
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

7-12-2005

Run-Time Checking of Dynamic Properties
Oleg Sokolsky
University of Pennsylvania, sokolsky@cis.upenn.edu

Usa Sammapun
University of Pennsylvania, usa@cis.upenn.edu

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Jesung Kim
University of Pennsylvania, jesung@cis.upenn.edu

Postrpint version. Proceedings of the Fifth Workshop on Runtime Verification (RV'05)
Note: This is a preliminary version. The final version will be published in Electronic Notes in Theoretical Computer Science
Publisher URL: www.elsevier.nl/locate/entcs

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/180
For more information, please contact repository@pobox.upenn.edu.

http://repository.upenn.edu
http://repository.upenn.edu/cis_papers
http://repository.upenn.edu/cis
http://repository.upenn.edu/cis_papers/180
mailto:repository@pobox.upenn.edu

RV 2005 Preliminary Version

Run-Time Checking of Dynamic Properties 1

Oleg Sokolsky, Usa Sammapun, Insup Lee, and Jesung Kim

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19104-6389
U.S.A.

{sokolsky,usa,lee,jesung}@cis.upenn.edu

Abstract

We consider a first-order property specification language for run-time monitoring
of dynamic systems. The language is based on a linear-time temporal logic and
offers two kinds of quantifiers to bind free variables in a formula. One kind con-
tains the usual first-order quantifiers that provide for replication of properties for
dynamically created and destroyed objects in the system. The other kind, called
attribute quantifiers, is used to check dynamically changing values within the same
object. We show that expressions in this language can be efficiently checked over
an execution trace of a system.

1 Introduction

Run-time verification is a novel light-weight verification technique that applies
formal analysis techniques directly to the executing system rather than its
model. Analysis of a formally specified property is performed with respect to
a given execution trace of the system. Algorithms introduced in [8] showed
that analysis of commonly used propositional temporal logics such as LTL can
be performed using space that is independent of the length of the execution
trace. These complexity results compare favorably to model checking, which
is PSPACE-complete for LTL [12]. This often makes model checking of large
systems impractical, while run-time verification is not constrained by the size
of the system. In this work, we show that benefits of run-time verification can
be extended to first-order specification languages that are much harder – and
often undecidable – to check over models.

In our prior work [10], we have developed LCp, a propositional temporal
logic of events and conditions that is suitable for efficient run-time verification

1 This research has been supported in part by DARPA PCA F33615-00-C-1887, NSF CCR-
0209024, ARO DAAD19-01-1-0473.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Sokolsky et al.

of temporal properties. LCp formulas are interpreted over a trace of observa-
tions of a program execution. The trace contains occurrences of observable
events that happen during the execution. These primitive events serve as
atomic propositions of the logic and are used to define more complex events
and conditions that express system requirements and their violations.

In this paper, we extend LCp to a first-order temporal logic LCν that
captures two aspects of run-time monitoring that were not handled in LCp:
event attributes and dynamic indexing of properties.

Event attributes. Events, occurring during an execution of the sys-
tem, usually carry additional information that is important for expressing
and checking system properties. If a system variable changes its value, we
may need to know what new value is assigned; if a system call happens, the
values of the arguments of the call may be important. We may also want to
record the time instance when an event occurred and use it to check timing
properties. We call the values that are associated with an event occurrence
event attributes. Event attributes may be used to define new conditions in
property specifications. When a new instance of an event occurs, the new
value of the attribute affects evaluation of the property. While some support
for handling of event attributes was provided in MEDL [11], a specification
language based on LCp, precise semantics for it were never given.

Dynamic indexing of properties. Propositional temporal logics used
in verification check fixed collections of properties. Consider the (in)famous
railroad crossing example, where we check that whenever a train is in crossing,
announced by an event trainCrossing, the gate is closed, that is, we observed
an event GateDown and there has been no event GateUp since. If we have
multiple crossings that we need to verify simultaneously with respect to the
same set of properties, we have individual events GateUpi, GateDowni, etc.,
for each crossing i. Since crossings are rarely added and even more rarely
removed, it makes sense to assume that the set of crossings is fixed. Every
property is written by creating a copy of a property indexed by the iden-
tity of the crossing. Because properties are duplicated, checking is naturally
performed independently for each property. The run-time state needed by
the checker to evaluate each property is created statically, separately for each
property. This is easy to do since we know which crossings are there and
properties for any other crossing simply do not exist, i.e., undefined. A stray
event GateUp for a non-existent crossing may cause an error message by the
checker or, more likely, will simply be ignored like any other unexpected event.

The situation changes when, instead of railroad crossings, we want to check
properties of trains. Intuitively, the situation is the same: we have a set of
properties per train that can be checked individually. However we do not know
which trains are there as trains come and go. The set of properties to check
can be still thought as indexed by the identity of the train; however, now this
index appears as a free variable and we are forced to enter the realm of first-
order temporal logics, from the specification language perspective. From the

2

Sokolsky et al.

checking perspective, the checker needs to dynamically identify what set of
properties need to be checked, allocate and – to remain efficient – deallocate
space for the run-time state, and reject events that do not correspond to
properties being currently checked.

