
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

October 2006

Unit & Dynamic Typing in Hybrid Systems
Modeling with CHARON
Madhukar Anand
University of Pennsylvania, anandm@cis.upenn.edu

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

George Pappas
University of Pennsylvania, pappasg@cis.upenn.edu

Oleg Sokolsky
University of Pennsylvania, sokolsky@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Copyright 2006 IEEE. Reprinted from the IEEE International Symposium on Computer-Aided Control Systems Design (CACSD 2006).
This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the
University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by
writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/248
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Madhukar Anand, Insup Lee, George Pappas, and Oleg Sokolsky, "Unit & Dynamic Typing in Hybrid Systems Modeling with
CHARON", . October 2006.

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers/248
mailto:libraryrepository@pobox.upenn.edu

Unit & Dynamic Typing in Hybrid Systems Modeling with CHARON

Abstract
In scientific applications, dimensional analysis forms a basis for catching errors as it introduces a type-
discipline into the equations and formulae. Dimensions in physical quantities are measured via their standard
units. However, many programming and modeling tools provide limited support for incorporating these units
into the variables. Thus, it is quite difficult for a programmer to ensure dimensional consistency in the code.
Different existing standards for units further complicates this problem and an incautious use could cause
inconsistencies, often with catastrophic results.

In this paper, we propose an extension of the basic type system in CHARON, a language for modeling of
hybrid systems, to include Unit and Dynamic data types. Through a combination of indirect user-guided
annotations and typeinference, we address the problem of ensuring both dimensional consistency, and
consistency with respect to different unitsystems. Further, we also introduce dynamic data typing, that allows
programmers to specify entities that bind at runtime. Such abstractions are particularly useful to program
controllers for dynamic environments. We illustrate these benefits with an example on mobile robots.

Comments
Copyright 2006 IEEE. Reprinted from the IEEE International Symposium on Computer-Aided Control Systems
Design (CACSD 2006).

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way
imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal
use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution must be obtained from
the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all
provisions of the copyright laws protecting it.

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/248

http://repository.upenn.edu/cis_papers/248?utm_source=repository.upenn.edu%2Fcis_papers%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages

Unit & Dynamic Typing in Hybrid Systems Modeling with C HARON

Madhukar Anand, Insup Lee, George Pappas and Oleg Sokolsky
Department of Computer and Information Science

University of Pennsylvania
{anandm,lee,sokolsky,pappasg }@cis.upenn.edu

Abstract— In scientific applications, dimensional analysis
forms a basis for catching errors as it introduces a type-
discipline into the equations and formulae. Dimensions in phys-
ical quantities are measured via their standardunits. However,
many programming and modeling tools provide limited support
for incorporating these units into the variables. Thus, it is quite
difficult for a programmer to ensure dimensional consistency
in the code. Different existing standards for units further
complicates this problem and an incautious use could cause
inconsistencies, often with catastrophic results.

In this paper, we propose an extension of the basic type
system in CHARON , a language for modeling of hybrid sys-
tems, to include Unit and Dynamic data types. Through a
combination of indirect user-guided annotations and type-
inference, we address the problem of ensuring both dimensional
consistency, and consistency with respect to different unit-
systems. Further, we also introduce dynamic data typing, that
allows programmers to specify entities that bind at runtime.
Such abstractions are particularly useful to program controllers
for dynamic environments. We illustrate these benefits with an
example on mobile robots.

I. I NTRODUCTION

When dealing with physical quantities, dimensional anal-
ysis is an effective tool to check for compatibility and
plausibility. Arithmetic operations on different quantities are
only meaningful if they are of the same dimensions. Any
assignment or comparison also involves quantities with sim-
ilar dimensions. It is therefore imperative that, programming
languages and modeling tools allow specification of variables
in appropriate units and incorporate dimensional analysis
into the type-checking. Surprisingly however, the language
support for unit-types is quite limited, often requiring explicit
annotations which can be quite tedious. As a consequence,
programs are frequently developed with outputs having un-
expected units [6].

