Rho Kinase Signaling Pathways During Stretch in Primary Alveolar Epithelia

Brian Christopher DiPaolo
University of Pennsylvania, bdipaolo@seas.upenn.edu

Susan S. Margulies
University of Pennsylvania, margulies@seas.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/be_papers

Part of the Biomedical Engineering and Bioengineering Commons, and the Cellular and Molecular Physiology Commons

Recommended Citation

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/be_papers/217
For more information, please contact repository@pobox.upenn.edu.
Rho Kinase Signaling Pathways During Stretch in Primary Alveolar Epithelia

Abstract
Alveolar epithelial cells (AECs) maintain integrity of the blood-gas barrier with actin-anchored intercellular tight junctions. Stretched type I-like AECs undergo magnitude- and frequency-dependent actin cytoskeletal remodeling into perijunctional actin rings. On the basis of published studies in human pulmonary artery endothelial cells (HPAECs), we hypothesize that RhoA activity, Rho kinase (ROCK) activity, and phosphorylation of myosin light chain II (MLC2) increase in stretched type I-like AECs in a manner that is dependent on stretch magnitude, and that RhoA, ROCK, or MLC2 activity inhibition will attenuate stretch-induced actin remodeling and preserve barrier properties. Primary type I-like AEC monolayers were stretched biaxially to create a change in surface area (ΔSA) of 12%, 25%, or 37% in a cyclic manner at 0.25 Hz for up to 60 min or left unstretched. Type I-like AECs were also treated with Rho pathway inhibitors (ML-7, Y-27632, or blebbistatin) and stained for F-actin or treated with the myosin phosphatase inhibitor calyculin-A and quantified for monolayer permeability. Counter to our hypothesis, ROCK activity and MLC2 phosphorylation decreased in type I-like AECs stretched to 25% and 37% ΔSA and did not change in monolayers stretched to 12% ΔSA. Furthermore, RhoA activity decreased in type I-like AECs stretched to 37% ΔSA. In contrast, MLC2 phosphorylation in HPAECs increased when HPAECs were stretched to 12% ΔSA but then decreased when they were stretched to 37% ΔSA, similar to type I-like AECs. Perijunctional actin rings were observed in unstretched type I-like AECs treated with the Rho pathway inhibitor blebbistatin. Myosin phosphatase inhibition increased MLC2 phosphorylation in stretched type I-like AECs but had no effect on monolayer permeability. In summary, stretch alters RhoA activity, ROCK activity, and MLC2 phosphorylation in a manner dependent on stretch magnitude and cell type.

Keywords
RhoA, myosin regulatory light chain, perijunctional actomyosin ring, epithelial, lung injury, mechanical ventilation

Disciplines
Biomedical Engineering and Bioengineering | Cellular and Molecular Physiology | Engineering

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/be_papers/217
Rho kinase signaling pathways during stretch in primary alveolar epithelia

Brian C. DiPaolo and Susan S. Margulies

Abstract

Alveolar epithelial cells (AECs) maintain integrity of the blood-gas barrier with actin-anchored intercellular tight junctions. Stretched type I-like AECs undergo magnitude- and frequency-dependent actin cytoskeletal remodeling into perijunctional actin rings. On the basis of published studies in human pulmonary artery endothelial cells (HPAECs), we hypothesize that RhoA activity, Rho kinase (ROCK) activity, and phosphorylation of myosin light chain II (MLC2) increase in stretched type I-like AECs in a manner that is dependent on stretch magnitude, and that RhoA, ROCK, or MLC2 activity inhibition will attenuate stretch-induced actin remodeling and preserve barrier properties. Primary type I-like AEC monolayers were stretched biaxially to create a change in surface area (ΔSA) of 12%, 25%, or 37% in a cyclic manner at 0.25 Hz for up to 60 min or left unstretched. Type I-like AECs were also treated with Rho pathway inhibitors (ML-7, Y-27632, or blebbistatin) and stained for F-actin or treated with the myosin phosphatase inhibitor calyculin-A and quantified for monolayer permeability. Counter to our hypothesis, ROCK activity and MLC2 phosphorylation decreased in type I-like AECs stretched to 25% and 37% ΔSA and did not change in monolayers stretched to 12% ΔSA. Furthermore, RhoA activity decreased in type I-like AECs stretched to 37% ΔSA. In contrast, MLC2 phosphorylation in HPAECs increased when HPAECs were stretched to 12% ΔSA but then decreased when they were stretched to 37% ΔSA, similar to type I-like AECs. Perijunctional actin rings were observed in unstretched type I-like AECs treated with the Rho pathway inhibitor blebbistatin. Myosin phosphatase inhibition increased MLC2 phosphorylation in stretched type I-like AECs but had no effect on monolayer permeability. In summary, stretch alters RhoA activity, ROCK activity, and MLC2 phosphorylation in a manner dependent on stretch magnitude and cell type.