In the logic LCν , some of event attributes are treated as index values
rather than data points. We use variables to represent indices as well as data
attributes. During an execution, the variables are bound to values that are
supplied by occurrences of events in the trace. However, the way this bind-
ing occurs is different for indices and event attributes. Consider checking the
property that the speed of a train is within a fixed speed limit. Assume that
speed readings are manifested in the execution trace as events speed(i, v), with
i being the identity of the train and v giving the current velocity of the train
i. Suppose for now that we have only one train i1. The condition v ≤ limit

is evaluated with respect to the value of v supplied by the last occurrence
of speed(i1, v1)@t. All previous occurrences of the same event speed(i1, v2)@t′

with t′ < t become irrelevant. However, suppose now we have another train
i2. In this case, an occurrence speed(i2, v2)@t′ should not, of course, be over-
shadowed by the later occurrence of speed(i1, v1)@t. If we now assume that
arrival of new trains within the visibility range of the monitor is announced
by an event newTrain(i), we see that the values brought as attributes of the
newTrain event should be bound differently from the values brought as at-
tributes of the speed event.

Accordingly, we introduce two different kinds of quantifiers that bind event
attributes, depending on whether they are to be used as index values or data.
Index values can be quantified using the usual first-order quantifiers. Since
the contents of index sets can be changed dynamically, each quantifier is dec-
orated with events that add and remove values from the index set. Other
event attributes are bound by a special quantifier, which we call an attribute

quantifier. Attribute quantifiers are reminiscent of freeze quantifiers used in
real-time temporal logics [2,9] and logics for object-based systems [5], as well
as assignment quantifiers [13] used in logics for temporal databases. There is
a difference between attribute quantifiers and the common use of freeze quan-
tifiers. Normally, freeze quantifiers bind the value of a variable to a certain
value in the environment at a specific point in time. However, in our case, the
only connection to the environment, that is, the system being monitored, is
via primitive events and conditions. Therefore, with every attribute quanti-
fier, we specify the primitive event that brings the value as an attribute. The
quantifier, then, binds a variable in the formula to the attribute of the most
recent occurrence of the specified primitive event.

Related work. The closest point of reference is provided by formalisms
aimed at describing the evolution of systems with object creation and destruc-
tion. The allocation temporal logic AllTL [7] for object-oriented systems is de-
signed specifically for describing patterns of object creation and destruction.
A similar logic with different semantics, evolution temporal logic ETL [14], is

3

Sokolsky et al.

used to describe temporal aspects of heap allocation. Most other temporal
logics for object-oriented systems, such as BOTL [6], do not consider dynamic
object creation and thus do not have to offer dynamic indexing in the language.

Checking with respect to general first-order temporal logics are known to
be undecidable [1]. Many variants of first-order temporal logics allow semi-
decidable procedures and are implemented in a variety of theorem provers. For
example, STEP [4] uses first-order LTL to express properties of the systems.

A distinctive feature of LCν is that it aims at run-time verification rather
than model checking. Model checking algorithms operate directly on the sys-
tem model and thus the semantics for the logic can be defined directly in terms
of the system execution. In the case of run-time verification, the checker has
access to the system execution only via a sequence of observations. Because
of this, constructs of LCν are tied to events, which bring the values changed
during the execution. This approach to the semantic definition allows us
to achieve clean separation between trace extraction, which concerns system
instrumentation to produce the necessary observations, and trace checking,
which operates on the extracted trace. This separation provides for property
specifications that are independent of a particular system implementation.
These properties can then be used to check any implementation of the system
by a generic checker, after applying an implementation-specific extraction.

A very expressive logic for run-time verification EAGLE has been intro-
duced in [3]. The use of parameters in EAGLE expressions provides for index-
ing of properties and quantification. However, there is no distinction between
creation/destruction events that change the index sets and ordinary events
used in the checking. Because of this, we believe that properties expressed in
LCν will be easier to understand and check.

2 Logic for Dynamic Events and Conditions

Intuition for the logic. We specify properties of systems by means of
events and conditions. Conditions are statements about the current state of
the system, which retain their value until the state changes. By contrast,
events are instantaneous observable state changes that change the value of
some conditions. Attributes of events specify values that are associated with
a state change. For a software system, conditions may be expressions over
the system variables and location of control, while primitive events may be
assignments to these variables and changes in control locations such as function
calls. In that case, attributes of events can be values assigned to a variable or
parameters of a call. More complex events and conditions can be constructed
by the operators of the logic. Ultimately, formulas of the logic define invariants
(properties that should always be true during an execution) and alarms (events
that notify the user of abnormal behaviors).

Syntax. We assume a countable set of variables X = {X1, X2, . . .}. Variables
may assume values taken from some domain V. We also assume a set of

4

Sokolsky et al.

functional symbols that represent primitive events Ep = {e1, e2, . . .}, each
symbol having a fixed arity. We will use X̄ to denote a vector X1, . . . , Xn

and, when writing terms e(X̄) or p(X̄) will always assume that the size of the
vector corresponds to the arity of the function symbol.

A predicate p(X̄) is a function X̄ → {false, true}. The exact definition of
p(X̄) is unimportant, as long as we assume that it can be computed in O(X̄)
time. In examples, predicates will be constructed using relational operators
applied to arithmetic expressions over from X̄ and a special function symbol
time(e). The latter is understood as the time of the most recent occurrence
of the primitive event e.

