Distributed Geodesic Control Laws for Flocking of Nonholonomic Agents

Nima Moshtagh
University of Pennsylvania

Ali Jadbabaie
University of Pennsylvania, jadbabai@seas.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/ese_papers

Recommended Citation

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/ese_papers/239
For more information, please contact libraryrepository@pobox.upenn.edu.
Distributed Geodesic Control Laws for Flocking of Nonholonomic Agents

Abstract
We study the problem of flocking and velocity alignment in a group of kinematic nonholonomic agents in 2 and 3 dimensions. By analyzing the velocity vectors of agents on a circle (for planar motion) or sphere (for 3-D motion), we develop a geodesic control law that minimizes a misalignment potential and results in velocity alignment and flocking. The proposed control laws are distributed and will provably result in flocking when the underlying proximity graph which represents the neighborhood relation among agents is connected. We further show that flocking is possible even when the topology of the proximity graph changes over time, so long as a weaker notion of joint connectivity is preserved.

Keywords
cooperative control, distributed coordination, flocking, multiagent systems

Comments

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Pennsylvania’s products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/ese_papers/239
Distributed Geodesic Control Laws for Flocking of Nonholonomic Agents

Nima Moshtagh and Ali Jadbabaie

Abstract—We study the problem of flocking and velocity alignment in a group of kinematic nonholonomic agents in 2 and 3 dimensions. By analyzing the velocity vectors of agents on a circle (for planar motion) or sphere (for 3-D motion), we develop a geodesic control law that minimizes a misalignment potential and results in velocity alignment and flocking. The proposed control laws are distributed and will provably result in flocking when the underlying proximity graph which represents the neighborhood relation among agents is connected. We further show that flocking is possible even when the topology of the proximity graph changes over time, so long as a weaker notion of joint connectivity is preserved.

Index Terms—Cooperative control, distributed coordination, flocking, multiagent systems.

I. INTRODUCTION

Cooperative control of multiple autonomous agents has become a very active part of control theory research. The main underlying theme of this line of research is to analyze and/or synthesize spatially distributed control architectures that can be used for motion coordination of large groups of autonomous vehicles. Each vehicle is assumed to be capable of local sensing and communication, and there is often a global objective, such as swarming, or reaching a stable formation, etc. A nonexhaustive list of relevant research in control theory and robotics includes [1], [3], [5], [8]–[10], [12], [13], [19].

On the other hand, such problems of distributed coordination have also been studied in areas as diverse as statistical physics and dynamical systems (in the context of synchronization of oscillators and alignment of self propelled particles [18]), in biology, and ecology, and in computer graphics in the context of artificial life and simulation of social aggregation phenomena, and in distributed computation [17], in the context of reaching consensus in parallel and distributed processing.

Most of the above cited research on distributed control of multivehicle systems has been focused on fully actuated systems [16], or planar under-actuated systems [8]. Our goal here is to develop motion coordination algorithms that can be used for distributed control of a group of nonholonomic vehicles in 2 and 3 dimensions. Using results of Bullo et al. [2] we develop geodesic control laws that result in flocking and velocity alignment for nonholonomic agents in 3 dimensions.

In order to introduce the idea of a geodesic control law to the reader, we start with the special case of planar motion in Section III. We will show that the planar version of such a control law (where the velocity vector is restricted to stay on a circle) is exactly the well-known Kuramoto model of coupled nonlinear oscillators [6], [14]. Such a control law is a gradient controller that minimizes a potential function which represents the aggregate “misalignment energy” between all agents. In Section V we return to the general case of 3-D motion and we develop control laws that result in stable coordination and velocity alignment of a group of agents with a fixed connectivity graph. In Section VI, we show that flocking is possible even when the topology of the proximity graph changes over time. Finally, in Section VII, we provide simulations that show the effectiveness of the designed controllers. But, let us review the concepts of graph theory that we use in this note for stability analysis.

II. GRAPH THEORY PRELIMINARIES

In this section, we introduce some standard graph theoretic notation and terminology. An (undirected) graph \(G \) consists of a vertex set \(\mathcal{V} \), and an edge set \(\mathcal{E} \), where an edge is an unordered pair of distinct vertices in \(G \). If \(x, y \in \mathcal{V} \) and \((x, y) \in \mathcal{E} \), then \(x \) and \(y \) are said to be adjacent, or neighbors and we denote this by writing \(x \sim y \). The number of neighbors of each vertex is its valence. A path of length \(r \) from vertex \(x \) to vertex \(y \) is a sequence of \(r + 1 \) distinct vertices starting with \(x \) and ending with \(y \) such that consecutive vertices are adjacent. If there is a path between any two vertices of a graph \(G \), then \(G \) is said to be connected. If there is such a path on a directed graph ignoring the direction of the edges, then the graph is weakly connected.