Keywords: RhoA, myosin regulatory light chain, perijunctional actomyosin ring, epithelial, lung injury, mechanical ventilation

MECHANICAL VENTILATION is a critical intervention for particular life-threatening conditions but has been implicated in pulmonary injury because of the delivery of large gas volumes to localized lung regions, high-magnitude basement membrane (86) and pulmonary alveolar epithelial cell (AEC) biaxial stretch, and increased blood-gas barrier permeability (33, 48). Cultured rat AEC monolayers with type I features used to mimic the alveolar epithelium in vitro (12, 19, 27, 55, 67) have been shown to exhibit perijunctional F-actin rings (PJARs) and to increase monolayer permeability in response to high-magnitude biaxial stretch levels, which are analogous to pathological ventilator volumes (17, 29). However, little is known about the underlying mechanistic pathways involved in PJAR rearrangement and the influence of PJAR rearrangement on monolayer permeability in type I AECs.

The actin cytoskeleton is a mechanosensitive load-bearing structure in the cell that assists in cell-cell adhesion (3, 14, 15, 21, 29), and anchors tight junction (TJ) proteins (34, 58). The PJAR, which some refer to as the perijunctional actomyosin ring (87), is a specific morphological conformation of F-actin formed rapidly in biaxially stretched rat type I-like AECs (29) and endothelial cells (91), and has been shown to contain the contractile protein myosin in endothelial cells (7, 93). However, it is not yet understood if myosin contracts to rearrange into PJARs in response to stretch and if this contraction would provide enough force to increase the TJ-mediated paracellular permeability found previously (16, 17). Mechanistic pathways responsible for stretch-induced actin rearrangement into PJARs are also poorly understood in type I-like AECs.

Myosin II has been shown to cross-link with filamentous actin directly, and numerous actin-binding proteins (36, 46) contribute to PJAR structure (93) and change its conformation (32) and activity based on mechanical stretch pathways in other cell types (8, 75, 90). It is not yet understood how significantly myosin II interacts in PJAR contraction and TJ-mediated paracellular permeability during stretch. PJAR contraction has been shown to have a causal relationship with Rho-mediated phosphorylation of myosin light chain II (MLC2) in various cell types (11, 79). Nonmuscle myosin II is activated through the Rho pathway and provides contractile force via phosphorylation of MLC2 at Thr18 and Ser19 (38, 40, 60, 74), with force generation greater with phosphorylation at both residues than with monophosphorylation (61). MLC2 can be inhibited with phosphorylation at Ser1 and Ser2 (38, 41, 60, 74), resulting in reduced myosin affinity for actin filaments.

MLC2 can be pharmacologically inhibited with blebbistatin (96), an inhibitor of myosin II ATPase. Active (GTP-bound) Rho activates Rho kinase (ROCK) (43). ROCK phosphorylates the myosin binding subunit of myosin phosphatase (MP), inhibiting its activity and, thus, increasing phosphorylation of MLC2 of myosin II (22, 49, 72, 83) and its contractile force (61). Additionally, ROCK directly
phosphorylates MLC2 at Thr18 and Ser19 (2), with a higher affinity for Ser19 (40, 83), promoting actin filament assembly (20, 26). ROCK can be inhibited by Y-27632 (35, 69, 94) and has been shown to result in decreased MLC2 phosphorylation (5). MP can be inhibited by calyculin-A (23, 42) and has been shown to increase MLC2 phosphorylation (5). Myosin light chain kinase (MLCK) has also been found to phosphorylate MLC2 at Thr18 and Ser19 (2). MLCK is activated by ERK (50) and can be inhibited by ML-7, a membrane-permeable agent (52). ROCK-mediated MLC2 phosphorylation has been shown to be confined to cell central areas, while MLCK-mediated MLC2 phosphorylation has been shown to localize at cell peripheral locations in fibroblasts (83). Finally, numerous other signaling proteins may contribute to Rho pathway regulation during stretch (56, 66, 80). We hypothesize that type I-like AECs will activate the Rho pathway during stretch. We also hypothesize an increase in RhoA and ROCK activity, phosphorylation of MLC2, and rearrangement into PJARs. We further hypothesize that inhibition of these pathways will inhibit rearrangement into PJARs and attenuate the stretch-induced increase in monolayer permeability.

Others have shown activation of the Rho pathway and have characterized its influence on the actin cytoskeleton (1, 8–10, 47, 51, 77), TJ protein, and monolayer permeability properties in stretched endothelial cells and other cell types (8, 25, 65, 68, 75, 88, 90). Furthermore, others have implicated the Rho pathway and its effect on actin structure, TJ protein distribution, and TJ-mediated paracellular permeability in unstretched epithelial cells (13, 39, 59, 64, 76, 78, 88–90). However, there is a paucity of studies investigating these pathways and relationships in stretched pulmonary alveolar cells. We investigated the MLCK, ROCK, and MLC2 pathways and their effect on cytoskeletal rearrangement into PJARs in type I-like AECs.