An occurrence of an event e(X1, . . . , Xn) is a ground term e(v1, . . . , vn),
i.e., an assignment of values to the variables of the event, which occurs at
some time instance t. We will refer to these values as the attributes of the
event. We denote the set of primitive event occurrences as Eg.

The logic has two sorts: conditions and events. The set of conditions is
denoted by C, while the set of events is denoted by E . We will use C (possibly
primed or subscripted) to range over C and E to range over E . Lowercase e are
used to mean primitive events. We will use f to range over formulas in C ∪ E .
Figure 1 shows the syntax of conditions and events. For conditions, we use
operators ∧ and ⇒ as the commonly defined abbreviations. For events, for
which there is no negation operator defined, conjunction is a primary operator.

〈C〉 ::= p(X̄) | defined(〈C〉) | [〈E〉, 〈E〉) | ¬〈C〉 | 〈C〉 ∨ 〈C〉

| ∃x[e1, e2].〈C〉 | ∀x[e1, e2].〈C〉 | x@e(X̄).〈C〉

〈E〉 ::= e(X̄) | start(〈C〉) | end(〈C〉) | 〈E〉 ∧ 〈E〉 | 〈E〉 ∨ 〈E〉 | 〈E〉 when 〈C〉

| ∃x[e1, e2].〈E〉 | ∀x[e1, e2].〈E〉

Fig. 1. The syntax of conditions and events

The intuition behind the first-order quantifiers used to define events and
conditions is that each occurrence of the event e1 introduces a new “checking
instance”, indexed by the value of the attribute x in the e1 occurrence. When
event e2(x) occurs, the checking occurrence that corresponds to the value x

is removed. We refer to e1 as the creation event and to e2 as the destruction
event. Quantifiers ∃ and ∀ allow us to make statements about collections of
these checking occurrences. The intuition for the attribute quantifier @ allows
us to use the value of an event attribute for evaluation of predicates.

“Index attributes” and “value attributes” are conceptually different enti-
ties. Rather than introduce separate types for these attributes, we impose a
syntactic well-formedness constraint, which requires that if a variable is bound
by a first-order quantifier, it can only be used in an equality predicate. We also
assume that in all quantifier formulas, ∃x[e1(X̄), e2(X̄)].f , ∀x[e1(X̄), e2(X̄)].f ,
or x@e(X̄).f , x ∈ X̄.

The set of free variables of a formula (event or condition) f , fv(f) is

5

Sokolsky et al.

given recursively on the structure of the formula in the usual way. Important
clauses are fv(e(X̄)) = fv(p(X̄)) = {X̄}, fv(∀x[e1, e2].f) = fv(∃x[e1, e2].f) =
fv(x@e(X̄).f) = fv(f)\{x}. (Operator \ is the set difference).

Semantics. Intuitively, we think of events as an abstract representation
of time and conditions as abstract representation of data. That is, condi-
tions represent the relevant state of the system or of the checker, while events
evaluate to the time instances when “interesting” changes occur.

A model M is a tuple 〈T , S, τ, LE〉, where T is a time domain (which could
be integers, rationals, or reals), S = {s0, s1, . . .} is a finite or infinite sequence
of states, τ : S → T is a timestamping function, and LE is a relation over
S × Eg that tells which primitive events occur in the states of S. That is,
in each state s, (s, e) ∈ LE for each event occurrence of e at s. By LE(s)
we will denote the set of event occurrences {ei} so that (s, ei) ∈ LE . The
mapping τ defines the time at each state, and it satisfies the requirement that
τ(si) < τ(sj) for all i < j, i.e., the time at a later state is greater. Intuitively,
the states represent observations delivered to us from the system, and the
order of states is determined by the observation order. The requirements on
τ reflect the assumptions: observations are delivered in the order they were
produced by the system, and the clock granularity is fine enough to assign a
different timestamp to each observation.

The meaning of a formula with free variables is given up to two partial val-
uation functions V, I : X → V, which assign values to the free variables of the
formula, to which we refer as the value and index assignments, respectively.
The intuition for having two valuation functions is to be able distinguish be-
tween “index attributes” and “value attributes” during evaluation. Valuation
functions V, I are called compatible, denoted V � I, if their domains are dis-
joint, that is, V (x)
=⊥ implies I(x) =⊥ and vice versa. Given a primitive
event e(X̄) and compatible valuations V, I, e(X̄)[V, I] will denote the event
occurrence e(v̄), if for each i, either V (Xi) = vi or I(Xi) = vi. Similar nota-
tion is used for predicates. If neither V nor I assign value to some variable X,
p(X̄)[V, I] denotes ⊥. Given a valuation V , V {Xi �→ vi} is a valuation that
has V (Xi) = vi for every i and agrees with V on all other variables.

In order to define what we mean by a condition C being true in model M

at time t (M, t, V, I |= C), we need to define what we mean by its denotation
(Dt

M,V,I(C)). This is defined in Figure 2. Using this we define the meaning
of M, t, V, I |= C, and of an event E occurring in a model M at time t

(M, t, V, I |= E). The formal definition is given in Figure 3.

We interpret conditions over three values, true, false, and ⊥ (undefined).
A predicate p(X̄) is computed according to the given valuations of its free
variables and is undefined if the valuation of any of the free variables is un-
defined. The predicate defined(C) is true whenever the condition C has a
value true or false. Negation (¬C) and disjunction (C1 ∨C2) are interpreted
classically whenever C, C1 and C2 have boolean values true or false; ¬ ⊥=⊥,
⊥ ∨true = true, and ⊥ ∨false =⊥ .