Including unit-types in the language alone does not solve
the problem. Modular programs implemented with mixed
units (c.f., SI [18], FPS[16], etc.) can harbor serious bugs
and can have disastrous consequences. For example, an on-
ground system used in the navigation of the NASA Mars
Climate Orbiter spacecraft failed to convert between pound-
seconds and newton-seconds in calculating the impulse pro-
duced by thruster firings, due to a programmer error when
updating a program used for a previous spacecraft to include
the specification of a new model of thruster [9]. Another well
known example is from that of the ARIANE 5 flight 501
disaster. An internal software exception responsible for the
failure of the launcher was caused during execution of a data

This research is supported in part by NSF CCR-0209024, NSF CNS-
0410662, NSF CNS-0509327, and ARO DAAD19-01-1-0473

G6 : Sl(x) = true

G4 : Su(x) = false
G5 : Su(x) = true

q1 q2

q3

G1 : Su(x) = true

G4

G5G6

A

ẋ = v

v̇ = 0 v̇ = va

ẋ = v

G2 : Sl(x) = true

ẋ = v

G3 : Sl(x) = false

v̇ = −vd

Fig. 1. Obstacle Avoidance Controller Model for a Mobile Robot

conversion from64-bit floating point to16-bit signed integer
value. The floating point number which was converted had
a value greater than what could be represented by a16-
bit signed integer. This triggered an exception in software
and subsequently the flight failure [17]. As these examples
illustrate, it is essential that we focus on providing support
for units and their compatibility.

While ensuring consistency of units and types is indis-
pensable in general, for hybrid systems, there is also a need
for dynamic types. Many embedded systems, like that of
sensor networks and mobile agents, are best modeled as a
hybrid system(s). Such applications are characterized by (1)
dynamic membership of a set of attributes, and (2) attributes
varying in their type and units. These requirements warrant
the introduction ofdynamic type checking. The following
example highlights these issues.

Example 1:Consider the case of a mobile robot in a two
dimensional plane. Suppose that the objective of the appli-
cation is to move the robot while avoiding and maintaining
a safe distance from obstacles. A simple hybrid controller
for the robot is described as in Figure 1. The3 states of
the controller correspond to whether robot is moving with
constant velocity (q1), accelerating (q2), or decelerating (q3).
The transition conditions are described by the conditionsSu

andSl which are defined as:

Su(x) =
{

true if ∀Oi ∈ O, d(xi, x) > dmax ;
false otherwise;

Sl(x) =
{

true if ∃Oi ∈ O, d(xi, x) < dmin ;
false otherwise;

whereO denotes thecurrent set of obstacles detected,
xi denotes the location of obstacleoi, anddmax, dmin are
safety parameters.

If the set of obstacles is updated based on readings sent in
by different cameras embedded in the environment,ensuring
that the data has the same type and units has to be performed
at runtime. Furthermore, an abstract data array whose mem-

bership can be updated at runtime is useful in modeling many
applications. For instance, with such a dynamic array type,
the set of obstacles (O) is easily modeled. �

The rest of the paper is structured as follows. In Section II,
we present an overview of CHARON. In Sections III and IV
we present the unit and dynamic type extensions to CHARON

and discuss resolution of types and units. Finally, we present
related and prior work and conclude in Section VII.

II. OVERVIEW OF CHARON

CHARON is a language for modular specification of in-
teracting hybrid systems based on the notions of agent and
mode. For hierarchical description of the system architecture,
CHARON provides the operations of instantiation, hiding,
and parallel composition on agents, which can be used to
build a complex agent from other agents. The discrete and
continuous behaviors of an agent are described using modes.
For hierarchical description of the behavior of an agent,
CHARON supports the operations of instantiation and nesting
of modes. Furthermore, features such as weak preemption,
history retention, and externally defined Java functions, fa-
cilitate the description of complex discrete behavior. Con-
tinuous behavior can be specified using differential as well
as algebraic constraints, and invariants restricting the flow
spaces, all of which can be declared at various levels of
the hierarchy. The modular structure of the language is not
merely syntactic, but also reflected in the semantics so that
it can be exploited during analysis.

The key features of CHARON are its architectural and be-
havioral hierarchy, and constructs for discrete and continuous
update of variables [2].