The adjacency matrix \(A(G) = [a_{ij}] \) of an (undirected) graph \(G \) is a symmetric matrix with rows and columns indexed by the vertices of \(G \), such that \(a_{ij} = 1 \) if vertex \(i \) and vertex \(j \) are neighbors and \(a_{ij} = 0 \), otherwise. The valence matrix \(D(G) \) of a graph \(G \) is a diagonal matrix with rows and columns indexed by \(\mathcal{V} \), in which the \((i, i)\)-entry is the valence of vertex \(i \). The (undirected) graph of a (symmetric) matrix is a graph whose adjacency matrix is constructed by replacing all nonzero entries of the matrix with 1. Matrix \(A \) has property SC if and only if \([A]\) is the adjacency matrix of a strictly connected graph.

The symmetric singular matrix defined as:

\[
L(G) = D(G) - A(G)
\]

is called the Laplacian of \(G \). The Laplacian matrix captures many topological properties of the graph. The Laplacian \(L \) is a positive semidefinite \(M \)-matrix (a matrix whose off-diagonal entries are all nonpositive) and the algebraic multiplicity of its zero eigenvalue (i.e., the dimension of its kernel) is equal to the number of connected components in the graph. The \(n \)-dimensional eigenvector associated with the zero eigenvalue is the vector of ones, \(1 \).

Given an orientation of the edges of a graph, we can define the incidence matrix of the graph to be a matrix \(B \) with rows indexed by vertices and columns indexed by edges with entries of 1 representing the source of a directed edge and \(-1\) representing the sink. The Laplacian matrix of a graph can also be represented in terms of its incidence matrix as \(L = BB^T \) independent of the orientation of the edges.
III. DISTRIBUTED CONTROL OF PLANAR NONHOLONOMIC VEHICLES

Consider a group of N agents on a plane. Each agent is capable of sensing some information from its neighbors as defined by

$$\mathcal{N}_i = \{ j | i \sim j \} \subseteq \{1, \ldots, N \} \setminus \{i\}. \quad (1)$$

The neighborhood set of agent i, \mathcal{N}_i, is a set of agents that can share their heading (orientation) information with agent i. The size of the neighborhood depends on the characteristics of the communication device. We therefore assume that there is a predetermined radius R which determines the neighborhood relationship. The location of agent i, $(i = 1, \ldots, N)$ in the world coordinates is given by (x_i, y_i) and its velocity is $v_i = (x_i, y_i)^T$. The heading or orientation of agent i is θ_i, and is given by $\theta_i = \arctan2(y_i, x_i)$.

It is assumed that all agents move with constant unit speed. Thus, the kinematic model of each agent can be written as

$$\begin{align*}
x_i &= \cos \theta_i,
\dot{y}_i &= \sin \theta_i,
\dot{\theta}_i &= \omega_i, \quad i = 1, \ldots, N.
\end{align*} \quad (2)$$

The goal is to design the control input ω_i so that the headings of the mobile agents reach agreement and velocity vectors are aligned. We therefore define the consensus set as follows.

Definition 3.1: The set of states where the headings of all agents are the same is called the consensus set.

In this note, we say agents are “flocking” when their headings reach asymptotic agreement. We consider the case where the neighboring relations among agents are represented by a fixed weighted graph.

Definition 3.2: The proximity graph $G = (\mathcal{V}, \mathcal{E}, \mathcal{W})$ is a weighted graph consisting of

- a set of vertices \mathcal{V} indexed by the set of mobile agents;
- a set of edges $\mathcal{E} = \{(i, j) | v_i, v_j \in \mathcal{V}, \text{ and } i \sim j\}$;
- a set of weights \mathcal{W}, over the set of edges \mathcal{E}.

