Comment on "Glide Systems and Peierls Stresses in f.c.c. and b.c.c. Metals From Phonon Energies"

G. Taylor

Vaclav Vitek
University of Pennsylvania, vitek@seas.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/mse_papers
Part of the Metallurgy Commons, and the Semiconductor and Optical Materials Commons

Recommended Citation

At the time of publication, author Vaclav Vitek was affiliated with the University of Oxford. Currently, he is a faculty member in the Materials Science and Engineering Department of the School of Engineering and Applied Science at the University of Pennsylvania.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/mse_papers/240
For more information, please contact repository@pobox.upenn.edu.
Comment on "Glide Systems and Peierls Stresses in f.c.c. and b.c.c. Metals From Phonon Energies"

Abstract
The theory of Boffi et al. of Peierls stresses in crystals is criticized on physical grounds on a number of points.

Keywords
Phonons

Disciplines
Engineering | Materials Science and Engineering | Metallurgy | Semiconductor and Optical Materials

Comments
At the time of publication, author Vaclav Vitek was affiliated with the University of Oxford. Currently, he is a faculty member in the Materials Science and Engineering Department of the School of Engineering and Applied Science at the University of Pennsylvania.
Comment on "Glide systems and Peierls stresses in fcc and bcc metals from phonon energies"

G. Taylor and V. Vitek

Department of Metallurgy and Science of Materials, University of Oxford, United Kingdom
(Received 10 December 1973)

The theory of Boffi et al. of Peierls stresses in crystals is criticized on physical grounds on a number of points.

Recently, Boffi, Caglioti, Rizzi, and Rossitto presented a calculation of the Peierls stresses in crystals based on the Frenkel-Kontorova model with appropriate constants computed from measured phonon frequencies. Within the framework of the model, calculations in their paper are correct; however, any variation of the Frenkel-Kontorova model suffers two major defects—namely, the model is one dimensional and it applies to the edge dislocation only. For a number of years atomistic models which are three dimensional in concept have been developed; these apply equally well to both edge and screw dislocations and are much more realistic. It seems unlikely that a model so primitive in concept as the Frenkel-Kontorova model is able to give results which can be compared even qualitatively with measured experimental values on real metals; any correlation is almost bound to be fortuitous.

There are a number of specific physical criticisms which can be made regarding both the calculations and interpretations of Boffi et al.1

(i) The atomic displacements in the dislocation core are relatively very large and well outside the framework of the harmonic approximation. Measured phonon frequencies give information about the interatomic forces for only small deviations of the atoms from their equilibrium positions; therefore, such results cannot be used to calculate the forces between atoms in the dislocation core. It is, of course, the structure of the core which determines the Peierls stress.

(ii) As the authors state, in anisotropic crystals it is not possible to deduce the parameter K [Eq. (11) of Ref. 1] from phonon-dispersion curves for the (111) and (101) slip systems. Since these systems play the major role in the deformation of fcc and bcc crystals, respectively, it is of paramount importance that they should be included in any calculation on plasticity.

(iii) In Table III of Ref. 1, the differences in the Peierls energies and stresses in columns A, B, and C are due to differences in a parameter P - K/\alpha, where K and \alpha are calculated from the phonon-dispersion data, continuum elasticity theory, and a mixture of the two. The values of these parameters for different columns are not given, but they certainly have a profound effect on the Peierls stress which can vary for a particular slip system by more than 10^4 times (e.g., Nb (101) [010]). When such a massive variation in a calculated value is possible, a model should be capable of accounting for any experimental results, but such sensitivity makes the model most unsatisfactory.

(iv) The Frenkel-Kontorova model most closely resembles an edge dislocation; in bcc materials it is generally accepted that the Peierls stress measured in plasticity experiments is that of a screw dislocation since screws are thought to be much more difficult to move than edges.3

(v) As the authors point out, the only comparison of the numerical value of the Peierls stress between their theory and experiment is for tungsten. Any comparison between calculated Peierls stresses and experimental results should be for experiments near 0 °K (in practice liquid-helium temperature, 4.2 °K) since at higher temperatures thermal fluctuations help the dislocations to overcome the Peierls barrier, and the applied stress is lowered. However, Boffi et al. give a reference to Vreeland; Vreeland's paper did not contain any original work on tungsten but included results of Schadler who measured the velocity-stress dependence of edge dislocations in the microstrain region at 298 and 77 °K. There is, however, a much more serious error in Boffi et al.; they quote the critical resolved shear stress as 20 x 10^6 dyn cm^-2. It appears that they have misread the graph in Ref. 4 since the abscissa is a logarithmic scale. The yield stress at 77 °K given by Schadler is 5 x 10^6 dyn cm^-2 (= 7 x 10^4 psi), although, of course, some dislocations do move with very low velocities at somewhat lower stresses. However, from what we have said above about thermal fluctuations, the Peierls stress will be greater than the yield stress at 77 °K perhaps by a factor of 2. In any case, comparison of the model by Boffi et al. with experiment is now very poor; their Peierls stress for tungsten is nearly 10^6 times smaller than the yield stress at 77 °K, a difference which is unlikely to be explained on the basis of "friction processes". Clearly, the model has failed completely in this instance, even the result for P calculated from continuum elasticity (column C of Ref. 1) is far superior (2.2 x 10^8 dyn cm^-2).

(vi) Boffi et al. completely ignore the majority of work on niobium in claiming that the preferred deformation system is (101) [010]. The (111) slip direction is now rarely reported explicitly since it is so well established, but it is determined routinely in slip-line analysis from observation of the "dead band" and/or from rotation of the tensile axis; also electron microscopy shows a preponderance of (111) dislocations (see, for example, Refs. 6 and 7, and for a review, Ref. 3). Furthermore, what Reid, Gilbert, and Hahn observed was not a set of slip lines but a deformation zone just prior to (chisel) fracture; the actual measured shear direction was up to 15° away from the (100) direction. Mason and MacDonald did not, in fact, determine the glide direction as (100), but rather claim that their results on dislocation damping at frequencies of 10–150
MHz are consistent with dislocations with (100) Burgers vectors and quote Reid et al. as their reference.

Apart from these detailed criticisms we would like to emphasize again that crude models such as those based on the one-dimensional Frenkel-Kontorova formulation are not likely to contribute to the theory of the dislocation core structure and the Peierls stresses in real metals. This can only be achieved by three-dimensional atomistic models which can reveal the core structure and dislocation behavior unpredictable on the basis of an oversimplified model; an example is the case of the screw dislocation in bcc crystals. These calculations require some assumptions about the interatomic forces for large displacements of the atoms from their equilibrium positions. An atomistic three-dimensional method which uses the information about the forces for small displacements of the atoms has also been developed and is known as lattice statics; this method cannot be used to study the dislocation core, but to calculate, for example, displacements outside the core taking into account that the dislocation is in a crystal lattice rather than in an elastic continuum. The information extracted from the phonon-dispersion data can be introduced into lattice statics directly via the lattice Green function.13,1413,14

17 V. Vitek, R. C. Perrin, and D. K. Bowen, Philos. Mag. 21, 1049 (1970).