Example 2:The following code snippet shows how
CHARON model of the obstacle avoidance controller from
Example 1. The controller has three locations labeled Con-
stantVel, Accel, and Decel. The two continuous variables are
the velocity (v) and the position (x). The mode TopMode
captures the entire model. This mode is composed of the
three modes. The code for mode ConstantVel is also given
below. Here, the rate of change of position and velocity are
captured by specifying the differential equation associated
with it (ẋ = v, and v̇ = 0). The transitions between states
are specified in the TopMode as shown.

mode TopMode (r e a l x1 , r e a l v1){

w r i t e ana log x , v ;
mode q1= ConstantVel () ;
mode q2= Accel () ;
mode q3= Decel () ;

t r a n s from default to q1 when true do {x=x1 ; v=v1 ;}
t r a n s from q1 to q2 when (Su (x)= true) do {}
t r a n s from q2 to q1 when (Su (x)= false) do {}
. . .

}

mode ConstantVel ()
{

w r i t e ana log r e a l x , v ;

d i f f {d (x)== v ; d (v)==0}
i nv{Su (x)=true }
}

�

III. U NIT TYPES

In the proposed extensions to the basic typing in CHARON,
we support two kinds of declarations for unit-systems: (1)
using the standard set of units provided in the library, and (2)
custom declaration of unit-systems using theunit directive.

The programmer can specify to use standard unit-systems
that are built-in by using theUnitSystem declaration. For
example,define UnitSystem=SI would indicate that
all the physical quantities to be used will have SI units. We
plan on supporting other popular unit systems such as the
CGS, FPS, and the US metric standards [16]. By making
the declaration of unit system global, we disallow mixing
of different unit-systems, which is essential in ensuring
consistency. However, this restriction only applies to asingle
program or module. Different modules can, in principle, have
different unit-systems. This is clearly advantageous if the
program is being developed as different modules, possibly
by different people. If this be the case, there needs to be a
mechanism to reconcile the different systems in use. We will
come back to this problem later in Section IV.

In order for the type checker to automatically assign units
under this scheme, we allow variable declaration in terms of
basic physical quantities. These physical types (pType) will
be derived from the base typereal . This admits inference of
both thebasetype and the unit for the variable. The following
example clarifies the usage.

Example 3:Consider the example of the robots from Ex-
ample 1. Let us say that we want to declare the displacement
of the robotx in the SI units. This can be declared as,

d e f i n e UnitSystem =SI ;
length x [2] ;

By declaring the variablex to be of the typelength , the
programmer specifies both the base type (Real) and also its
unit (meters). �

We define the7 basic physical types (pTypes) in CHARON

based on the fundamental physical quantities:P0 =
{Length, Mass, Time, Temperature, Current, Amount of
a substance, Luminous intensity}. Any other physical quan-
tity can then be described using these basicpTypes. Each
of thesepTypeswill have an associated unique unit which
is decided by the programmer. Since all reasoning is based
on dimensional analysis,pTypes will form the basis of
type-checking here rather than the units. Therefore, we will
use the termspTypes and unit-types interchangeably in the
discussion.

In CHARON, new pTypes can be defined using the
declaration define pType l1 = pType expr , where
pType expr is an arithmetic expression on basic physical
types.

Example 4: In the robot example (Ex. 1), the programmer
can define velocity as a derived physical type using Veloc-
ity=Length/Time. Therefore,

d e f i n e UnitSystem =SI ;
d e f i n e pType velocity = length / time ;

will allocate the variablev to be inferred as an floating point
array of size two having the units of meters/sec. �

The alternative to using predefined unit-system is to cus-
tom declare it. In this case, the programmer can specify
the units she chooses to use. The alternate system of units
can be defined by using theunit keyword. However, the
programmer can only specify the units of a basic type inP0.
This is to disallow mixing of different units of measurement
within the same program. In a few cases, a combination of
units can be given a specific name. For instance, one Newton
of force is equivalent to onekg · m/s2. To permit use of
such units, the keywordequiv can be used afterunit to
indicate that the units are equivalent. The following examples
illustrate the use of types and keywords introduced here.