The goals of the present study are to test whether stretch-induced PJAR rearrangement is dependent on the ROCK- and MLC2-mediated pathway. Our overall hypothesis is that rapid cytoskeletal remodeling and rearrangement into PJARs are activated by ROCK accompanied downstream by MLC2 activation. We tested functional relationships by inhibiting this pathway and expected that it would inhibit PJAR rearrangement.

MATERIALS AND METHODS

Primary rat type I-like AEC isolation. Alveolar type II cells were isolated from male Sprague-Dawley rats (190–300 g) based on a method reported by Dobbs et al. (31) with slight modification (29, 86). The animal protocols were reviewed and approved by the University of Pennsylvania Institutional Animal Care and Use Committee. Cells were seeded at 1.0 × 10⁶ cells/cm² onto fibronectin-coated (10 μg/cm²; Invitrogen) flexible Silastic membranes (Specialty Manufacturing, Saginaw, MI) in custom-designed wells (85). The cells were cultured for 4 days at 37°C in 5% CO₂ in MEM + FBS, which was replaced daily. After 4 days, the cells had adopted alveolar type I features (69). After 4 days, the cells had adopted alveolar type I features (69). Serum-deprived monolayers were stretched biaxially at 0.25 Hz for 0 min (unstretched), 1, 10, 30, or 60 min. A second group of monolayers were pretreated with the MP inhibitor calyculin-A (Cell Signaling Technology, Beverly, MA) at 10 nM for 60 min or with DMSO as vehicle control and then stretched biaxially to 25% ΔSA cyclically at 0.25 Hz for 0 min (unstretched) or 10 min. A third group of HPAEC monolayers (with serum) were stretched at 12%, 25%, or 37% ΔSA cyclically at 0.25 Hz for 0 min (unstretched) or 30 min. Monolayers (3 wells/lysat) were washed twice with ice-cold Dulbecco's PBS (DPBS), lysed, and resolved by SDS-PAGE and immunoblot, as described previously (8). Membranes were incubated overnight with one of the following primary antibodies: anti-MLC2, anti-phosphorylated (Ser19) MLC2, or anti-phosphorylated (Thr18/Ser19) MLC2 (all from Cell Signaling Technology) or anti-phosphorylated (Ser2) myosin light chain (ECM Biosciences, Versailles, KY). Membranes were then incubated with horseradish
peroxidase (HRP)-conjugated secondary antibody (Santa Cruz Biotechnology, Santa Cruz, CA).

Immunoreactive proteins were detected with enhanced chemiluminescence (ECL Plus, GE Healthcare Biosciences, Piscataway, NJ). The relative density of the protein in the bands was quantified by scanning densitometry in ImageJ (version 1.43j) based on optimization described by Gassmann et al. (37). Background intensity for each lane was subtracted from blot intensity. Protein density was normalized by the unstretched-untreated density. Membranes were reprobed with the relevant total protein antibody or with anti-GAPDH (Millipore, Billerica, MA) to ensure equivalent protein loading (30).

Normalized density of the phosphorylated protein was divided by normalized density of the respective total protein or GAPDH signal and reported. To test the effect of stretch, animal average normalized density values (≥3 animals/group) were compared with time-matched unstretched controls using a two-way ANOVA with post hoc Dunnett's test (95) in JMP (version 8.0, SAS Institute, Cary, NC). To test the effect of treatment, animal average normalized density values (≥3 animals/group) were compared with time-matched vehicle controls as well as unstretched-untreated controls using a two-way ANOVA with Tukey-Kramer post hoc analysis (95) in JMP.

RhoA activity assay. Endogenous RhoA activity was quantified using an in vitro colorimetric G-LISA kit (catalog no. BK124, Cytoskeleton, Denver, CO) according to the manufacturer's protocol. Serum-deprived monolayers were stretched biaxially to 37% ΔSA cyclically at 0.25 Hz for 0 (unstretched), 10, or 60 min, washed twice with ice-cold DPBS, and then lysed and loaded equivalently (20 μg) into a 96-well plate. Active (GTP-bound) RhoA in each lysate was captured with immobilized rhotekin Rho binding domain, while inactive RhoA was not bound and was washed away. The wells were then immunostained with RhoA antibody and HRP-conjugated secondary antibody. The optical density of the HRP reaction was quantified at 490 nm on a microplate reader (model ELx800, BioTek, Winooski, VT). Background optical density was subtracted from each experimental optical density measurement.

The optical density of each experimental sample (2 replicates/sample, 2 samples/animal, ≥5 animals/group) was divided by the respective optical density for the control (unstimulated-untreated) sample to calculate the normalized RhoA activity level. To test the effect of stretch, animal average normalized RhoA activity values were compared with time-matched unstretched controls using a one-way ANOVA with post hoc Dunnett's test (95) in JMP.