6

Sokolsky et al.

Dt
M,V,I(p(X̄)) = p(X̄)[V, I]

Dt
M,V,I(defined(C)) =

⎧⎨
⎩

true if Dt
M,V,I(C) �=⊥

false otherwise

Dt
M,V,I([E1, E2)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

true if there exists t0 ≤ t such thatM, t0, V, I |= E1

and for all t0 ≤ t′ ≤ t,M, t′, V, I �|= E2

false otherwise

Dt
M,V,I(¬C) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

true if Dt
M,V,I(C) = false

⊥ if Dt
M,V,I(C) =⊥

false if Dt
M,V,I(C) = true

Dt
M,V,I(C1 ∨ C2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

true if Dt
M,V,I(C1) or Dt

M,V,I(C2) is true

false if Dt
M (C1) = Dt

M,V,I(C2) = false

⊥ otherwise

Fig. 2. Denotation for conditions

For primitive events, the meaning is given to the event occurrence obtained
by the valuations V and I, and is defined by the labels on the states. Conjunc-
tion (E1 ∧ E2) and disjunction (E1 ∨ E2) defined classically in the temporal
domain; so E1 ∧E2 is present only when both E1 and E2 are present, whereas
E1 ∨ E2 is present when either E1 or E2 is present.

There are some natural events associated with conditions, namely, the
instant when the condition becomes true (start(C)), and the instant when the
condition becomes false (end(C)). Notice, that the event corresponding to the
instant when the condition becomes ⊥ can be described as end(defined(C)).
Also, any pair of events define an interval of time, so forms a condition [E1, E2)
that is true from event E1 until event E2. The event (E when C) is present if
E occurs at a time when condition C is true.

Finally, the meaning to formulas with quantifiers is given in the usual
way by transforming the assignments that are used to evaluate the formula.
For the first-order quantifiers, an occurrence of e1 with the value vi for the
attribute xi makes the checker to evaluate f in every state of the trace in the
index valuation containing vi, until a matching occurrence of e2 is found. By
contrast, the attribute quantifier x@e(X̄)f makes the checker evaluate f with
the value assignment containing the value of xi from the last occurrence of e.

As usual, formulas are interpreted up to renaming of bound variables.
Clearly, the formula

∀x[e1(x), e2(x)].f(x) ∧ ∀x[e′1(x), e′2(x)].f ′(x)

7

Sokolsky et al.

Semantics of conditions:

M, t, V, I |= C iff Dt
M,V,I(C) = true

Semantics of events:

M, t, V, I |= e(X̄) iff there exists state si such that τ(si) = t

and (si, e(X̄)[V, I]) ∈ LE .

M, t, V, I |= start(C) iff ∃si such that τ(si) = t and M, τ(si), V, I |= C

and if i > 0 then M, τ(si−1), V, I �|= C.

M, t, V, I |= end(C) iff ∃si such that τ(si) = t and M, τ(si), V, I |= ¬C

and if i > 0 then M, τ(si−1), V, I �|= ¬C.

M, t, V, I |= E1 ∨ E2 iff M, t, V, I |= E1 or M, t, V, I |= E2.

M, t, V, I |= E1 ∧ E2 iff M, t, V, I |= E1 and M, t, V, I |= E2.

M, t, V, I |= E when C iff M, t, V, I |= E and M, t, V, I |= C;

Semantics of quantifiers:

M, t, V, I |= ∃xi[e1, e2].f iff ∃s with τ(s) ≤ t. ∃vi ∈ V. ∃V ′ � I such that

M, τ(s), V ′, I{xi
→ vi} |= e1, ∀τ(s) ≤ t′ < t.∀V ′′ � I

M, t′, V ′′, I{xi
→ vi} �|= e2, and M, t, V, I{xi
→ vi} |= f .

M, t, V, I |= ∀xi[e1, e2].f iff ∀s with τ(s) ≤ t, (∃vi ∈ V. ∃V ′ � I such that

M, τ(s), V ′, I{xi
→ vi} |= e1, ∀τ(s) ≤ t′ < t.∀V ′′ � I.

M, t′, V ′′, I{xi
→ vi} �|= e2) ⇒ M, t, V, I{xi
→ vi} |= f .

M, t, V, I |= xi@e.f iff ∃s with τ(s) ≤ t, ∃vi ∈ V. M, τ(s), V {xi
→ vi}, I |= e,

such that (∀τ(s) ≤ t′ < t, v �= vi.M, t′, V {xi
→ v}, I �|= e)

and M, t, V {xi
→ vi}, I |= f .

Fig. 3. Semantics of events and conditions.

is equivalent to

∀x[e1(x), e2(x)].f(x) ∧ ∀y[e′1(y), e′2(y)].f ′(y).

However, events that appear in quantifiers can restrict the effect of such re-
naming. This is especially clear in the case of attribute quantifiers. Consider
x@e1(x).f1(x) ∧ y@e1(y).f2(y). Even though x and y are bound by different
quantifiers, they are not independent and refer to the same attribute of the
same event. That is, in any evaluation, x and y will have the same value.

8

Sokolsky et al.