Example 5: If the displacement in Example 1 is to be
measured in kilometers and time in hours instead of meters
and seconds respectively, it can be done using,

d e f i n e u n i t length kilometers ;
d e f i n e u n i t time hours ;
d e f i n e pType velocity = length / time ;

length x [2] ;
velocity v [2] ;

This will cause length to be interpreted inKilometers .
Consequently,velocity will automatically be interpreted
in Kilometers/hour. �

Example 6:Suppose a programmer has declared the units
of mass, length, and time to bekg,m ands respectively. Now
if she wishes to use and declare units for force, she could
do so with the following set of commands.

d e f i n e pType force = mass∗length / (time) ˆ 2
d e f i n e u n i t equ iv force newton

By usingequiv , the programmer lets the type checker know
that newton is equivalent to the default set of units, which
in this case iskg ·m/s2. �

Although the programmer can specify her own units using
unit keyword, CHARON has no way to know the seman-
tics of it. This means that a declarationunit length
Km would work in the same way asunit length
Kilometers in Example 5. We introduce the directive
unit1 unitto unit2 (var) = unit expr ; to explic-
itly tie the custom-defined units with the standard set of units.

Example 7: In the Example 5, the conversion to SI units
can be specified as,

d e f i n e u n i t time hours ;
hours u n i t t o seconds (y) = 3600∗y ;
seconds u n i t t o hours (y) = y / 3 6 0 0 ;

Note that we have conversions from seconds to hour and
vice versa. This is important to ensure that interoperability
between modules written in different units. �
The CHARON type checker will verify whetherboth direc-
tions of conversion are specified.

Not all variables in a CHARON program will be physical
quantities. For instance, booleans and some constants have
no physical units. To deal with these quantities, we introduce
a nodim type that can be assigned to variables that are
dimensionless, and consequently without a unit. All types
other thanreal such as booleans will also be assigned this

unit type. A programmer can also explicitly declare floating
point quantities to benodim or can annotate them after the
type-inference procedure is completed. This idea is explained
further in Section III-B.

It must be emphasized that the unit-types are built on
the regular type system and this prevents the system from
having to qualify ill-formed unit-types. For instance,if3 is
declared as a constant with no dimensions,3 ∗Hello would
be assigned a unit-type of length (Sec. III, Table I). However,
this would fail the regular type check and thus would not be
termed as a permissible expression.

A. Unit Type Resolution

In the previous section, we have introduced the unit types
in CHARON and the syntax to specify them in programs.
Here, we describe the process of type checking the unit types
and the procedure for type inference that we use to deduce
the unit types of dimensionless quantities and constants. The
Table I gives the syntax and the typing rules for a subset
of the CHARON language. The unit-type checker applies the
rules to check whether the expressions have consistent unit-
typing after the regular type checker is done checking the
program.

In the tableP denotes the set of all physical types,ξ is
a mapping that maps the physical types to their units andΓ
is a typing context, i.e., the context that keeps track of the
physical types of variables and expressions in the program.
The table is presented as a sequence of inference rules that

the type checker uses. Therefore, a rule of the form
A
B would

mean that, upon seeing a declarationA, our inference of the
typing would be as specified inB.

The rulesT1 − T5 give the typing rules for a subset of
variable declarations.T1 deals with the declaration of a new
physical type. In this case, the set of physical typesP is
augmented with the new type in the declaration(θ) and the
units of the new type are set to the units of the evaluation
of the typed expressions. For example,define pType
velocity = length/time would causevelocity to
be assigned the quotient of default units of length over time.
TE represents a regular expression on typed restricted to a
product or quotient of other physical types (or consequently,
types raised to integer powers). Addition and subtraction
of two physical types is only meaningful when both the
summands are of the same physical type. Therefore, there
will never be the case that a sum/difference of physical types
yields a new type and we can safely ignore these operations
on the typed expressions.

Theunit declaration causes the mappingξ to be updated
(T2) and other datatypes (bool, int, etc.) are assigned the unit-
type ofnodim (T3). The rulesT4 andT5 are concerned with
typing of arrays. The notationv.[] : θ denotesθ to be the
type of the variable array.