ROCK activity assay. Endogenous ROCK activity was quantified using an in vitro kinase assay (Cell Biolabs, San Diego, CA) with recombinant MP target subunit 1 as substrate, similar to the method described elsewhere (6, 54). Serum-deprived monolayers were stretched biaxially to 12%, 25%, or 37% ΔSA cyclically at 0.25 Hz for 0 (unstretched), 10, or 60 min.

Monolayers (3 wells/lysate) were washed twice with ice-cold DPBS, scraped in radioimmunoprecipitation assay buffer with 5 mM EDTA, 2 μg/ml pepstatin, 2 mM sodium fluoride, 2 mM sodium orthovanadate, and protease inhibitor cocktail (Complete Mini, Roche, Indianapolis, IN), sonicated, and then loaded into the kinase assay equivalently.

After resolving by SDS-PAGE and immunoblot, membranes were probed with anti-phosphorylated (Thr696) MP target subunit 1 to determine sample recombinant MP target subunit 1 phosphorylation by ROCK (ROCK activity) and with GAPDH to normalize the signal to sample total protein (30). Protein density was normalized by the unstretched-untreated density. Normalized density of phosphorylated MP target subunit 1 was divided by normalized density of the GAPDH signal and reported.

MLC2 immunofluorescence and F-actin staining. Monolayers were pretreated with the myosin II ATPase activity inhibitor blebbistatin, MLCK inhibitor ML-7, or ROCK inhibitor Y-27632 (all 10 μM for 60 min; EMD Chemicals, Gibbstown, NJ) or with DMSO as vehicle control and then stretched biaxially to 37% ΔSA cyclically at 0.25 Hz for 0 (unstretched) or 60 min and stained for F-actin (phalloidin; Invitrogen, Carlsbad, CA), G-actin (DNase I; Invitrogen), and double-stranded DNA (4',6-diamidino-2-phenylindole; Invitrogen). An additional group of monolayers were stretched to 37% ΔSA at 0.25 Hz for 0 or 60 min and immunostained for MLC2 using anti-MLC2 (Invitrogen, Carlsbad, CA) antibody and subjected to a ×40 objective with constant intensity settings. Inhibitor concentration and treatment time were chosen on the basis of previously published studies and an initial dose-response experiment. Each inhibitor was also tested at 5 and 50 μM, along with incubation times of 30 min and 2 h, with equivalent results shown here.

F- and G-actin content quantification. The F- and G-actin content in rat type I-like AEC monolayers was quantified using an in vivo assay (catalog no. BK037, Cytoskeleton) according to the manufacturer's protocol. Briefly, monolayers were pretreated with the myosin II ATPase activity inhibitor blebbistatin or ROCK inhibitor Y-27632 (both 10 μM for 60 min) or with DMSO as vehicle control and then stretched biaxially to 37% ΔSA cyclically at 0.25 Hz for 0 (unstretched) or 10 min. Monolayers were then lysed into F-actin stabilization buffer, homogenized, and centrifuged at 100,000 g for 60 min, all at 37°C, and then separated into supernatant (G-actin) and pellet (F-
actin, resuspended in 10 μM cytochalasin D). The fractions were loaded equivalently (43.5 μg) into a gel, resolved for SDS-PAGE and immunoblot, and probed with anti-G-actin. Membranes were incubated with HRP-conjugated secondary antibody, and the relative density of the protein in the bands was quantified by scanning densitometry in ImageJ (version 1.43j) based on optimization described elsewhere (37). Background intensity for each lane was subtracted from blot intensity. Protein density was normalized by the unstretched-vehicle control density.

Monolayer permeability. Others have shown that larger-sized molecules were able to cross the epithelium of whole lungs that had been inflated statically to high volumes (33, 48). More recently, the use of a custom-altered deformable porous copolyester membrane permitted the measurement of paracellular transport of different-sized tracers across stretched monolayers (16), although this membrane is severely limited in availability. Because of the lack of a deformable-permeable monolayer substrate, there is a paucity of data measuring intercellular tracer transport and transepithelial resistance (TER) between the apical and basal surface of a cyclically stretched cultured monolayer. Thus paracellular permeability was assessed by monitoring the flux of the fluorescent tracer BODIPY-ouabain across the monolayer, a novel method that can be carried out on our standard flexible Silastic nonpermeable membranes, as previously described (17). Using this method, Cavanaugh et al. (17) showed that the BODIPY-ouabain tracer was not internalized by cells, did not undergo receptor-mediated endocytosis, did not bind due to plasma membrane rupture, and did not bind nonspecifically; thus they hypothesized that it was transported across the epithelial monolayer via a paracellular, not a transcellular, route. Briefly, the apical surface of the monolayer was bathed in DMEM + HEPES containing 2 μM BODIPY-ouabain (radius ~20 Å; Invitrogen), a fluorescent tracer that has a high affinity for the extracellular domain of the transmembrane Na⁺-K⁺-ATPase (44, 82) found on the basolateral surface of type I-like AECs (92), for 60 min during stretch (or for 60 min on unstretched monolayers). Monolayers were pretreated with the MP inhibitor calyculin-A (Cell Signaling Technology) at 10 nM for 10 min or with DMSO as vehicle control and then stretched biaxially to 25% ΔSA cyclically at 0.25 Hz for 0 (unstretched), 10, or 60 min. After stretch, the apical surface was rinsed three times with dye-free DMEM + HEPES and imaged (×10 objective) using constant exposure, aperture, and fluorescence intensity settings.