3 Examples: Dynamic Real-Time Systems

We sketch two examples taken from the domain of real-time systems. A typical
real-time system consists of a collection of tasks. Tasks can be added upon
user requests or in response to the changing environment. Tasks execute
concurrently on the same processor. A task is dispatched to perform a certain
computation, either periodically or in response to some event. Once the task
is dispatched, its computation should complete by a given deadline. In hard

real-time systems, such as high-frequency controllers, a missed deadline is
considered to be a catastrophic event.

Suppose that changes to the set of tasks are announced by primitive events
addTask(id) and removeTask(id). Different invocations of a task may carry
different deadlines. A task dispatch is modeled by an event dispatch(id, d),
where d is the deadline for the task. When the task completes its execution,
an event complete(id) occurs. The property that every deadline is met on each
task dispatch is expressed as

∀i[addTask(i), removeTask(i)].

d@dispatch(i, d).time(complete(i)) − time(dispatch(i, d)) ≤ d. (1)

On the other hand, soft real-time systems, such as multimedia streaming
servers, do not aim to make every deadline. Instead, the goal is to provide
a certain level of quality of service (QoS), for example measured by the rate
at which the server produces stream data. The rate can be dynamically ad-
justed based on the network conditions. A scheduler controls execution of
tasks, trying to establish the target rate. User requests for streams are cat-
egorized into service classes, and each class is characterized by fixed QoS
bounds. The property we check in this case is that rate adjustments obey the
bounds of the service class. Formula (2) checks that a rate bound is never
exceeded. It assumes the following events: addClass(sc, b) that introduces
a service class sc with the associated rate bound b and a matching event
removeClass; addStream(m, sc) announces the creation of a new stream m in
the service class sc, and the matching completion event closeStream; finally
setRate(m, r) adjusts the target rate r for the stream m.

∀sc[addClass(sc, b), removeClass(sc)].b@addClass(sc, b).

∀m[addStream(m, sc), closeStream(m)].r@setRate(m, r).r < b (2)

4 Checking LCν

In this section, we present an algorithm for on-line checking of a LCν with
respect to a continuously unfolding trace of an execution of the monitored sys-
tem. We begin by briefly reviewing the checking algorithm for LCp from [10].
Then we discuss, using the examples from Section 3, the necessary extensions

9

Sokolsky et al.

to deal with event attributes and dynamic indexing. Finally, we present the
checking algorithm.

4.1 Checking LCp

The syntax of an LCp formula is given by the grammar of Figure 1, without
any quantifiers, and with predicates built using only the function symbol time.
The arity of every primitive event is assumed to be zero. Thus, LCp is the
propositional subset of LCν .

For a given LCp formula f , the checker maintains an acyclic graph that
represents the dependencies between subformulas in the formula. Each node in
the graph corresponds to subformula. A node representing a condition stores
the current value of the condition, and has a temporary variable new used
in the evaluation. A node representing an event stores the time of the most
recent occurrence of that event. Since there is a one-to-one correspondence
between nodes in the graph and subformulas of f , we will use f to denote
the node in the graph as well as the formula, as long as the use is clear from
the context. There is an edge f1 → f2 in the graph if f1 is an immediate
subformula of f2. Nodes that correspond to primitive events are, therefore,
the leaves of the graph. A predicate node p that uses time(E) function has
the incoming edge E → p. Each node f in the graph is assigned a height,
denoted h(f), defined as the number of steps in the longest path from a leaf
in the graph to the node. For each height h
= 0, there is a set Ah of nodes
that recently changed their values; initially all sets are empty.

The direction of edges reflects the order of evaluation of nodes by the
checker, which is done in the bottom-up fashion, driven by occurrences of
events in the trace. Given a model M = 〈T, S, τ, LE〉, the checker evaluates
a given formula f for each state s ∈ S, in the order of states in S, as fol-
lows: First, values of primitive events are processed based on the information
contained in s. If (s, e) ∈ LE for some primitive event e, the node that corre-
sponds to e is updated to record τ(s) and every node f with e → f is added
to Ah(f). Then, the sets Ah are processed in the order of increasing height.
Each node in the current list is re-evaluated using the new values of its prede-
cessor nodes, according to the semantics of the operator. Predicate nodes are
evaluated using the time values stored in the event nodes. If the value of the
current node changes, its successors are added to their respective change sets
and the node is removed from its change set. When all changes are processed,
the values of condition nodes are set to their new values, and the algorithm
considers the next state in the trace.

As an example, consider a propositional version of property (1). Assume
we have a single task with a fixed deadline, say, d = 5. The alarm that we want
the checker to raise is end(time(complete) − time(dispatch) ≤ 5). Figure 4,a
illustrates the graph for this formula. The figure shows the values of the nodes
in the graph for the trace dispatch@2, complete@8. At this point, the values

10

Sokolsky et al.

event nodes

condition nodes

expression nodes

Legend:
end 8

<
F

T

const 5

- 6

dispatch 2complete 8

end 8

<
F

T- 6

dispatch 2complete 8 5

a) b)

time time time time d

Fig. 4. A propositional formula

of the predicate condition changes from true to false (the new value is shown
in the top-right corner and the old value in the bottom-right corner).