In order to design the desired control law for agent i, let us view all the velocity vectors of neighbors of agent i in a unit circle as shown in Fig. 1. Each velocity vector v_i can be written in terms of the heading angle θ_i (measured in a fixed inertial frame) as follows:

$$v_i = \begin{pmatrix} \cos \theta_i \\ \sin \theta_i \end{pmatrix}, \quad i = 1, \ldots, N. \quad (3)$$

As the velocity vector v_i changes, we can write the dynamics equation corresponding to the motion of agent i as $\dot{v}_i = \omega_i X_{i\theta}$ where vector $X_{i\theta}$ is tangent to v_i, and is given by

$$X_{i\theta} = \begin{pmatrix} -\sin \theta_i \\ \cos \theta_i \end{pmatrix}, \quad i = 1, \ldots, N. \quad (4)$$

Note: In the following the standard inner product is denoted by $\langle \cdot, \cdot \rangle$, and the cross product by \times.

Let α_{ij} be the angle between two velocity vectors v_i and v_j, $\alpha_{ij} = |\theta_i - \theta_j|$. When v_i and v_j are neither equal nor opposite ($0 < \alpha_{ij} < \pi$), we can define a unit vector Y_{ij} tangent to v_j such that it is pointing towards the velocity vector v_j. This unit-length vector is defined as

$$Y_{ij} = \frac{v_j^+}{\|v_j^+\|} = \frac{(v_i \times v_j) \times v_i}{\| (v_i \times v_j) \times v_i \|} = \frac{v_j - (v_i \cdot v_j)v_i}{\sin \alpha_{ij}} \quad (5)$$

where v_j^+ is the component of v_j orthogonal to v_i. Now, we can prove the following theorem for the distributed control of the velocity vectors of a group of N agents.

Theorem 3.3: Consider the system of N equations $\dot{v}_i = \omega_i X_{i\theta}$, $i = 1, \ldots, N$. If the proximity graph is fixed and connected, then by applying the control law

$$\omega_i = \sum_{j \in \mathcal{N}_i} \sin \alpha_{ij} \langle Y_{ij}, X_{i\theta} \rangle = \sum_{j \in \mathcal{N}_i} \langle v_j, X_{i\theta} \rangle \quad (6)$$

all trajectories converge to the set of equilibrium points given by $\dot{\theta} = 0$. Furthermore, consensus set is locally attractive.

Proof: We observe that on the unit circle $Y_{ij} = X_{i\theta}$ or $Y_{ij} = -X_{i\theta}$, depending on the orientations of v_i and v_j. Hence, we write the input (5) as

$$\omega_i = -\sum_{j \in \mathcal{N}_i} \sin(\theta_i - \theta_j). \quad (7)$$

Notice that the above input is exactly the one used in the Kuramoto model of coupled nonlinear oscillators [6], [10], [14].

Assume an arbitrary orientation for the edges of graph G. Consider the $N \times d$ incidence matrix, B, of this oriented graph with N vertices and d edges. Then, we can write (6) as

$$\dot{\theta} = \omega = -B \sin(B^T \theta) \quad (8)$$

where $\theta = [\theta_1, \ldots, \theta_N]^T$, and $\sin(B^T \theta) \in \mathbb{R}^d$ is a vector whose elements are $\sin(\theta_i - \theta_j)$. Equation (7) can be written in a more compact form

$$\dot{\theta} = \omega = -B W(\theta) B^T \theta = -L_\omega(\theta) \theta \quad (9)$$

where $W(\theta) = \text{diag} \{ \sin(\theta_i - \theta_j) \mid (i, j) \in \mathcal{E} \}$ is a diagonal matrix whose entries are the edge weights for G. The ordering of the elements on the diagonal of $W(\theta)$ is consistent with the ordering of the edges in the incidence matrix B. The matrix $L_\omega(\theta)$ can be thought of as the weighted Laplacian of G, when $\sin(\theta_i - \theta_j) = \sin(\theta_i - \theta_j)/(\theta_i - \theta_j)$ is positive. For this to hold θ should belong to the open cube $\left(-\pi/2, \pi/2\right)^N$, where N is the number of vertices of the graph. In other words, over any compact subset of the cube $\left(-\pi/2, \pi/2\right)^N$, the dynamics can be represented by a state-dependent weighted Laplacian.