The maximum pixel intensity in the background of unstretched-untreated monolayers was measured and used as a threshold to exclude unstained regions. The percentage of each image area (3 images/well, 3 wells/animal, from ≥3 animals/group) above the threshold intensity was determined and then divided by the respective value for the unstretched-vehicle control group to calculate the normalized area percentage (nArea) of each image. To test the effect of stretch, animal average nArea values were compared with time-matched unstretched-control values using a one-way ANOVA with post hoc Dunnett’s test (95) in JMP. To test the effect of treatment, animal average nArea values were compared with time-matched vehicle controls, as well as unstretched-untreated controls, using a two-way ANOVA with Tukey-Kramer post hoc analysis (95) in JMP.

RESULTS

RhoA and ROCK activity is reduced with stretch and is dependent on stretch magnitude. We hypothesized that actin cytoskeletal remodeling during rearrangement into PJARs would be preceded or accompanied by an increase in RhoA and ROCK activity. However, quantitative activity assay data refuted our hypothesis: RhoA activity decreased at 10 and 60 min in monolayers stretched to 37% ΔSA at 0.25 Hz compared with unstretched monolayers (Fig. 1). Furthermore, ROCK activity decreased at 60 min in monolayers stretched to 25% ΔSA at 0.25 Hz and at 10 min in monolayers stretched to 37% ΔSA at 0.25 Hz but was not changed in monolayers stretched to 12% ΔSA at 0.25 Hz compared with unstretched monolayers (Fig. 2). Thus RhoA and ROCK activity decreased with stretch, and ROCK activity was sensitive to stretch magnitude and time.
ROCK activity was reduced in monolayers stretched for 60 min to 25% ΔSA at 0.25 Hz and for 10 min to 37% ΔSA at 0.25 Hz but not in monolayers stretched to 12% ΔSA. Myosin II has been shown to interact directly with F-actin stress fibers in other cell types (93). We hypothesized that MLC2 would colocalize with PJARs, which exhibit rapidly in stretched type I-like AEC monolayers (29). We found that dual-phosphorylated (Thr\(^{18}\)/Ser\(^{19}\)) MLC2 (Fig. 3A) and total MLC2 (Fig. 3B) colocalize with centrally located F-actin stress fibers in unstretched monolayers (Fig. 3). With 60 min of stretch to 37% ΔSA at 0.25 Hz (Fig. 3), dual-phosphorylated MLC2 redistributed homogeneously throughout the cell, with minor perijunctional staining, comparable to the rapid rearrangement of F-actin into PJARs. Additionally, the overall intensity of dual-phosphorylated MLC2 decreased with stretch. With stretch, total MLC2 localized more centrally within the cell. These data support our hypothesis that MLC2 redistributes and becomes dephosphorylated with stretch in type I-like AEC monolayers.

MLC2 phosphorylation is reduced with stretch and is dependent on stretch magnitude. Myosin II can be activated when phosphorylated at Thr\(^{18}\) and Ser\(^{19}\) (40). MLC2 phosphorylation data correlate well with ROCK activity data, showing a decrease in phosphorylation with stretch and stretch magnitude dependence. In monolayers stretched to 25% ΔSA at 0.25 Hz, MLC2 dual phosphorylation (Thr\(^{18}\)/Ser\(^{19}\)) was decreased at 1, 10, 30, and 60 min (Fig. 4) and monophosphorylation (Ser\(^{19}\)) was decreased at 10 min (0.534 ± 0.117) compared with unstretched monolayers. Similarly, in monolayers stretched to 37% ΔSA at 0.25 Hz, MLC2 dual phosphorylation was decreased at 1, 10, 30, and 60 min (Fig. 4) compared with unstretched monolayers. Dual-phosphorylated MLC2 was also lower in monolayers stretched to 25% and 37% ΔSA at 0.25 Hz than in monolayers stretched to 12% ΔSA at 0.25 Hz (Fig. 4) at all times, which was not significantly different from dual-phosphorylated MLC2 in unstretched monolayers. Thus, MLC2 phosphorylation (Thr\(^{18}\)/Ser\(^{19}\) and Ser\(^{19}\)) decreased with stretch and was sensitive to stretch magnitude.

