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Distributed-Code Generation from Hybrid Systems Models
for Time-delayed Multirate Systems∗
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{anandm,sfischme,jesung,lee}@saul.cis.upenn.edu

ABSTRACT
Hybrid systems are an appropriate formalism to model embedded
systems as they capture the theme of continuous dynamics with
discrete control. A simple extension, a network of communicating
hybrid automata, allows for modeling distributed embedded sys-
tems. Although it is possible to generate code from such models,
it is difficult to provide formal guarantees in the code with respect
to the model. One of the reasons for this is that, the model is set in
continuous time and concurrent execution with instantaneous com-
munication, whereas the generated code is set in discrete time with
delayed communication. This can introduce semantic differences
between the model and the code such as missed transitions, faulty
transitions, and altered continuous behavior. The goal of faithful
code generation is to minimize these differences.

In this paper, we propose a relaxed criteria of faithfulness, coined
relative faithful implementation. Based on this criteria, we propose
dynamically adjusting the guard at runtime using estimates of er-
rors for preventing faulty transitions. We also identify a sufficient
condition to ensure no missed transitions in the code.

Categories and Subject Descriptors: D.2.4 [Software/Program
Verification]: Reliability.

General Terms: Reliability, Design, Verification.

Keywords: Hybrid Systems, Distributed Systems.

1. INTRODUCTION
Hybrid systems are an appropriate modeling paradigm for em-

bedded control software, because it can be used to specify contin-
uous change and discrete transition of system states [1, 17]. The
benefits of precise modeling can be enhanced if code is generated
automatically while maintaining a correspondence with the model.

Since computer systems are discrete, code generation from hy-
brid systems models requires a discretized hybrid systems model.
Such a model uses a designer-specified rate by which the contin-
uous state evolves. Since a single processor executes discretely,
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concurrency in the model is broken on several processors (either
on a single system or multiple systems).

Discretization affects switching. In the discretized code, transi-
tions can only occur at the defined rate, i.e., the sampling time. If a
transition in the model is only enabled between the sampling times,
then it will be missed, called missed transition, and the code will
behave differently from the model. Example 1 below illustrates
such a missed transition.

EXAMPLE 1. The system comprises two communicating hybrid
automata A0 and A1. A0 executes every 0.0002s and A1 every
0.0003s. The communication delay between them, denoted by φ12,
equals 0.0001s and PA denotes the state of the automaton. The
following execution trace shows that this discretization leads to a
missed transition q2 inA1. In the trace, we use x(Ai) to denote the
local estimate of x at Ai. 2

t x(A0) PA0
y(A1) x(A1) PA1

0.0002 0.0004 q0 0.0000 0.0000 q1

0.0003 0.0004 q0 0.0003 0.0004 q1

0.0004 0.0008 q0 0.0003 0.0004 q1

0.0006 0.0012 q0 0.0006 0.0008 q1

This can be prevented, if the rate is high enough compared to the
enabled interval of the guard [3]. On the other hand, the rate must
be low enough to provide sufficient computing time on the target
platform between each execution.

G2 : y > 0.0005

q0 q2

x > 0

A0

r1 = 0.0002

r2 = 0.0003

q1

A1

φ12 = 0.0001

ẋ = 2 ẏ = 1 ẏ = 1

G1 : x ∈ [0.0005, 0.0007]

y < 0.0007y < 0.001

Figure 1: An example for missed transition.

In a discretized system, each component will be assigned an in-
dividual rate resulting in a multirate system comprising of multiple,
different rates. Difference in rates can introduce faulty transitions.
A faulty transition is an invalid change of system state due to an
incomplete snapshot of the system’s state. The transition would be
disabled, if the snapshot were accurate. For instance, Example 1,
if G1 is changed to x ∈ [0.0005, 0.0008], then A1 will transit to
q2 at time 0.0006. This transition is faulty, since at that instant
x = 0.0012 and the guard should not be enabled.