4.2 Checking formulas with event attributes

As the first step towards the checking algorithm for LCν , we discuss the subset
of LCν , in which all variables are bound by attribute quantifiers. We extend
the evaluation graph data structure to incorporate event attributes and pred-
icates. A node that represents a primitive event is extended with an array
of variables storing the attributes of the event. When the event occurs, the
values of the attributes are assigned to the respective variables in the array
and all successors of the event node are set for re-evaluation.

A predicate is represented by a subgraph that represents the structure
of the expressions that form the predicate. The leaf nodes in this subgraph
correspond to variables and to time functions. In the graph, these leaf nodes
are replaced by references to the values stored in an event node. That is, there
is an edge e → p whenever p uses time(e). There is an edge e → p if x ∈ fv(p)
and p is within the scope of x@e(X̄). We pictorially represent these edges as
originating from the right value. Figure 4,b shows the graph for the formula
d@dispatch(d).end(time(complete) − time(dispatch(d)) ≤ d).

It remains to handle the case when a primitive event is within the scope of
an attribute quantifier for a different primitive event (for example, x@e1(x).e2(x)).
Such formulas are syntactically transformed into an equivalent formula by
adding new attribute quantifiers and renaming the bound variables. In the
example, the equivalent formula is x@e1(x).y@e2(y).(e2(x)whenx = y). That
is, an occurrence of e2 affects evaluation of the formula if the attributes match.

The checking algorithm itself does not change from the case of LCp.

4.3 Checking full LCν

The main difference in handling the first-order quantifiers of LCν is that the
space needed to check the property can increase and decrease dynamically.
The algorithm will still operate on a graph data structure similar to the pre-
ceding sections, but data stored in the graph nodes would be different. Instead
of storing a single boolean value for conditions or a time stamp for events,

11

Sokolsky et al.

event nodes

condition nodes

expression nodes

Legend:

T F
T

c1
c2

t1 t2 t3

>

4
5

t1
t2

time

setRate

8t3

3
8

t1
t2

r

6t3

1
2

c1
c2

time

addClass 5
9

c1
c2

b

F
T

c1
c2

A

F

A

7
5

c1
c2

time

addStream t3
t2

c1
c2

m2addClass c2

c1,c2

t1,t3
t2

c1
c2

creation edges

update edges

Fig. 5. A first-order formula

the annotation of a node would be a map associating valuations of the free
variables in the respective subformula to a boolean value or a timestamp, as
appropriate for the node type.

Graphs for LCν formulas contain a new kind of graph node, which corre-
sponds to subformulas, in which the main operator is a first-order quantifier
that binds a variable x. Such a node f contains the same value map that a
regular node has. In addition, the node is associated with a map that, for each
valuation of the free variables of the node, gives the current set of values for x.
This set contains the values taken from those occurrences of the construction
event, for which there have been no matching destruction event. We will refer
to such a set as the index set for x. Index sets will determine the domain of
the value mappings in the nodes for the subformulas of f that have x free.

Consider property (2). The graph in Figure 5 shows value maps stored in
the nodes when the violation is found after the evaluation of the trace

addClass(c1, 5)@1, addClass(c2, 9)@2, addStream(t1, c1)@3, setRate(t1, 3)@4,

addStream(t2, c2)@5, setRate(t2, 8)@5, addStream(t3, c1)@7, setRate(t3, 6)@8

The graph has two quantifier nodes. The first node does not have free
variables and thus contains all service class identifiers that are brought by
addClass events. The other quantifier node has the variable sc free, and
thus keeps the set of stream identifiers separately for each service class. Its
child, the relational node, has both sc and m free, and thus its value mapping
is the function of two arguments. Note, however, that some combinations
yield undefined values, because each stream belongs to only one service class.
Nodes that correspond to primitive events store the time of last occurrence and
values of attributes, quantified by attribute quantifiers, for each combination
of values of attributes quantified by first-order quantifiers. Note that the same
primitive event can be used in different contexts in the formula. That is, an
attribute can be quantified by an attribute quantifier in one subformula and
by a first-order quantifier in another subformula. Such situation, represented
in the example by the event addClass, requires us to keep a set of nodes for

12

Sokolsky et al.

the same primitive event e, denoted nodese.

The graph also has additional edges that capture creation and destruction
of index set elements. Creation and destruction edges are handled similar to
the attribute edges, except that each new attribute value is added to an index
set in the target node, rather than trigger the re-evaluation of the target node.
Destruction edges are not shown in Figure 5 to avoid clutter. All edges other
than creation or destruction edges are referred to as update edges.

During evaluation, nodes f that require re-evaluation are recorded in the
sets Ah, separately for each height. To record what valuation I of the free
variables needs to be used in re-evaluation, each set Ah contains pairs (f, I).

To illustrate the evaluation, consider arrivals of the events setRate(t1, 3)@4,
addStream(t2, c2)@5, and setRate(t2, 8)@5. Note that the last two events ar-
rive simultaneously. In the first case, m is a free variable of the node for
setRate and r is the attribute. Therefore, the entry for t1 is updated in the
primitive event node to record the time of arrival and the new value of r,
which becomes 3. The parent of the node, which is the relational node with
height 1, is marked for re-evaluation of all values in the mapping that corre-
sponds to the t1 column. The value for (c2, t1) is undefined, and the value for
(c1, t1) becomes true. When the second event arrives, sc is the free variable
of the primitive event node, and the new value for m and the time of arrival is
recorded for sc = c2. Following the creation edge, t2 is added to the index set
for c2 in the quantifier node, which, in turn, makes entries for t2 in the node
that have m as the free variable, that is, the relational node and the node for
setRate. Then, the last event is processed as described above. The presence
of this last event is important to demonstrate that creation events need to be
processed before any other events in the same state, otherwise the value map
may not yet have the entries to store the new values. Similarly, destruction
events need to be processed after all regular updates are performed.