MLC2 activity can be inhibited by phosphorylation at Ser\(^{1}\) (41, 74), additionally resulting in reduced myosin affinity for actin filaments. Monolayers stretched for 10 min to 25% ΔSA at 0.25 Hz showed no change in phosphorylated (Ser\(^{1}\)) MLC2 compared with unstretched monolayers (not shown). Thus stretch did not affect MLC2 phosphorylation at Ser\(^{1}\) in type I-like AEC monolayers.

MLC2 is phosphorylated with calyculin-A. Hypothesizing that stretch-induced PJAR formation and increased monolayer permeability required decreased MLC2 activation, we used calyculin-A to inhibit MP in stretched monolayers to recover MLC2 phosphorylation to unstretched levels. As hypothesized, MLC2 phosphorylation (Thr\(^{18}\)/Ser\(^{19}\)) was higher in monolayers pretreated with 10 nM calyculin-A for 60 min and stretched to 25% ΔSA at 0.25 Hz for 10 min (Fig. 5A) than in vehicle control monolayers stretched to the same magnitude and for the same duration (Fig. 5A) and monolayers left unstretched and untreated. Unstretched monolayers pretreated with calyculin-A also show increased MLC2 phosphorylation (Thr\(^{18}\)/Ser\(^{19}\)) compared with vehicle control monolayers. Similarly, Bhadriraju et al. (5) used calyculin-A in A10 rat aortic smooth muscle cells to increase MLC2 phosphorylation and contractility. Thus the decrease in MLC2 phosphorylation in stretched type I-like AECs is via MP-dependent pathways.
Since we found that phosphorylation of MLC2 decreases with high-magnitude stretch, we hypothesized that inhibition of the MLC2 response with stretch using calyculin-A would attenuate the stretch-induced increase in paracellular permeability. Previously, normalized area stained by the fluorescent tracer BODIPY-ouabain (nArea) was significantly higher in monolayers stretched to 25% ΔSA at 0.25 Hz for 10 and 60 min than in unstretched-untreated controls (17). However, nArea in monolayers stretched at the same magnitude for the same durations and pretreated with 10 nM calyculin-A for 10 min was higher at 60 min than in unstretched-untreated monolayers, and was not different from time-matched stretched-vehicle controls (Fig. 5B). While others have shown that calyculin-A increases epithelial and endothelial permeability (57, 63, 78), recovering phosphorylation of MLC2 in stretched type I-like AEC monolayers above unstretched levels does not attenuate the stretch-induced increase in paracellular permeability.

PJARs are found in unstretched monolayers with blebbistatin. We initially hypothesized that rapid actin cytoskeletal rearrangement to PJARs would be preceded or accompanied by an increase in ROCK and MLC2 activity in stretched type I-like AEC monolayers. However, our data showed that ROCK activity and MLC2 phosphorylation decreased with stretch. Similarly, inhibition of myosin II ATPase (blebbistatin), ROCK (Y-27632), or MLCK (ML-7) did not prevent rearrangement into PJARs in stretched monolayers (Fig. 6). Interestingly, however, in unstretched monolayers, inhibition of myosin II ATPase (blebbistatin), but not MLCK (ML-7), results in a PJAR-like structure, similar to PJAR rearrangement in stretched-untreated monolayers (Fig. 6). Additionally, in unstretched monolayers, inhibition of ROCK (Y-27632) and myosin II ATPase (blebbistatin) results in a lack of centrally located F-actin stress fibers. Thus stretch-induced PJAR rearrangement was not suppressed with inhibition of myosin II ATPase, ROCK, or MLCK. Furthermore, a PJAR-like structure was found in unstretched monolayers with inhibition of myosin II ATPase.

Additionally, we found no significant difference in F- and G-actin content [fold change relative to unstretched vehicle control (means ± SE)] of monolayers stretched to 37% ΔSA at 0.25 Hz for 10 min (0.79 ± 0.31 and 1.31 ± 0.19 for F- and G-actin, respectively) compared with unstretched monolayers (1.00 ± 0.34 and 1.00 ± 0.19 for F- and G-actin, respectively) or in unstretched monolayers treated with blebbistatin (0.88 ± 0.38 and 1.57 ± 0.23 for F- and G-actin, respectively) or Y-27632 (0.75 ± 0.44 and 0.97 ± 0.26 for F- and G-actin, respectively) compared with vehicle control. Thus we cannot reject the possibility that PJAR-like structures in type I-like AEC monolayers could be F-actin preserved from depolymerization or rearranged F-actin or both.