Now, consider the Lyapunov function

$$V = \frac{1}{2} \sum_{j \neq i} \|v_i - v_j\|^2 = \frac{1}{2} \langle e^{\theta_0} \rangle \| L[e^{\theta_0}] \| = \sum_{j \neq i} -\cos(\theta_i - \theta_j) \quad (9)$$

where the sum is over all the neighboring pairs, denoted by $i \sim j$; L is the Laplacian of the graph; and $[e^{\theta_0}]$ is the stack of velocity vectors in
complex notation. The above sum represents the total misalignment energy between velocity vectors. Since we have $U = d - 1^T \cos(B^T \hat{\theta})$, and because of (8), the time derivative of U along the trajectories of the system becomes

$$U = \nabla U \hat{\theta} = \theta^T L_w \hat{\theta} = -\hat{\theta}^T \hat{\theta} \leq 0.$$

A simple application of LaSalle’s invariance principle over the configuration space which is an N-torus and therefore compact reveals that all trajectories starting in anywhere on the N-torus converge to the largest invariant sets in $E = \{ \theta \mid U = 0 \}$. Note that this is a very rich set and contains many equilibria other than the consensus set, some of which could be stable. See Remark 3.4 for an instance of this situation.

In order to prove local attractivity of the consensus set we utilize a simple quadratic Lyapunov function $V = \frac{1}{2} \theta^T \theta$, and a compact set $\Omega_\epsilon = \{ \theta \mid V \leq \epsilon \}$. This set, which is characterized by the largest level set of V that is contained inside the cube $(-\pi/2, \pi/2)^N$, can be used to show that the synchronized state is the only equilibrium within the set $E = \{ \theta \mid \theta \in \Omega_\epsilon \}$. This is true since $V = -\hat{\theta}^T L_w \hat{\theta} \leq 0$. Thus, equivalently points are the set of solutions of $L_w \hat{\theta} = 0$. If graph G is connected, within Ω_ϵ, the null space of weighted Laplacian L_w is the span of vector $1 = [1, \ldots, 1]^T$. Thus, the solution is $\mathbb{N} \{ L_w \}$, which is the set $S = \{ \theta \mid \theta \in \mathbb{R} \}$. This suggests that all agents reach the same heading as $t \to \infty$.

Remark 3.4: When the proximity graph G has the ring topology (i.e., all agents have exactly two neighbors), there are two sets of equilibria: $\theta \in \mathbb{R}$ and $B^T \theta \in \mathbb{R}$, where the former corresponds to the set $\{ \theta_1 = \theta_j, \forall i \neq j \}$ and the latter corresponds to $\{ \theta_1 = \theta_j = 2\pi/N, \forall i \neq j \}$. See [7] for details.

Remark 3.5: Local attractivity of the consensus set can be established even when the proximity graph changes with time. As will be shown in Section VI, this holds as long as a weak notion of connectivity called joint connectivity [5] holds.

Remark 3.6: The geodesic control input (6) for a group of planar nonholonomic vehicles is basically the same controller that can stabilize the Kuramoto model of coupled nonlinear oscillators [6]. The term $\sin(\theta_i - \theta_j)$ in the angular velocity can be explained by noting that in the planar case the angular velocity is the rate of rotation about the axis $\mathbf{v}_{ij} \times \mathbf{v}_j$, where \mathbf{v}_{ij} is given by (3). The norm of $\mathbf{v}_{ij} \times \mathbf{v}_j$ is nothing but $\sin(\theta_i - \theta_j)$.

Remark 3.7: The geodesic controller (6) is the nonlinear version of the control law

$$\omega_i = -\sum_{j \in N_i} (\theta_i - \theta_j)$$

proposed in [5], [12] as the continuous analogue of Viscek’s model [18].

IV. LEADER FOLLOWING

One could envision in a social aggregation scenario such as flocking of birds, one of the flock-mates acts as the leader of the group and others follow the leader while staying in a formation. Similarly, here we consider the case that one additional agent, labeled 0, acts as the group’s leader. Agent 0 moves with the constant unit velocity (same as others) and a fixed heading θ_0. Other agents in the group may or may not have the leader as a neighbor. Here, we prove that the control law (6) results in a stable formation of the group while following the leader, so that in the end all agents reach the desired heading θ_0 (cf. [5] for more details on leader following).

Consider the input of each agent in the leaderless case that is given by (6). We can separate the leader from other agents and write:

$$\dot{\theta}_i = -\sum_{j \in N_i} \sin(\theta_i - \theta_j) - c_i \sin(\theta_i - \theta_0)$$

(10)

where $c_i = 1$ if agent i and the leader are neighbors and $c_i = 0$ otherwise.

