(B) \quad \min \sum_{a \in A} w(a) \cdot d(a) \quad \text{subject to:}
\]

\[
\sum_{a \in T} d(a) \geq 1 \quad T \text{ arborescence rooted at } r \text{ in } G^b
\]

\[
d(a) \in \{0, 1\} \quad a \in A.
\]

Although the above integer program is similar to integer program \((K)\), we remark that for \(k > 2\) we do not obtain a valid formulation for the \(k\)-cut problem if we replace the right-hand side of the constraint above by \(k - 1\).

We obtain a LP by relaxing each variable \(d(a)\) to be in \([0, 1]\). We show that the value of the LP is exactly equal to the global minimum cut of the graph \(G\). The separation oracle needed to solve \((B)\) in polynomial time by the Ellipsoid algorithm is the minimum cost arborescence problem in directed graphs. We can use the algorithm of Edmonds [3] for this purpose. In fact, Edmonds [3] showed that the arborescence polytope is integral and we use this to show that \((B)\) is exact for the minimum cut.
problem. The proof is similar in outline to the one in section 3, but we use arborescences in place of spanning trees, and the result of Edmonds [3] on the integrality of the arborescence polytope in place of the GW algorithm. Let \(\bar{d} \) be an optimal solution to \((B)\). Let \(G^b_d \) be the graph \(G^b \) equipped with \(\bar{d} \) as costs on the edges of \(G^b \). We find a minimum cost arborescence in \(G^b_d \) using the following formulation. For each arc \(a \), variable \(x(a) = 1 \) if \(a \) belongs to the arborescence and 0 otherwise:

\[
\begin{align*}
\text{(AP)} & \quad \min \sum_{a \in A} d(a) \cdot x(a) \quad \text{subject to:} \\
& \quad \sum_{a \in \delta(S)} x(a) \geq 1 \quad \forall \ S : S \neq V \text{ and } r \in S \\
& \quad x(a) \in [0, 1] \quad \forall \ a.
\end{align*}
\]

The dual of the above LP is the following:

\[
\begin{align*}
\text{(AD)} & \quad \max \sum_S y(S) \quad \text{subject to:} \\
& \quad \sum_{S : a \in \delta(S)} y(S) \leq d(a) \quad \forall \ a \\
& \quad y(S) \geq 0 \quad \forall \ S : S \neq V \text{ and } r \in S.
\end{align*}
\]

Let \(\bar{x}^* \) and \(\bar{y}^* \) be optimal primal and dual solutions to \((AP)\) and \((AD)\) on the graph \(G^d_b \). From the feasibility of \(\bar{d} \), it follows that \(\sum_a d(a)x^*(a) \geq 1 \). From weak duality we therefore also obtain that \(\sum_S y^*(S) \geq 1 \). Let \(S = \{ S \mid y^*(S) > 0 \} \) be the set of all cuts with strictly positive dual values. Let \(C \in S \) be a cut such that \(w(S) \) is the cheapest cut. We pick \(C \) as our solution. We now show that \(w(C) \leq \sum_a w(a)d(a) \), which shows that the weight of the cut is at most the value of the optimal solution to \((B)\). We see that

\[
\sum_S y^*(S)w(S) = \sum_S y^*(S) \sum_a w(a)
\]

\[
= \sum_a w(a) \sum_{S : a \in \delta(S)} y^*(S)
\]

\[
\leq \sum_a w(a)d(a).
\]

The last inequality follows from the feasibility of \(y^* \). We have that \(\sum_S y^*(S)w(S) \leq \sum_a w(a)d(a) \) and \(\sum_S y^*(S) \geq 1 \). Therefore, the weight of the cheapest cut is no more than \(\sum_a w(a)d(a) \).

Theorem 4.1. The LP relaxation of \((B)\) can be solved in polynomial time and is an exact formulation for the global minimum cut problem.

5. Conclusions. Our study of LP relaxations for the Steiner \(k \)-cut problem was partly motivated by the goal of obtaining an approximation algorithm for the \(k \)-cut problem with a ratio better than 2. This has been accomplished for the multiway cut problem by a strengthened LP relaxation [1]. Our results show that the available approximation techniques for the \(k \)-cut problem extend to the Steiner \(k \)-cut problem. In the process we have shown an interesting connection between laminar cut families obtained from the primal-dual algorithm of Goemans and Williamson [4] and their use in analyzing the LP relaxation for the Steiner \(k \)-cut problem. Several interesting questions are open.
• Is the k-cut problem APX-hard?
• Is there an approximation algorithm for the k-cut problem with ratio better than 2?
• What is the integrality gap of the geometric relaxation in [1] for the multiway cut problem?

Acknowledgments. We thank David Shmoys and Zoya Svitkina for pointing out an erroneous proof in a previous version of the paper. We thank two anonymous referees for comments which helped improve the clarity of the proofs in section 3.2.

REFERENCES