5-18-2012

α Width of $^{18}\text{Ne}(6.15 \text{ MeV}, 1^-)$

H Terry Fortune
University of Pennsylvania, fortune@physics.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/physics_papers
Part of the Physics Commons

Recommended Citation

© 2012 American Physical Society

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/physics_papers/237
For more information, please contact libraryrepository@pobox.upenn.edu.
α Width of $^{18}\text{Ne}(6.15 \text{ MeV}, 1^-)$

Abstract
Data for the $^{14}\text{C}(^6\text{Li},d)^{18}\text{O}(6.20)$ reaction, at 20 MeV, provides an α spectroscopic factor of 0.23 for this 1^- state. Assuming equal spectroscopic factors for mirror states, the computed width for $^{18}\text{Ne}(6.15)$ is $3.9(1.0)$ eV.

Disciplines
Physical Sciences and Mathematics | Physics

Comments

© 2012 American Physical Society

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/physics_papers/237
α width of 18Ne(6.15 MeV, 1−)

H. T. Fortune
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

(Received 18 April 2012; published 18 May 2012)

For a state that is unbound to α decay, if its α-particle spectroscopic factor S_α is known, then the α width of the state can be computed from the relation $\Gamma_\alpha = S_\alpha \Gamma_{\text{asp}}$, where Γ_{asp} is the α single-particle (sp) width calculated in a potential model. The computed sp width is quite sensitive to the geometrical parameters of the potential. Thus, for example, if the spectroscopic factor is from a nuclear-structure calculation (shell model, cluster model, etc.), then care must be exercised to choose realistic values of those potential parameters. The more usual situation is that the spectroscopic factor is obtained from analysis of an α-transfer reaction, such as (6Li,d) or (7Li,t). In that case, the experimental cross section is compared to results of a distorted-wave Born-approximation (DWBA) calculation, and S_α is extracted as $S_\alpha = \sigma_{\text{exp}} / \sigma_{\text{DWBA}}$. The dependence of σ_{DWBA} on the parameters of the potential well is similar to that of Γ_{asp}. For example, increasing the radius of the well increases the value of Γ_{asp} and σ_{DWBA}, the latter leading to a decrease in S_α. Thus the product $S_\alpha \Gamma_{\text{asp}}$ is much less sensitive to changes in these parameters than is either factor of the product. For this reason, it is crucial that, if combining S_α and Γ_{asp} to get a width, the same potential-well parameters should be used throughout.

Another simplification occurs when the transition to the state in question can be compared to another in the same or another nearby nucleus, preferably with the same J and similar Q value, and one whose α width is known [1,2]. Then the entire process [3] involves only a set of ratios: ratios of experimental cross sections, of DWBA cross sections, of sp widths, and actual widths. The procedure is described in some detail in Ref. [3]. For nuclei just above 16O, the 1− and 3− states of 20Ne [4] with large S_α‘s are especially useful. Such a comparison led to an evaluation [1−3] of the α width for the 3/2+ state at 4.03 MeV in 18Ne. The present Rapid Communication involves the use of this procedure to extract S_α for the 1− state at 6.20 MeV in 18O, and then the α width of its mirror at 6.15 MeV in 18Ne. This state is important because it dominates the astrophysical reaction of 14O(α,p) for temperatures $T_\beta \lesssim 2$. The last step of the process involves the assumption of equal S_α‘s for mirror states.

A minor complication concerns the question of how much of the measured cross section corresponds to direct α transfer. For strong states, other reaction mechanisms are not important. But, for weak states, a small compound-nucleus (CN) component must be estimated and subtracted.