Problem Statement. In this paper, we consider the problem of
faithful implementation of hybrid-systems models with the follow-
ing assumptions: (1) We consider a system of rectangular linear



hybrid automata models in which the dependency of different au-
tomata is either through dynamics or through switching and the
dependency graphs are acyclic, (2) We consider a distributed im-
plementation of the different agents which may have different sam-
pling rates and (3) The system is also assumed to be affected by
communication delays that could be arbitrary but bounded. Given
such a model, the focus of this paper is to address faulty transitions,
missed transitions, and identify sufficient conditions for preventing
them.

Proposed Approach. In [14], we have proposed a scheme to
prevent faulty transitions by shrinking the guard set to account for
the errors due to mixed sampling times. However, introducing such
a margin into the guard in turn increases the chances of a missed
transition, since it reduces the time interval during which a tran-
sition must be taken. We mitigate this problem in this paper by
proposing a runtime technique that extends on our previous ap-
proach. The idea is that some kinds of errors, e.g., communica-
tion delay between distributed components, are better analyzed at
runtime as they depend on current dynamics. By instrumenting at
runtime, we can avoid a pessimistic decision to avoid a faulty tran-
sition. Our scheme is based on the premise that the communication
delay can be bounded. To show feasibility, we present a possible
configuration of time-deterministic distributed system in Section 4.

Related work. Commercial modeling tools such as SIMULINK

also support code generation and address the effect of errors in the
code. However, their concerns are largely limited to numerical er-
rors occurring each step during simulation, and the effect of such
errors on to discrete behavior is not addressed rigorously. Syn-
chronous languages for reactive systems, such as STATECHARTS [12],
ESTEREL [6], and LUSTRE [11], also support code generation.
However, they do not support hybrid systems modeling. SHIFT [7]
is a language for hybrid automata that also also supports code gen-
eration, but the focus is on dynamic networks. Model-based devel-
opment of embedded systems is also promoted by other projects
with orthogonal concerns: Ptolemy supports integration of het-
erogeneous models of computation [8] and GME supports meta-
modeling for development of domain-specific modeling languages
[15].

Code generation from hybrid models was introduced with fo-
cus on single-thread execution in [3]. This was extended to multi-
threaded models accounting for faulty transitions in [14] and uni-
rate distributed systems with no delays in [4]. To guarantee value
and time determinism in the discretized code, we use an E ma-
chine approach [13] with the concept of logical execution time in
our on-going prototype. However, we plan to generate E code for
the E machine directly from the CHARON model without using the
Giotto specification language.

The remainder of the work is structured as follows: Section 2
introduces the system model. Section 3 presents our approach of
how to prevent missed and faulty transitions. Section 4 provides an
overview of the implementation and Section 5 describes the current
and future work.

2. SYSTEM MODEL
In this framework, we assume that there is a network of hybrid

automata (called agents) communicating via a set of shared vari-
ables. We denote a single agent by A = (A, SV ) where A is the
model for the agent and SV is the set of shared variables. A system
of communicating hybrid agents is a tuple C = 〈A0, . . . ,An〉.

DEFINITION 1. (DCHA) Given a system of communicating hy-

brid agents C, and a discrete time domain LT = {lt0, lt1, . . .}
where lti ∈ Q+ and ∀i, lti+1 > lti, the discretized system of com-
municating agents (DCHA) is given by D = 〈(A, SV, LT )0, . . . ,
(A, SV, LT )n〉. 2

Note that the DCHA is the discretization of the continuous model
that is implemented on an actual platform. The guarantees for faith-
ful implementation are given with respect to this model. In [14], the
authors provide a rigorous definition of system of communicating
agents and their semantics.

When the agents of the discretized model is mapped to real-time
tasks for execution, each agent is assigned a period. This period is
normally equal to the frequency of evaluation for an agent.

DEFINITION 2. (Code) The code, implementing a DCHAD de-
noted byK, is given by the tupleK = 〈(A,SV, LT, clk, h, σ)0, . . . ,
(A, SV, LT, clk, h, σ)n〉, where clk represents the physical time,
σ represent the local copy of the shared variables, h is the fre-
quency of evaluation. 2

The frequency h reflects the logical time between evaluations,
i.e., (lti+1 − lti). Typically, this is constant for any agent and
is equal to the period of the real-time task on which the agent
is mapped. In a multirate system, different agents have different
rates. This version abstracts away several details, e.g., the set of
synchronization mechanisms, the collection of subroutines imple-
menting the DCHA, scheduling details, and exact mapping of code
into memory. In [5], we provide a descriptive exposition of this.