To show that all the headings become equal to θ_0, we consider the error term $e_i = \theta_i - \theta_0$. Since $\dot{e}_i = \hat{\theta}_i$, we can write (10) as

$$\dot{e}_i = -\sum_{j \in N_i} \sin(e_i - e_j) - c_i \sin e_i.$$

Consider the error vector $e = [e_1, \ldots, e_N]^T$. Similar to calculations of Section III, the error dynamics becomes

$$\dot{e} = -BW(e)B^T e - W_1 e - W_2 e = -H(e) e$$

(11)

where $W(e) = \text{diag} [\sin(e_i - e_j) | (i, j) \in \mathcal{E}] \in \mathbb{R}^{d \times d}$ and $W_1 = \text{diag}[c_i \sin(e_i) | (i, 0) \in \mathcal{E}] \in \mathbb{R}^{N \times \infty}$. Both $W(e)$ and W_1 are weight matrices with positive entries, because $\sin(e_i - e_0) = \sin(\theta - \theta_0)$ is positive for $\theta \in (-\pi/2, \pi/2)$, and c_i is a nonnegative coefficient.

In order to show that the error is asymptotically stable, consider the Lyapunov function $V = \frac{1}{2} \epsilon e^T e$. The derivative of this along the trajectory of the error system can be written as $\dot{V} = -\epsilon^T H(e) e$, where $H(e) = L_w + W_1$. We will prove that $H(e)$ is positive definite, and the error will asymptotically decay to zero.

Note that both L_w and W_1 are positive-semidefinite matrices and so is $H(e)$. Matrix L_w has property SC, because if we replace the nonzero entries of L_w with 1, we obtain the adjacency matrix of the neighboring graph that is strictly connected. Matrix W_1 is diagonal, thus adding it to L doesn’t change the neighboring graph. Thus $H(e) = L_w + W_1$ has property SC. A matrix is irreducible if and only if it has property SC. Thus, $H(e)$ is irreducible. See [4, Ch. 6], for more details on irreducible matrices.

We need to show that $H(e)$ is actually positive definite. To do so, we make the following observations:

• $H(e)$ is an irreducible matrix.
• L_w is diagonally dominant.
• For at least one of the rows of $H(e)$, the diagonal entry is strictly greater than the sum of off-diagonal entries (because W_1 is a diagonal matrix with nonnegative entries).

According to Taussky theorem [4] matrix $H(e)$ is an irreducibly diagonally dominant matrix and is invertible. Thus, $H(e)$ must be a positive definite matrix. As a result $V < 0$ and the error vector asymptotically decays to zero; consequently $\hat{\theta}_i = \theta_0$ for every $i = 1, \ldots, N$, as $t \to \infty$.

V. DISTRIBUTED COORDINATION OF NONHOLONOMIC AGENTS IN 3-D

Consider a group of N agents in the three-dimensional space. Our goal in this section is to design a control law for each agent such that it guarantees they reach the consensus set.

Each agent is capable of communicating some information with its neighbors, defined by (1). The neighborhood set of agent i, N_i, is a set of agents that can share their headings and attitudes (orientation)
information with agent i. As before, it is assumed that there is a predetermined sphere with radius R which determines the neighborhood relationship. The location of agent i in the fixed world coordinates is given by (x_i, y_i, z_i) and its velocity is $v_i = (\dot{x}_i, \dot{y}_i, \dot{z}_i)^T$. The orientation of the velocity vector of agent i can be characterized by specifying two angles θ_i (heading) and ϕ_i (attitude) relative to the world frame [see Fig. 2(a)], and they are defined as

$$
\begin{align*}
\theta_i &= \arctan2(y_i, x_i), \quad 0 \leq \theta_i \leq 2\pi \\
\phi_i &= \arctan2(\sqrt{x_i^2 + y_i^2}, z_i), \quad 0 < \phi_i < \pi.
\end{align*}
\tag{12}
$$

Without loss of generality, it is assumed that all agents move with a constant unit speed. The velocity of agent i in 3 dimensions is given by

$$
v_i = \left(\begin{array}{c}
\dot{x}_i \\
\dot{y}_i \\
\dot{z}_i
\end{array} \right) = \left(\begin{array}{c}
\cos \phi_i \sin \phi_i \\
\sin \phi_i \sin \phi_i \\
\cos \phi_i
\end{array} \right)
\tag{13}
$$