The present study uses the 14C(6Li,d)18O reaction at $E(6Li) = 20.0$ MeV. The target was a gold-backed foil of about 50 μg/cm², nominally enriched to 90% in 14C. The same target was used in investigations of the 14C(t,p) reaction [5]. In that work, a comparison of yields from the 12C(t,p) reaction with this target with those from an enriched (99.99%) 12C target revealed that the 12C content of the 14C target was 18.5%. This impurity is important because we are interested in the 1− state at 6.20 MeV in 18O, and at forward angles, the peak corresponding to this state has the same d energy as that for the 12C(6Li,d) reaction to the 2+ state at 6.92 MeV in 18O. For this reason, data were also acquired for the latter reaction on an enriched 12C target, under identical conditions.

Outgoing deuterons were momentum analyzed in a multi-angle spectrograph and detected with nuclear-emulsion plates in the focal planes. Analyzing yields of peaks from the 12C impurity that were clearly resolved led to the conclusion that the 12C content of the 14C target was 18.8%—quite close to the value determined in the (t,p) experiments. At a center-of-mass (c.m.) angle of 13.9°, the measured cross section for the 18O(6.20 MeV) state is 58.2(2.4) μb/sr. This uncertainty is from statistics and from impurity subtraction. There is an additional uncertainty of about 20% in the total 14C target thickness, which we withhold until the end, and then include it. The estimated CN contribution is small, but not negligible—about 13(5) μb/sr. These results are listed in Table I. Various sources of uncertainty are itemized in Table II. As mentioned above, the DWBA cross sections depend on r_0 and a of the potential well, but they also depend on the number of assumed quanta q of relative motion. For the present 1− state the possibilities are $q = 7$ and 9, with 7 most likely. I have performed the analysis for both values. The α potential well has $r_0 = 1.40$ fm, $a = 0.60$ fm, with $R = r_0(14)^{1/3}$. With a direct α-transfer cross section of 45.2(5.5) μb/sr, the resulting S_α‘s are 0.23(4) for $q = 7$ and 0.19(3) for $q = 9$. This spectroscopic factor is itself of interest. A recent investigation of the 6Li(14C,d) and 7Li(14C,t) reactions provided values of the asymptotic normalization coefficients (ANCs) for this state, but they did not quote a spectroscopic factor.

The primary interest here, however, is not with this state in 18O, but with its mirror in 18Ne. Alpha sp widths for the latter are 17 and 26 eV for $q = 7$ and 9, respectively. If we assume S_α‘s for mirror states are equal, then the present S_α‘s lead to calculated α widths of $3.9(1.0)$ and $4.9(1.2)$ eV for $q = 7$ and 9. These final uncertainties include the additional 20% from target thickness mentioned earlier. Harss, et al. [6] used the 17F(p,α) reaction, in reverse kinematics, to study states in this region of excitation in 18Ne. Their α width for this state was
TABLE I. Results of the reaction 14C(6Li,d)18O(6.20 MeV).

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d\sigma/d\sigma^{a}$</td>
<td>58.2(2.4) μb/sr</td>
</tr>
<tr>
<td>After CN subtraction</td>
<td>45.2(5.5) μb/sr</td>
</tr>
<tr>
<td>$q = 7$</td>
<td>$q = 9$</td>
</tr>
<tr>
<td>S_{ω}</td>
<td>0.23(4)</td>
</tr>
<tr>
<td>$\Gamma_{\omega}^{(18}\text{Ne})$ (eV)</td>
<td>17 eV</td>
</tr>
<tr>
<td>$\Gamma_{\omega}^{(18}\text{Ne})$ (eV)</td>
<td>3.9(6)</td>
</tr>
<tr>
<td>$3.9(1.0)^{c}$</td>
<td>$4.9(1.2)^{c}$</td>
</tr>
<tr>
<td>Γ_{ω} other (eV)b</td>
<td>3.2$^{+5}_{-2}$</td>
</tr>
</tbody>
</table>

aAt an incident energy of 20 MeV and a c.m. angle of 13.9°. bReference [6]. cIncludes 20% target thickness uncertainty.

3.2$^{+5}_{-2}$ eV. The present result is in agreement with that result, but with significantly smaller uncertainty.