4.4 Checking algorithm

After giving examples to illustrate different aspects of checking, we are ready
to present the checking algorithm. The algorithm consists of the static and
dynamic phases. The static phase algorithm performs analysis of the formula
structure and produces the graph used in the dynamic phase. The dynamic
phase processes the states of the execution trace one by one and performs
the evaluation on the graph, adding entries into value maps in the nodes as
creation events arrive and removing them as in response to destruction events.

Notation. We will use the following notation to describe the algorithm.
When a node f is using a specific attribute i of a primitive event e, we reflect

this as an edge label: e
i
→f . In an event occurrence e(v̄), the values of its index

attributes define a valuation Ie. Given a valuation I, we often have to extend
its domain to a larger set of variables. We can define multiple extensions that
agree with I, by taking different values for the new variables. Given a node f

13

Sokolsky et al.

and a valuation I, the set of possible extensions of I to the free variables of f

is denoted If (I). For a quantifier node f , nodesf will denote the set of nodes
that contain the free variable bound by f . IndI(f) will denote the index set
for a valuation I. By computeI(f), we will denote the function that updates
the value of a node from the value of its subnodes, with a given valuation of
its free variables I. In other words, compute I(f) is the semantic function of
the subformula f . Finally, valf is the value map stored in the node f .

The static phase. Construction of the graph proceeds by starting at
the main operator of a given formula and proceeding recursively in a depth-
first manner through its subformulas. On the way down into the tree of
subformulas, information about bindings is passed to the nodes on the lower
level. Reaching a leaf of the subformula tree, the algorithm determines, (1) if
the node is a primitive event, which of the attributes are to be treated as index
values and which are to be stored as attributes; (2) if the node is a variable
in a predicate, which event attribute it is bound to. On the way up, the sets
nodesf for each quantifier node f are computed, and heights are assigned to
every node in the graph.

Initialization of nodes. Variables in the nodes that represent values
of the respective subformula need to be initialized as the node is created, or
dynamically as the valuation map is extended by adding a new element to an
index set. The rules for initialization are as follows: event values are initialized
to ⊥, since the event has never happened. Condition nodes are evaluated
according to computeI(f). Initialization is performed in the topological order
so that all predecessors of a node have been already initialized.

The dynamic phase of the checking is given by Algorithm 1, which is
invoked on a given execution trace M = 〈T , S, τ, LE〉. The algorithm processes
each state s ∈ S in the trace once and in the order the states appear in the
trace. Any information that needs to be kept after a state is processed is
stored in the variables associated with nodes in the graph. Because of this,
the processed prefix of the execution trace need not be stored.

When a new state of the trace arrives, the algorithm processes each event
occurrence e in the state as follows. First, each node immediately affected
by e is updated with the values of the attributes of the occurrence. Then,
creation edges of the node are followed to add new index values to index sets
that depend on index attributes of e. After that, update edges are followed
to add the potentially affected nodes to the update sets at the appropriate
heights.

Once all event occurrences are processed, the sets Ah are processed in
the order of increasing height h. At this stage, all index sets are fixed and
processing follows the pattern of the LCp checking algorithm for specific index
values, except that destruction edges are used to mark certain index values
for removal. The actual removal of index values is performed at the last stage
of the state processing, when all checking is completed.

The set D is used to record which quantifier nodes need to have values

14

Sokolsky et al.

Algorithm 1 Procedure check()

for all s ∈ S in the trace order do

D = ∅
for all e(v̄) ∈ LE(s) do

for all f ∈ nodese do

update values stored in f

for all f ′ such that f
i
→f ′ is a creation edge do

for all I ∈ If ′(Ie) do

if vi �∈ IndI(f
′) then

add vi to IndI(f
′)

initialize nodesf ′ at I

for all f ′ such that f → f ′ is an update edge do

for all I ∈ If ′(I) do

add (f ′, idxe) to Ah(f ′)

for all h = 0, . . . , hmax, where hmax is the maximum height of a node do

for all (f, I) ∈ Ah do

for all If ∈ If (I) do

valt := computeIf
(f)

if valt �= valf (If) then

valf (If) := valt
for all f → f ′

do

add (f ′, If) to Ah(f ′)

if f → f ′ is a destruction edge then

add (f ′, If) to D

for all (f, I) ∈ D do

for all I ′ ∈ If (I) do

remove I(x) from IndI′(f)
for all f ′ ∈ nodesf do

remove valf ′(I ′)

removed from their index sets as a result of destruction events that happened
in the course of evaluation of the current state. Let (f, I) be an element of
D. The set of valuations for which the destruction event applies is If(I). If x

is the variable that f binds, then I(x) is the value that needs to be removed
from every index set IndI′(f), I ′ ∈ If(I).