Hence, all velocity vectors are on a unit sphere $S^2 = \{ p = (x, y, z) \in \mathbb{R}^3 : ||p|| = 1 \}$ [see Fig. 2(b)]. We represent each vector v_i as a point on this unit sphere. As the direction of the velocity vector of agent i changes, the corresponding point v_i will move along a curve on the sphere. The tangent vector to this curve at v_i is \dot{v}_i, which can be uniquely represented as a vector $v_{ij} \in \mathbb{R}^3$ such that $v_i \perp v_{ij}$ and $v_i \in T_i S^2$ where $T_i S^2$ is the tangent plane at v_i. A basis for the tangent space $T_i S^2$ can be obtained by differentiating v_i, and thus \dot{v}_i can be written as

$$
\dot{v}_i = u_{i\theta} X_{i\theta} + u_{i\phi} X_{i\phi} \in T_i S^2
\tag{14}
$$

where $B_i = \{ X_{i\theta}, X_{i\phi} \}$ is an orthonormal basis for the tangent plane $T_i S^2$, and

$$
\begin{align*}
X_{i\theta} &= \begin{pmatrix}
-sin \theta_i \\
cos \theta_i \\
0
\end{pmatrix}, \\
X_{i\phi} &= \begin{pmatrix}
cos \phi_i \cos \theta_i \\
\sin \phi_i \cos \theta_i \\
-sin \phi_i
\end{pmatrix}.
\end{align*}
$$

The control inputs $u_{i\theta}$ and $u_{i\phi}$ are related to $\dot{\theta}_i$ and $\dot{\phi}_i$:

$$
\begin{align*}
u_{i\theta} &= \dot{\theta}_i \sin \phi_i & u_{i\phi} &= \dot{\phi}_i.
\end{align*}
\tag{15}
$$

When points v_i and v_j are neither equal nor opposite, a vector $Y_{ij} \in T_i S^2$ called the geodesic versor can be defined to show the geodesic direction from v_i to v_j [see Fig. 2(b)]. The unit length geodesic versor is defined by (4). The difference from the 2-dimensional case is that on the sphere the angle α_{ij} is the radian distance between points v_i and v_j over the great circle path.

Now, we can prove the following theorem for the geodesic control of the velocity vectors of a group of N agents, which is a generalization of Theorem 2 in [2] to an arbitrary number of agents and connected topologies.

Theorem 5.1: Consider the system of N equations $v_i = u_{i\theta} X_{i\theta} + u_{i\phi} X_{i\phi}, \quad i = 1, \ldots, N$. If the proximity graph of the agents is fixed and connected, then by applying the control laws

$$
\begin{align*}
u_{i\theta} &= \sum_{j \in N_i} \sin \alpha_{ij} (Y_{ij}, X_{i\theta}) = \sum_{j \in N_i} (v_j, X_{i\theta}) \\
u_{i\phi} &= \sum_{j \in N_i} \sin \alpha_{ij} (Y_{ij}, X_{i\phi}) = \sum_{j \in N_i} (v_j, X_{i\phi})
\end{align*}
\tag{16}
$$

all trajectories converge to the equilibria given by $u_{i\theta} = 0$ and $u_{i\phi} = 0$, for $i = 1, \ldots, N$. Furthermore, the consensus set is locally attractive.

Proof: Convergence to equilibria can be established using the Lyapunov function

$$
V = \frac{1}{2} \sum_{i=1}^N \| v_i - v_j \|^2 = \sum_{i=1}^N 1 - (v_i, v_j)
\tag{17}
$$

which is a measure of discrepancy among the velocity vectors. The time derivative of V becomes

$$
\dot{V} = -\sum_{i=1}^N \sum_{j \in N_i} (\dot{v}_i, v_j) = -\sum_{i=1}^N (u_{i\theta}^2 + u_{i\phi}^2) \leq 0.
\tag{18}
$$

Similar to the 2-D case, the configuration space (which is now an N copies of a sphere) is compact and therefore LaSalle’s invariance principle can be used to establish convergence of all trajectories to invariant sets, including the synchronized state where all θ_i’s are the same and all ϕ_i’s are the same.