Typing rulesT6 − T10 are rules for inference of types.
The essence of the rules is that, sum, difference, comparison
and assignment of expressions should have the same unit-
type. In these rules,E represents a regular expression on
variables involving common arithmetic operations. In case
of differential equations, the variable and the expression

Typing Rules:

T1 : New physical types
pType θ = TE

P = P ∪ {θ}, ξ(θ) := ξ(‖TE‖)

T2 : New units
unit θ u

ξ(θ) := u

T3 : Other datatypes
θ v, θ /∈ P

Γ = Γ ∪ {v : nodim }

T4 : Arrays
θ array v[size], θ ∈ P

Γ = Γ ∪ {v.[] : θ}

T5 : Array elements
Γ ` v.[] : θ, α : nodim

Γ ` v[α] : θ

T6 : Sum/Difference of expressions
Γ ` E1 : θ, E2 : θ

Γ ` E1 ⊕ E2 : θ ⊕ ∈ {+,−}

T7 : Product/Quotient of expressions
Γ ` E1 : θ1, E2 : θ2

Γ ` E1 ⊗ E2 := θ1 ⊗ θ2
⊗ ∈ {∗, /}, θ1 ⊗ nodim = θ1, nodim ∗ θ2 = θ2

nodim /θ2 = (θ2)
−1, nodim −1 def

= nodim

T8 : Exponentiation of expressions
Γ ` E1 : θ, c : nodim

Γ ` E1 ˆ c : θ‖c‖, nodim ‖c‖ def
= nodim

T9 : Assignment and comparison
Γ ` v : θ, E : θ

Γ ` v ≺ E : nodim ≺∈ {:=, =, 6=, <, >,≥,≤}

T10 : Differential equations
Γ ` v : θ1, E : θ2, ξ(θ2) · ξ(time) = ξ(θ1)

Γ ` d(v) = E : nodim

TABLE I

UNIT TYPING RULES FORCHARON

differ in the unit of time. For product and quotient of
expressions, there are a few cases depending on whether
one of the expressions is of typenodim . The rules check
for consistency of the physical types, and since the physical
types have auniqueunit throughout the program, their units
will also be consistent.

Before we close the discussion on typing rules, we men-
tion that we have not considered type casts with the exception
of casting constants to a particular physical type. This
restriction is placed so that programmers cannot arbitrarily
cast one physical type to another. It can be argued that there
are very few situations, if any, where such type casts would
be meaningful. However, we leave the possibility open, of
allowing limited class of such explicit casts in future.

B. Automatic Inference of Unit-types

The typing rules introduced in the previous section will
fail to check equations and assignments where only some of
the quantities have a declared physical types. Examples of
this could include constants which are not explicitly declared.

Indeed, depending on context, constants such as0 could have
multiple unit-types. Instead of imposing that all of them be
explicitly annotated, we propose to automatically infer the
types of unknown quantities and prompt the programmer to
annotate them only on a reduced set of constraints. This
process is similar in principle to the annotation-less type
inference approach in [10] but differs in being semi-explicit
(some units are known) and the constraints generated are in
terms of physical dimensions rather than units. The inference
process is done in two phases. The first phase involves
constraint generation and the second phase involves solving
these constraints.

Constraint generation: In this phase, the code is first
analyzed and the expressions whose type cannot be resolved
using the rulesT7 − T10 are assigned an variablepType
of t. Typically, the equations that are not resolved by the
checker include ones that have implicit constants multiplied
in them. For instance,x =

√
v is one such equation. Here,

the constant1 on the right hand side has dimensions of
(Length)

1
2 (Time)

1
2 . To cope with such expressions, we

include a fresh unit-typet with every equation that either has
a mismatched unit or one which lacks constants. This step is
not essential for equations which has constants of unspecified
type. such as the equationx = 3

√
v where the constant3 can

be assigned the appropriate dimensions. Finally, we equate
the dimensions on both sides of the equations to generate
the constraints. The following set of examples illustrates the
procedure.

Example 8:Consider the equationx =
√

v. The left hand
side of this equation has dimensions of(Length) while the
right hand side has dimensions(Length)

1
2 (Time)−

1
2 . To

ensure equality, we introduce a constant1 and denote its type
to be t1. With this constant, the type equality requirement
now becomes,L = t1∗L

1
2 ∗T− 1

2 whereL denotes the length
andT the time. Equating the dimensions ofL andT on both
sides, we can get the following equations :1 = tL1 + 1

2 , and
0 = tT1 − 1

2 . Solving these equations yields the type (and
hence the units) of the constant to be(L)

1
2 (T)

1
2 . �

The unit-type checker makes it run through the program
and automatically creates constraints for expressions that do
not unit-type check.