Finally, we denote the logical communication time between agents
Ai and Aj by φ(i, j) and a time-delayed code implementation of
D by (K, φ).

3. VALIDATION OF GENERATED CODE
To provide a faithful implementation, we have to guarantee the

absence of faulty and missed transitions [4]. The implementation
should also be independent of the scheduling. However, in our sys-
tem, delays can vary for each agent and also between single execu-
tions of the same agent. Such behavior introduces errors resulting
in incorrect behavior. For example, in one mode, an agent could
depend on x that arrives 0.0001s late and in another mode, it could
depend on y that arrives 0.0002s later. Therefore, we relax the
criteria for a faithful implementation by requiring that code enters
the state of the model no later than the maximum possible delay.
Formally, we can define,

DEFINITION 3. (Relative Faithful Implementation) Let V C be
the set of all variables and αx be the maximum bound on the error
of a variable x. Given a trace of states of the code K for an agent
Aj , 〈q0, q1, . . .〉, at physical time-stamps 〈clk0, clk1, . . .〉, if, ∀clk,

1. ∀x ∈ V C, |xD − xK| < αx, where xK and xD represent
the value of variable in the code and the model respectively.

2. ∀j, ∃qD, qK = qD , (ltD − ltK) < φj + ϕ where qK is the
state of the code at logical time ltK, at physical time clk,
qD is the projection of the state of the model onto the code
for Aj at logical time ltD, φj = maxi φ(i, j) and ϕ is the
maximum skew due to different rates of updates.

then, code forAj is said to be a relative faithful implementation. If
∀j, the code for Aj is a relative faithful implementation, then K is
a relative faithful implementation of D. 2

Condition 1 states that the error in continuous variables be bounded
and Condition 2 states that the delay in timing of transitions be
bounded. We can now provide approaches that safeguard against
faulty and missed transitions and thus allow for a relative faithful
implementation of a hybrid-systems model.



3.1 Preventing Faulty Transitions
A faulty transition occurs either because the transition was taken

on the basis of an older value of the variable or because of numeri-
cal errors in the variables.

Static instrumentation was introduced in [14] as an approach to
prevent faulty transitions. The idea there was to instrument the
guards and the invariants with maximum possible error in variables
and switch conservatively.

DEFINITION 4. (Static Instrumentation) Let p be the state of
agentA withEA(p) being the set of discrete transitions, IA(p) the
set of invariants in that state, and GA(e), e ∈ EA(p) the set of
guards. Let ∀x, δp,x give the upper bound on the numerical and
timing errors. If l and u denote lower and upper bounds respec-
tively, then,

1. ∀p,∀I ∈ IA(p),
l(Ix)← l(Ix) + δp,x, u(Ix)← u(Ix)− δp,x.

2. ∀p,∀G ∈ GA(e),
l(Gx)← l(Gx) + δp,x, u(Gx)← u(Gx)− δp,x.

where Gx, Ix denote the projection of the guard and invari-
ant on the variable x in agent A in state p. 2

Once the guards and the invariants have been instrumented, the
code generated fromD can be assured of no faulty transitions. This
is true because the instrumented guard remains disabled for the du-
ration of synchronization and possible numerical errors. For the
proof of this claim, we refer the reader to [14]. Though guaran-
tees can be given statically with this scheme, since the guard and
invariant sets are shrunk, the probability of not taking a transition
increases. Yet another disadvantage is that it is not always possible
to determine this error bound beforehand as with most differential
equations, it is only possible to get a local estimate of error which
is only available at runtime.