MLC2 phosphorylation depends on cell type. Behavior of primary rat type I-like AEC monolayers was compared with behavior of HPAEC monolayers. As previously reported (8), MLC2 phosphorylation (Thr18/Ser19) increased in HPAEC monolayers stretched biaxially to 12% ΔSA at 0.25 Hz for 30 min. However, MLC2 phosphorylation decreased in monolayers stretched to 37% ΔSA at 0.25 Hz for 30 min and did not change in monolayers stretched to 25% ΔSA at 0.25 Hz for 30 min compared with unstretched HPAEC monolayers (Fig. 7). Phosphorylation was greater in monolayers stretched to 12% ΔSA than in monolayers stretched to 25% and 37% ΔSA. Thus, MLC2 phosphorylation at low-magnitude stretch agrees with previous findings, but like type I-like AECs, phosphorylated MLC2 decreased dramatically at higher-magnitude stretch.
DISCUSSION

We found that RhoA activity, ROCK activity, and MLC2 phosphorylation decreased with high-magnitude stretch of primary type I-like AEC monolayers. Unlike primary type I-like AECs, HPAEC monolayers stretched for 30 min to 12% ΔSA at 0.25 Hz showed increased MLC2 phosphorylation, similar to results published previously by Birukov et al. (8) in HPAECs stretched for 30 min of 18% cyclic elongation without exposure to thrombin. Furthermore, we demonstrated that MLC2 phosphorylation in HPAECs is stretch magnitude-dependent, similar to our findings in type I-like AEC monolayers, with decreased MLC2 phosphorylation at high-magnitude (37% ΔSA) stretch. We speculate that high biaxial stretch magnitudes (25% and 37% ΔSA) used in type I-like AEC monolayer models, while physiologically relevant (85), are significantly higher than strain magnitudes typically experienced by endothelial cells utilized in numerous studies that show RhoA, ROCK, and MLC2 activation with stretch. Thus type I-like AEC monolayers respond differently by reducing activation of ROCK and MLC2. We conclude that MLC2 phosphorylation in stretched HPAEC monolayers is significantly different from that in primary AECs at low-magnitude stretch, although the response is similar at high magnitudes. We have shown that rescuing MLC2 phosphorylation during stretch has no effect on monolayer permeability. Finally, unstretched monolayers in which MLC2 activity is inhibited show rearrangement into PJARs.

RhoA and ROCK activity is reduced with stretch and is dependent on stretch magnitude. Previous studies have investigated the ROCK-MLC2 pathway during stretch in other cell types (1, 4, 28, 71). Endothelial cells exposed to elongation show a rapid (<10 min) increase in MLC2 phosphorylation via ROCK and MLCK (8, 10, 51), remodeling of actin to form PJARs (8, 47), and Rho activation and peripheral localization (77). RhoA activity was increased in alveolar type II cells isolated from rats exposed to high-tidal-volume mechanical ventilation (28). In unstretched cells, phosphorylation of MLC2 was found to alter actin arrangement rapidly by constriction of PJARs, to increase detergent-soluble (independent of actin) TJ protein content (65, 88, 90), to increase TJ permeability (68), and to redistribute zonula occludens-1 (ZO-1) and occludin (75). Numerous studies have established the link between stretch and ROCK activation, MLC2 activation, rearrangement into PJARs, and monolayer permeability in endothelial cells (1, 8–10, 47, 77).

In unstretched cells, the ROCK-MLC2 pathway has also been shown to have a major influence on TJ protein coupling and monolayer permeability. For example, in the T84 cell line, constitutively active RhoA redistributed occludin, ZO-1, claudin-1, claudin-2, and junctional adhesion molecule-1, increased detergent solubility of claudin-1 and claudin-2, and intensified PJARs. In contrast, dominant-negative RhoA abolished PJARs (13) in T84 cells, while ROCK inhibition with Y-27632 decreased PJAR intensity, decreased TER, and colocalized a subpool of ROCK and ZO-1 (90). Furthermore, MP inhibition with calyculin-A prevented infection-induced occludin relocation and decrease in resistance in T84 cells (78). Latrunculin-A depolymerized actin in Madin-Darby canine kidney cells, resulting in reduction of TER within 5 min, internalization of occludin, and abolishment of PJARs (76). In Caco-2 cells, inactivation of the Na+-glucose cotransporter SGLT1 resulted in increased TER, which was reversible by MLCK inhibition. SGLT1 activation increased MLC2 phosphorylation and was reversible by MLCK inhibition via ML-9 (89).

In summary, these studies in unstretched cells show parallel changes and associations between PJAR morphology, TJ protein distribution, and permeability modulated by Rho, MLCK, ROCK, and MLC2. Previously, we reported stretch magnitude- and frequency-dependent PJAR formation (29) and a stretch-induced increase in paracellular permeability (17, 18) in type I-like AEC monolayers. We hypothesized that RhoA and ROCK were activated with stretch and that the stretch-induced increase in monolayer permeability could be attenuated with pharmacological inhibition of ROCK. Counter to our hypothesis, we found that RhoA activity and downstream ROCK activity are significantly decreased with high-magnitude stretch of type I-like AEC monolayers, revealing that other pathways may be responsible for rearrangement into PJARs at high-magnitude stretch. Additionally, while we found a decrease in RhoA activity at 10 and 60 min of stretch to 37% ΔSA at 0.25 Hz, ROCK activity was decreased at only 10 min. We speculate that other pathway intermediates, including Ras and ERK (73), may be involved in the signaling between RhoA and ROCK in stretched type I-like AEC monolayers.