Example 9:Consider the following code snippet imple-
menting the robot example (Ex. 1) in locationq1: Let us
assume thatx is declared to be one-dimensional and of
physical typelength but v is only declared asreal . The
type constraints generated are indicated as comments.

r e a l ana log velocity ;

d i f f (d (x)==v) ; / / L = t_0 ∗ t_1 ∗ T
d i f f (d (v) = = 0) ; / / t_1 = t_2 ∗ T

HereL andT refer to the length and time dimensions used in
dimensional analysis.t0 is the type assigned to the implicit
constant1, t1 is the type associated with variablev andt2 is
the type associated with the constant0. We get the following
constraints from these:tL0 + tL1 = 1 (EquatingLengthin the
first equation),tT0 +tT1 +1 = 0 (Equatingtime), and similarly,
tL1 = tL2 and tT2 + 1 = 0 from the next equation. �
The generated constraints can be solved using standard

equation solvers. In case the system is such that there are
more variables than equations, the programmer is prompted
to provide the minimum number (Number of equations -
number of variables) of missing types of variables.

IV. DYNAMIC TYPES

T
′
1 : Dynamic arrays
θ dynArray var, θ ∈ P
Γ = Γ ∪ {var.get() : θ}

T
′
2 : dTypes
define dType var(T x,...)= bf; , Γ ` bf:bool

D = D ∪ {var <: T}
T
′
3 : Runtime Unit Typing

Γ
′
` varhandler : θ, θ ∈ P, ξ

′
(θ) = ξ(θ)

Γ ` extern handler (var, varHandler) : true

TABLE II

PARTIAL SET OF TYPING RULES FOR DYNAMIC TYPES INCHARON

In addition to unit types, an orthogonal but useful ab-
straction for modeling many hybrid controllers is that of
a dynamic type. There are two flavors to dynamic typing.
In the first case, we consider data structures that have a
constant unit-type but are updatedexternallyand therefore it
is essential to ensure that the writes to the variable by the
external agent be of the same type and units.

In the second kind of dynamic types, we consider variables
that can acquire different abstracttypes at runtime. Such
dynamic types are defined as a subtype relation on static unit-
types. This implies that, while variables have the samepType
(and hence the units) throughout the program, they can
belong to multiple dynamic types. For instance, in the robot
example (Ex. 1), we can defineObstaclesto be of pType
length, and then either to be of typeSl or Su depending on
the relative distance from the robot. The main advantage of
such abstractions is that they separate theupdatedefinition
anduseof the variables.

The syntax for specifying these dynamic types is,

pType dynArray var ;
e x t e r n handler (var , varHandler) ;

d e f i n e dType var (T x , T1 V1 , . . .) = bf ;

Since CHARON is built on Java, we use thevector object (
java.util.Vector) to construct the dynamic array. We
cannot use thevector class directly as it allows allows
two different types of objects to be added. We remedy this
by having dynArray restrict member updates to be only
of typepType. Apart from this restriction, all other methods
inherited from theVector are provided for use. Examples
of these methods include,add, delete, isEmpty,
get , etc. The entire list of methods for theVector class
can be found in the Java documentation page [12].

The keywordextern can be used to declare an external
function that updates the members of the array. This decla-
ration has the effect that it lets the runtime know that the
unit-type and unit-system check has to be performed before
the function can update the members.

In the syntax for specifying dynamic typedType, bf is
a boolean function on variablesV1,...,Vn and x . If the
functionbf evaluates to true, thenx will be assigned a type
var . The typevar here, is treated as a subtype of type
pType .

Example 10:Consider the problem of mobile agents mov-
ing in the plane with the same speed but variable heading
direction. Each agents heading is updated as the average of
its heading and a set of its nearest neighbors. As the agents
move, the graph induced by the nearest neighbor relationship
changes, resulting in switching. In this case, you want to
ensure that only the nearest neighbors’ data is read at any
agent. We can enforce this check by introducing a dynamic
type to handle the situation. Here is a code snippet with the
type declaration.

d e f i n e dType near (Cd xn , Cd xs) = {
if (d (xn , xs)<dmin) r e t u r n true ;
r e t u r n false ;

}
near dynArray N;

It is assumed thatxn are the 2-dimensional coordinates (Cd)
of a neighbor andxs are the co-ordinates of the agent and
d returns the distance between different co-ordinates. If the
distance between them is less thandmin , then the neighbor
qualifies as beingnear . �

A. Inference of Dynamic Types

The Table II gives a partial list of typing rules for the
abstract types introduced here. The ruleT

′

1 gives the typing
for arrays. The effect of declaring a dynamic array is the
same as that of static arrays except that now thevar.get
method will be expected to return with a value of type as
declared. The ruleT

′

2 describes the typing for declaration of
a newdType. The effect of the declaration is that, the variable
var is inferred to be a subtype of the typeT and it is added
to D, the set of alldTypes. The notation<: indicates the
sub-typing.