Complexity. We first address the question of space needed for checking
of a given formula f over a trace S when the checker has reached s ∈ S.
As in the propositional case, states of S are not stored directly. However,
the amount of information stored in the graph depends on the number of
creation events in the trace. This amount of information is the total number
of entries in the value maps of the nodes. Each entry has a constant size
(modulo representation of time values). Consider a node in the graph with
free variables x1, . . . , xn. The size of the value map stored in the node is
proportional to the product of the index sets Ix1

, . . . , Ixn
, where Ixi

is the
largest of the index sets stored in the quantifier node where xi is bound. The
size of each such index set is proportional to |S|, which is measured as the

15

Sokolsky et al.

number of states in S, whose timestamps do not exceed τ(s). The number
of free variables in a node is bounded by the quantifier nesting depth k of f .
Stated in terms of the graph representation of f , it is the maximum number
of quantifier nodes along the path from any node in the graph to the node for
f . Although k can be proportional to |f | (measured in the number of nodes
in the graph), practically it is much smaller. Finally, the number of nodes in
the graph is exactly |f |. As a result, the required space is O(|f | · |S|k).

A similar argument allows us to establish the time complexity of the al-
gorithm. Here we note that updates to the values of nodes are performed in
the order of increasing node heights, and thus each value in the value map
stored within a node can be changed exactly once during processing of a state.
Therefore, the total number of entries into the sets Ah cannot exceed the size
of the value maps shown above. Processing of each entry takes constant time.

5 Conclusions

We presented a logic for specifying dynamic properties of systems for run-
time monitoring and checking. Quantifiers of the logic allow us to bind values
of attributes in observed events to be bound to variables in the formulas.
Depending on the interpretation of the event attributes, the values can be
used as data values for evaluation of predicates or as indices into dynamically
changing index sets. This feature allows us to specify and check properties of
systems comprised of dynamically created and destroyed objects.

Future work. We are implementing the checking algorithm for LCν in the
MaC toolset. MEDL, the language of MaC, is a specification language based
on LCp. We will extend MEDL with the features of LCν . In this extension, we
will investigate a balance between expressive power and efficiency of checking.
The complexity of LCν checking is exponential in the quantifier nesting depth,
while most properties we have come across in practice exhibit a very low
nesting depth. We will look for natural ways of restricting the nesting depth,
and also make specifications easier to write.

Acknowledgments. The motivation for LCν was gained in a case study
performed within the DARPA PCA program. We wish to thank Mohammed
Amduka and Michael Junod from the Lockheed Martin Advanced Technology
Lab for insightful discussions of the system requirements.

References

[1] M. Abadi. The power of temporal proofs. Theoretical Computer Science,
65(1):35–83, 1989.

[2] R. Alur and T.A. Henzinger. A really temporal logic. Journal of the ACM,
41(1):181–204, January 1994.

16

Sokolsky et al.

[3] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime
verification. In Proceedings of 5th International Conference on Verification,
Model Checking and Abstract Interpretation (VMCAI 2004), volume 2937 of
LNCS, pages 44–57, January 2004.

[4] N. Bjørner, A. Browne, M. Colón, B. Finkbeiner, Z. Manna, H. Sipma, and
T. E. Uribe. Verifying temporal properties of reactive systems: A step tutorial.
Formal Methods in System Design, 16(3):227–270, 2000.

[5] S.M. Cho, H.K. Kim, S.D. Cha, and D.H. Bae. A semantics of sequence
diagrams. Information Processing Letters, 84:125–130, 2002.

[6] D. Distefano, J.-P. Katoen, and A. Rensink. On a temporal logic for object-
based systems. In Formal Methods for Open Object-Based Distributed Systems
(FMOODS-2K), pages 305–326, 2004.

[7] D. Distefano, A. Rensink, and J.-P. Katoen. Model checking birth and death.
In Foundations of Information Technology in the Era of Network and Mobile
Computing, volume 223 of IFIP Conference Proceedings, pages 435–447, 2002.

[8] K. Havelund and G. Rosu. Monitoring Java programs with JavaPathExplorer.
In Proceedings of the Workshop on Runtime Verification, volume 55 of
Electronic Notes in Theoretical Computer Science. Elsevier Publishing, 2001.

[9] T.A. Henzinger. Half-order modal logic: How to prove real-time properties. In
Proceedings of PODC ’90, pages 281–296, 1990.

[10] M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan. Java-MaC: a
run-time assurance approach for Java programs. Formal Methods in Systems
Design, 24(2):129–155, March 2004.

[11] I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M.Viswanathan. Runtime
assurance based on formal specifications. In Proceedings of the Int. Conf. on
Parallel and Distributed Processing Techniques and Applications - PDPTA’99,
June 1999.

[12] A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal
logics. Journal of the ACM, 32(3):733–749, 1985.

[13] A.P Sistla and O. Wolfson. Temporal triggers in active databases. IEEE
Transactions on Knowledge and Data Engineering, 7(3), June 1995.

[14] E. Yahav, T. Reps, M. Sagiv, and R. Wilhelm. Verifying temporal heap
properties specified via evolution logic. In Proc. of the 12th European
Symposium on Programming, ESOP 2003, volume 2618 of LNCS, April 2003.

17

	University of Pennsylvania
	ScholarlyCommons
	7-12-2005

	Run-Time Checking of Dynamic Properties
	Oleg Sokolsky
	Usa Sammapun
	Insup Lee
	Jesung Kim