To prove local attractivity of the consensus set for the system of N agents with the control laws given in Theorem (5.1), we need to write (15) and (16) in terms of the heading and attitude angles. Using (14) we obtain these expressions for $\dot{\theta}_i$ and $\dot{\phi}_i$:

$$
\begin{align*}
\dot{\theta}_i &= -\sum_{j \in N_i} \sin \phi_j \sin(\theta_i - \theta_j) \\
\dot{\phi}_i &= -\sum_{j \in N_i} \sin(\phi_i - \phi_j) - \sin(\phi_j \cos \phi_i (1 - \cos(\theta_i - \theta_j))).
\end{align*}
\tag{19}
$$

We now linearize (18) and (19) around the synchronized state $\phi_i = \phi_j$, $\theta_i = \theta_j$. Let $\hat{\theta}_i$ and $\hat{\phi}_i$ be the deviations of θ_i and ϕ_i from the synchronized state. The linearized dynamics can be written as

$$
\begin{align*}
\dot{\hat{\theta}}_i &= -\sum_{j \in N_i} (\hat{\theta}_i - \hat{\theta}_j) \\
\dot{\hat{\phi}}_i &= -\sum_{j \in N_i} (\hat{\phi}_i - \hat{\phi}_j).
\end{align*}
\tag{20}
$$

Now, consider the quadratic Lyapunov function

$$
V = \frac{1}{2} \dot{\hat{\theta}}^T \hat{\theta} + \frac{1}{2} \dot{\hat{\phi}}^T \hat{\phi}.
\tag{21}
$$

Then, by using (20) we can show that V is nonpositive

$$
\dot{V} \leq -\hat{\theta}^T \Lambda \hat{\theta} - \hat{\phi}^T \Lambda \hat{\phi} \leq 0
\tag{22}
$$
VI. STABILITY ANALYSIS FOR SWITCHING GRAPHS IN 2 DIMENSIONS

So far, the underlying assumption has been that the graph G_0 representing the neighborhood relationship, is fixed and connected. In practice, the motion of individual agents will result in change in topology. To avoid complications that occur due to discontinuous change in the set of nearest neighbors, we will assume that there is always a minimum time, called a dwell time, μ_j, over which the graph does not change. This simplifying assumption will avoid infinite switches over a finite period of time.

Secondly, we assume that the switching is such that some weak notion of connectivity “persists” over finite time intervals. Each agent i would use control laws similar to (5) (which is now hybrid, since the set of neighbors N_i changes discontinuously). With the dwell time assumption, the control inputs would be of the following form:

$$\omega_i(t) = \sum_{j \in N_i^o(t_k)} (v_j(t) \cdot x_{\phi}(t)), \ t \in [t_k, t_k + \mu_j).$$ \hspace{1cm} (22)

The hybrid controller (22) may result in change of the proximity graph as the switching occurs. Let P denote a set that indexes the class of all simple graphs defined on N vertices; so if $p \in P$ then G_p is the corresponding proximity graph on N vertices. Let $\sigma(t)$ be a piecewise constant switching signal whose value at time t is the index of the graph representing the proximity graph of agent i. As mentioned earlier, following [5], we need to define a weaker notion of connectivity for a collection of graphs with a switching signal σ with $\sigma(t_k) = p_k$.

Definition 6.1: A collection of graphs is called jointly connected, if the union of its members is a connected graph.

It is natural to say that the N agents under consideration are linked together across a time interval $[t, \tau]$ if the collection of graphs $\{G_{\sigma(t_k)}, G_{\sigma(t_{k+1})}, \ldots, G_{\sigma(\tau)}\}$ encountered along the interval, is jointly connected.

In trying to extend Theorem 3.3 to graphs with the aforementioned switching regime, we need the following lemma, which was proved in [5].

Lemma 6.2: If $\{G_{p_1}, G_{p_2}, \ldots, G_{p_m}\}$ is a jointly connected collection of graphs with Laplacians $L_{p_1}, L_{p_2}, \ldots, L_{p_m}$, then

$$\bigcap_{i=1}^{m} \ker L_{p_i} = \text{span} \{1\}.$$

The previous lemma states that the intersection of the null space of the Laplacians of a set of jointly connected graphs is only the vector of ones. We can now state the following theorem.