Finally, the ruleT
′

3 describes type-checking of external
binding. This rule is different from the rest, in that, it is
interpreted at runtime. Therefore, a runtime support needs
to be provided to the CHARON compiler and type-checker.
While this may not be possible in general, a wrapper can
be built around each CHARON program that implements
this check for every input and output. A discussion on
runtime support for dynamic types in Java can be found
in [15]. We plan to follow up on that, and develop a
runtime support for CHARON in future. Nevertheless, with
such a system in place, the external contextΓ

′
and mapping

function ξ
′

can be called to check whether the quantities
returned by the external handler have the same units. In case
of discrepancies, the runtime can then useunitto , if it is
defined, to supply the value of the variables in the right units.

V. RELATED AND PRIOR WORK

There are several modeling tools for hybrid systems such
as CHARON [2], PTOLEMY [7], SHIFT [8], and the Mat-
lab/Simulink Hybrid Toolbox [11]. A listing of many tools
and their description is available at [20]. Ptolemy has a

provision to incorporate units. Currently, their system has
the SI units hard-wired and it does not yet support automatic
unit-type inference and dynamic types likedType .

Adding unit information to programming languages has
been the topic of frequent research. Languages such as
C++ have powerful extensions that the unit type information
can be added within the language with concepts such as
overloading and templates [6]. In other languages, such as
Java, units have been treated as a class [1]. There have also
been a few scientific tools that consider units such as a
unit-checking tool for Microsoft Excel Spreadsheets [3] and
Unit extension for FORTRAN [19]. In many modeling tools
such as Modelica [4], dimensions and units are a part of
the language specification. However, there exists no strategy
to analyze and verify dimensional integrity in a arbitrary
language construct of Modelica and there is an ongoing
project to incorporate them [5].

A common approach to adding unit types is to let the
user annotate quantities with their appropriate units. This
scheme however requires all quantities such as constants
have explicit units and therefore can be quite tedious. To
reduce the burden of annotations, researches have suggested
embedding unit types in a type system like that of ML that
supports type inference [21], [13]. Kennedy [13] implements
a algebraic technique that allows only integral exponents and
also gives theoretical results on the expressiveness of such
a system. A annotation-less unit type inference for C has
been suggested in [10]. Although such a technique does not
require annotations, it suffers from imprecision as the tool is
context-insensitive and the constraint solving can become a
bottleneck if the programs to be checked are large.

In contrast to the above, our approach utilizes an in-
direct annotation of the units. This is accomplished by
supporting physical quantity types such aslength and
temperature and specifying the unit-system to be used.
Type inference is used to check consistency in differential
operators and of constants. The dynamic types are managed
with the help of a runtime environment that evaluates and
decides the types of objects at runtime.

VI. I MPLEMENTATION OUTLINE

The implementation of unit and dynamic type checking is
orthogonal to the regular type checking in CHARON . After
the type checker returns successfully, the code has to be
parsed for units and generating dimensional constraints. Java
tools such as JavaCC can be used to automate the constraint
generation. The next phase involves solving the unit typing
constraints and this can be done by invoking any equation
solver. For dynamic types, we need a runtime support for
CHARON. Specifically, we need to instrument the code to
monitor the changes and then tie the changes to the types.
We plan on using several concepts from the Java runtime
monitoring and control, Java-MAC [14] to implement the
dynamic typing.

VII. C ONCLUSIONS

In this paper, we have described a framework to incorpo-
rate unit types to verify and ensure consistency in scientific
modeling tools such as hybrid systems. We have presented

typing rules for unit types based on indirect user-guided
annotations and automatic inference. We have also proposed
a scheme to include runtime checking of units that would
help in automatically convert between different unit-systems.
We are currently working on implementing these features in
CHARON.

Acknowledgments.We would like to thank Gunjan Gupta,
and anonymous reviewers for their suggestions in improving
the paper.