The two factors contributing to the error leading to faulty transi-
tions are (1) Numerical errors (e.g., round-off, truncation) and (2)
Timing related errors. While the numerical errors are static, the
timing errors change over time as they comprise of communication
delay φ which is bounded and the skew due to different frequen-
cies of update that is dynamic. If hj is the agent’s Aj execution
frequency and depends on variable x updated by agentAi with fre-
quency hi, and φ(i, j) is a fixed constant, then, the maximum skew

ϕmax is given by ϕ(i, j)max = maxn∈[1..N]

“

npj −
j

npj−φ

pi

k

pi

”

where N =
LCM(pi ,pj)

pj
. Now, if we instrument the guard tak-

ing this into account at runtime, we can improve over the static
approach. Another advantage of a runtime approach is that we
can have a value-specific simplification leading to less pessimistic
bounds. For example, if ẋ > 0, x is an increasing function of time
and hence the update for xwill be greater than the current estimate.
Therefore, if we are evaluating a condition such as x > 5, we will
not have to instrument it for timing errors.

DEFINITION 5. (Dynamic Instrumentation) Let p be a state of
agent Aj withEAj

(p) being the set of discrete transitions, IAj
(p)

the set of invariants in that state, and GAj
(e), e ∈ EAj

the set
of guards. Let ∀x, βp,x(t), γp,x(t), t ∈ T = [lt, lt + d] give the
bound in T due to timing and numerical errors, respectively. If I is
an indicator function, l and u denote the lower and upper bounds
respectively, and the condition on derivatives holds in T ,then,

1. ∀p,∀I ∈ IAj
(p),

l(Ix)← l(Ix) + I(ẋ ≥ 0, t ∈ T )βp,x(t) + γp,x(t)
u(Ix)← u(Ix)− I(ẋ ≤ 0, t ∈ T )βp,x(t)− γp,x(t)

2. ∀p,∀G ∈ GAj
(e),

l(Gx)← l(Gx) + I(ẋ ≥ 0, t ∈ T )βp,x(t) + γp,x(t)
u(Gx)← u(Gx)− I(ẋ ≤ 0, t ∈ T )βp,x(t)− γp,x(t)

where Gx, Ix denote the projection of the guard and invari-
ant on the variable x in agent A in state p. 2

Note that with dynamic instrumentation, we have to calculate the
error that would happen in the future, i.e., the error that would be
caused when a particular value is read.

EXAMPLE 2. Consider the case of Example 1 with G1 : x ∈
[0.0001, 0.001]. If we statically instrument, we have to change the
guard G1 to x ∈ [0.0005, 0.0006] because the maximum error
αx = 2(ϕ(1, 2)max + φ(1, 2)) = 2(0.0001 + 0.0001) = 0.0004
and then we can have a run as,

t x PA0
y x(A1) PA1

0.0002 0.0004 q0 0.0000 0.0000 q1

0.0003 0.0006 q0 0.0003 0.0004 q1

0.0004 0.0008 q0 0.0003 0.0004 q1

0.0006 0.0012 p0 0.0006 0.0008 q1

The transition to q2 is missed at time t = 0.0006. If we had used
dynamic instrumentation, then, the guard would have been instru-
mented to x ∈ [0.0003, 0.0008], since the error αx = 2(ϕ(1, 2) +
φ(1, 2)) = 2(0+0.0001) = 0.0002 and the transition to q2 would
have been taken. 2

The theorem below formally states that dynamic instrumentation
prevents faulty transitions.

THEOREM 1. Let the code K of the model D be implemented
on a distributed platform. For every agent Aj , let p be the current
state with IAj

(p) the set of invariants in that state, and GAj
(e)

the set of guards. If ∀G ∈ GAj
(e) that evaluate to true, G is

dynamically instrumented with βp,x(t) and γp,x(t) for all shared
variables x, then, there will be no faulty transitions. 2

The timing errors can be computed in practice, by delegating this
responsibility to different entities such as the agent that writes the
shared variable or the agent that reads with different advantages.

3.2 Preventing Missed Transitions
Missed transitions are transitions that are enabled in the model

but not taken in the code. They occur either because the guard is
not evaluated sufficiently or scheduling affected the order of evalu-
ation. In general, a transition will not be missed, if it stays enabled
long enough to be detected. The theorem below gives a sufficient
condition to prevent missed transitions.