Theorem 6.3: Let $\mu_{12} > 0$ and the initial heading vector θ_0 be fixed. Let $\sigma : [0, \infty) \rightarrow P$ be a piecewise constant persistent switching signal corresponding to all graphs over N vertices whose switching times t_1, t_2, \ldots satisfy $(t_{k+1} - t_k) \geq \mu_{12}, k \geq 1$. If there exists an infinite sequence of non-empty, bounded, time-intervals with the property that across each such interval the N-agent group is linked together, then by applying geodesic control law (22) all trajectories converge to the equilibrium of $\omega_i(t) = 0$. Furthermore, the consensus set is locally attractive.

The proof of convergence to the consensus set is omitted due to space limitations, but the idea here is to use Lemma 6.2 in the context of a LaSalle-like invariance principle for switched systems with dwell time constraint on switching. With the assumption that there exists an infinite sequence of non-empty, bounded, time-intervals with the property that across each such interval the graphs are jointly connected, we show that the intersection of the null spaces of the corresponding Laplacians is only the vector of ones. In other words, even though the graphs might be disconnected, and as a result their Laplacians have a larger kernel, the intersection is span $\{1\}$. By showing that the heading angles follow the persistent direction in the intersection of the Laplacians, we conclude that the consensus set is locally attractive. (cf. [11] for the detailed description of the proof).

VII. SIMULATIONS

In this section, we numerically show that the distributed control law (5), for the planar case, and the geodesic control laws (15) and (16), for the three-dimensional case, can force a group of agents to reach the consensus state. Fig. 3(a) and (b) show the leaderless flocking of ten agents in two and three dimensions, respectively. The initial position and heading of all agents are generated randomly within a prespecified area. The neighboring radius is chosen large enough so that agents form a connected graph at time $t = 0$. The arrows on each agent show the directions of the velocity vectors. Simulations show that agents smoothly adjust their headings and after a reasonable amount of time they converge to a formation, and their relative distances stabilizes.
Fig. 3(c) shows the effect of the presence of a leader in the group. In the simulations, one of the agents is randomly chosen to be the leader of the group, and its heading is constant. Without knowing which one of them is the leader, all other agents adjust their headings to follow him so that the formation remains stable. Even if the leader’s motion has dynamics, as long as the group remains connected, all agents follow the leader.

VIII. CONCLUSION AND FUTURE WORK

We provided a coordination scheme which resulted in flocking of a collection of kinematic agents. The control law was based on nearest neighbor sensing. It was shown that reaching consensus is possible despite possible changes in the topology of the proximity graph representing the neighborhood relationship. A generalization of the current analysis would be to develop results similar to [15], [16] for dynamic models, by using artificial potential functions similar to [13]. An important question that we need to answer is how to enforce the connectivity condition of the proximity graph. A potential starting point would be to use results of [20] in topology control.

REFERENCES

Fundamental Constraints on Uncertainty Evolution in Hamiltonian Systems

Fu-Yuen Hsiao and Daniel J. Scheeres

Abstract—A realization of Gromov’s nonsqueezing theorem and its applications to uncertainty analysis in Hamiltonian systems are studied in this note. Gromov’s nonsqueezing theorem describes a fundamental property of symplectic manifolds, however, this theorem is usually started in terms of topology and its physical meaning is vague. In this note we introduce a physical interpretation of the linear symplectic width, which is the lower bound in the nonsqueezing theorem, in terms of the eigenstructure of a positive-definite, symmetric matrix. Since uncertainty is often represented in terms of a positive definite, symmetric matrix in control theory, our study can be applied to uncertainty analysis by applying the nonsqueezing theorem to the uncertainty ellipsoid. We find a fundamental inequality for the evolving uncertainty in a linear dynamical system and provide some numerical examples.

Index Terms—Hamiltonian system, linear symplectic width, nonsqueezing theorem, symplectic manifold, uncertainty analysis.

I. INTRODUCTION

In this note, we study the realization of Gromov’s nonsqueezing theorem [3] in Hamiltonian systems and apply our results to uncertainty analysis. An example from orbit determination of spacecraft is given as a potential application. The nonsqueezing theorem was first proved by Gromov using J-holomorphic curves [3]. Other mathematicians have given proofs using different approaches [4], [8]. The theorem was then extended to arbitrary symplectic manifolds by Lalonde and McDuff [5]. Although this theorem has been proven rigorously in a topological sense, its application to practical issues is still vague.

A well-known result from Hamiltonian dynamical systems theory is Liouville’s Theorem [1], which says that the “volume” of a phase flow in a nondissipative system is conserved. This result also applies to un...