REFERENCES

[1] Eric Allen, David Chase, Victor Luchangco, Jan-Willem Maessen, and
Jr. Guy L. Steele. Object-oriented units of measurement. In19th
annual ACM Conference on Object-oriented programming, systems,
languages, and applications, pages 384–403, 2004.

[2] Rajeev Alur, Radu Grosu, Yerang Hur, Vijay Kumar, and Insup Lee.
Modular specification of hybrid systems in CHARON. InHSCC, pages
6–19, 2000.

[3] Tudor Antoniu, Paul A. Steckler, Shriram Krishnamurthi, Erich
Neuwirth, and Matthias Felleisen. Validating the unit correctness
of spreadsheet programs. InProceedings of the 26th International
Conference on Software Engineering, pages 439–448, Washington,
DC, USA, 2004. IEEE Computer Society.

[4] Modelica Association. Modelica specification, version 2.2.http:
//www.modelica.org , February 2005.

[5] David Broman. Static dimensional analysis in modelica.http://
www.ida.liu.se/˜davbr/dim-analysis.pdf .

[6] Walter E. Brown. Applied template metaprogramming in SI units:
the library of unit-based computation. InSecond Workshop on C++
Template Programming, 2001.

[7] Joseph Buck, Soonhoi Ha, Edward A. Lee, and David G. Messer-
schmitt. Ptolemy: a framework for simulating and prototyping hetero-
geneous systems. pages 527–543, 2002.

[8] A. Deshpande, A. Gll, and L. Semenzato. The SHIFT programming
language for dynamic networks of hybrid automata.

[9] Edward A. Euler, Steven D. Jolly, and H.H. ’Lad’ Curtis. The failures
of mars climate orbiter and mars polar lander: A perspective from
the people involved. In24th Annual AAS Guidance and Control
Conference, 2001.

[10] Philip Guo and Stephen McCamant. Annotation-less type inference
for C, pag.csail.mit.edu/6.883/projects/unit-type-inference.pdf, 2005.

[11] Hybrid Toolbox - Hybrid Systems, Control, Optimization.
http://www.dii.unisi.it/hybrid/toolbox.

[12] Java 2 Platform SE Class Vector. http://java.sun.com/
j2se/1.3/docs/api/java/util/vector.html.

[13] Andrew J. Kennedy. Relational parametricity and units of measure.
In POPL ’97: Proceedings of the 24th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 442–455,
New York, NY, USA, 1997. ACM Press.

[14] Moonjoo Kim, Mahesh Viswanathan, Sampath Kannan, Insup Lee,
and Oleg Sokolsky. Java-mac: A run-time assurance approach for
java programs. Formal Methods in System Design, 24(2):129–155,
2004.

[15] Scott Malabarba, Raju Pandey, Jeff Gragg, Earl Barr, and J. Fritz
Barnes. Runtime support for type-safe dynamic java classes. In
Proceedings of the 14th European Conference on Object-Oriented
Programming, pages 337–361, London, UK, 2000. Springer-Verlag.

[16] NIST. Preferred metric units for the general use by the federal
government, 1993.

[17] Bashar Nuseibeh. Ariane 5: Who dunnit? InIEEE Software Vol. 14,
Issue 3., pages 15–16, 1997.

[18] International Bureau of Weights and Measures (BIPM). The interna-
tional system of units, 1998.

[19] Grant W. Petty. Automated computation and consistency checking of
physical dimensions and units in scientific programs.Softw. Pract.
Exper., 31(11):1067–1076, 2001.

[20] Hybrid System Tools. http://wiki.grasp.upenn.edu/ graspdoc/hst/.
[21] Mitchell Wand and Patrick O’Keefe. Automatic dimensional inference.

In Computational Logic - Essays in Honor of Alan Robinson, pages
479–483, 1991.

	University of Pennsylvania
	ScholarlyCommons
	October 2006

	Unit & Dynamic Typing in Hybrid Systems Modeling with CHARON
	Madhukar Anand
	Insup Lee
	George Pappas
	Oleg Sokolsky
	Recommended Citation

	Unit & Dynamic Typing in Hybrid Systems Modeling with CHARON
	Abstract
	Comments

	Unit & Dynamic Typing in Hybrid Systems Modeling with CHARON