MLC2 phosphorylation is reduced with stretch and is dependent on stretch magnitude. MLC2 phosphorylation data correlated well with ROCK activity data, showing a stretch magnitude-dependent decrease in MLC2 phosphorylation (Thr18/Ser19) with high-magnitude stretch (25%
and 37% ΔSA) but no change at low-magnitude stretch (12% ΔSA). While MLC2 phosphorylation was decreased at all times in monolayers stretched to 25% and 37% ΔSA at 0.25 Hz, ROCK activity was decreased only at 60 min of stretch to 25% ΔSA and 10 min of stretch to 37% ΔSA, evidence that additional pathways, including MLCK (45) and MP (49, 72), may contribute to the phosphorylation state of MLC2 in stretched type I-like AEC monolayers. MLC2 monophosphorylation at Ser19, a site shown to have higher affinity for ROCK-mediated phosphorylation (40, 83), similarly decreased phosphorylation in stretched monolayers. Similarly, Mizutani et al. (62) demonstrated a decrease in MLC2 phosphorylation (Thr18/Ser19) in NIH-3T3 cells stretched for 1–2 h uniaxially at 10%. Thus MLC2 phosphorylation in type I-like AEC monolayers subjected to high-magnitude stretch decreased; we speculate that this results in reduced MLC2 activity and contractile force. Additionally, a minor amount of dual-phosphorylated MLC2 was found to colocalize with F-actin in stretched monolayers. Others have shown MLC2 colocalization with F-actin in other cell types (7, 93), and we speculate that MLC2 anchoring to the actin cytoskeleton is necessary for force generation. Together with previous data showing a rapid increase in actin rearrangement during stretch (29) and minor MLC2 colocalization with stretch-induced PJARs, we speculate that monolayer tension may diminish in stretched type I-like AEC monolayers, previously demonstrated in other stretched cell types (15, 53, 84).

PJAR is found in unstretched monolayers with blebbistatin. Stretch-induced rearrangement into PJARs was unaffected by MLCK inhibition by ML-7, ROCK inhibition by Y-27632, and MLC2 activity inhibition by blebbistatin under high-magnitude stretch conditions. Interestingly, a PJAR-like structure was found in unstretched monolayers treated with the MLC2 activity inhibitor, but not with the MLCK inhibitor. It is not known if these PJAR-like structures formed because of the presence of the inhibitor or if peripherally located F-actin was preserved from inhibitor-induced depolymerization. Additionally, unstretched monolayers treated with Y-27632 or blebbistatin lack centrally located F-actin stress fibers found in unstretched vehicle control monolayers. Bhadriraju et al. (6) demonstrated reduced ROCK activity and MLC2 phosphorylation that could not be rescued by constitutively active RhoA in endothelial cells with diminished actin-mediated extracellular matrix adhesion. Additionally, treatment with blebbistatin to reduce cellular tension resulted in decreased focal adhesions, as well as reduced ROCK and MLC2 activity (6). Others have shown that injection of RhoA induces assembly of stress fibers and focal contacts (4, 71). Furthermore, endothelial cells treated with sphingosine 1-phosphate exhibit a thick cortical actin ring and enhanced barrier and adhesion properties (81). Taken together with our data showing decreased ROCK and MLC2 activity with stretch and reorganization into PJARs in unstretched monolayers with inhibition of myosin II ATPase, these previous studies lead us to speculate that type I-like AEC monolayer adhesion to the extracellular matrix may be reduced with high-magnitude biaxial stretch.

Summary. We have demonstrated that RhoA activity, ROCK activity, and MLC2 phosphorylation decrease with high-magnitude stretch of primary type I-like AEC and HPAEC monolayers. This inactivation is stretch-magnitude-dependent and occurs via the MP pathway in type I-like AECs. We have shown that rescuing MLC2 phosphorylation during stretch has no effect on monolayer permeability. We have demonstrated that, in unstretched type I-like AEC monolayers, the actin cytoskeleton remodels to PJARs in the presence of the myosin II ATPase inhibitor blebbistatin. Future studies should investigate pathways involved in actin remodeling and their effect on paracellular permeability during stretch in order to explore opportunities to prevent ventilator-induced lung injury.

GRANTS

This study was supported by National Heart, Lung, and Blood Institute Grant R01-HL-057204 (S. S. Margulies) and the University of Pennsylvania Ashton Fellowship Program (B. C. DiPaolo).

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the authors.

Article information

PMCID: PMC3362254

Brian C. DiPaolo and Susan S. Margulies

Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania

*Corresponding author.
REFERENCES

73. Sahai E, Olson MF, Marshall CJ. Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility. EMBO J 20: 755–766, 2001 [PMC free article] [PubMed]