THEOREM 2. Let the code K of the model D be implemented
on a distributed platform, hi and hj be the frequency of sampling
inAi and Aj respectively, and the instrumented guard set G(p) ⊆
I(p) be such that an active transition is enabled in state p. If G(p)
and I(p) overlap by Ω = 2hj +

P

(k1,k2)∈E
(2hk1

+ φ(k1, k2) +

ϕ(k1, k2)max), where the summation is over all frequencies along
the longest path in the switching dependency graph E of G, and
ϕ(k1, k2) represents the maximum skew at agent Ak2

due to Ak1
,

then, the transition will be detected and will not be missed if they
are taken as soon as enabled.

PROOF. (sketch) First consider the case where the transitions
are dependent on independent updates (such as sensor readings)
but not updates from other agents. In the code, evaluation of the
guard condition might be scheduled at some time jh, j ∈ Z+ but



a guard may be enabled in the model immediately after that i.e., at
time jh+ε, ε > 0. This will be detected in the code during the next
evaluation which may be scheduled as late as (j + 2)h − η. Since
we assume that the transition will be taken as soon as detected, this
transition will be taken at (j + 2)h − η. Letting η, ε → 0, in the
worst case, the instrumented guard and invariant should overlap by
at least 2h to avoid missing the transition.

Now consider the general case where the transition may depend
on updates from other agents. Here, an update may be delayed by
the communication (φ) and the skew due to different rates (ψ) in
addition to 2h at each agent due to sampling. By observing that
this delay could be as large as sum of delays along the longest path
in the switching dependency graph, we get the desired result. 2

The condition for overlap can be checked statically starting from
the node with least dependency and iterating until the most depen-
dent. Theorems 1 and 2 provide a sufficient condition to ensure
a relative faithful implementation that we record in the following
corollary.

COROLLARY 1. Let the codeK of the modelD be implemented
on a distributed platform. If, (1) in the code for every agent Ai,
every dynamically instrumented G ∈ GAj

and corresponding in-
variant I satisfy the condition of overlap in Theorem 2, and (2) all
variables in K have bounded error, then, K is a relative faithful
implementation of D. 2

4. IMPLEMENTATION
We use CHARON [2] to implement ideas introduced in this pa-

per. CHARON allows for modular specification of interacting hy-
brid systems and supports automatic code generation [3]. Once
the model is specified in CHARON, the code generator for an agent
takes a sampling period as an input and produces code that approx-
imates the continuous behavior of the model. During this process,
the guards and invariants are statically instrumented for numeri-
cal errors and the condition of overlap in Theorem 2 is used to
check whether the code can be guaranteed against missed transi-
tions. The responsibility of dynamic instrumentation to ensure no
faulty transitions is delegated to the runtime environment. Specifi-
cally, the runtime environment, (1) ensures that the updates are de-
livered time deterministically, and, (2) provides the values of delay
(φ) and skew (ψ) for dynamic instrumentation.

As an underlying infrastructure of the distributed real-time sys-
tem in our ongoing implementation, we use an existing system [16,
10, 9], which supports the concept of logical execution time (LET)
[13]. This system provides time and value determinism across dis-
tributed nodes and is therefore apt to implement distributed CHARON

models with constant and guaranteed delays at the cost of run-
time performance. The worst-case execution time of an agent and
the worst-case communication time together define the LET of the
agent and thus its highest execution rate. This allows us to run each
agent on a different node in a distributed system while it is obliv-
ious of the distribution. If required, all the modified values can
be communicated after the agent finishes execution and before the
end of the LET. The limiting factor here is the shared communi-
cation channel between nodes. Given the agents’ frequencies and
their node assignment, we can calculate the required communica-
tion, build a communication schedule, and validate that there are
no collisions on the network. In [16], the authors describe how this
can be done with tasks and the algorithms and tools can be reused
for this implementation.

5. CONCLUSIONS
Hybrid systems based code generation is a promising yet chal-

lenging approach for producing reliable embedded software. Pro-
viding formal guarantees is difficult due to the semantic differences
between the model and the code arising as a result of discretization
and communication delays.

In this paper, we have presented an approach to guarantee faith-
ful switching semantics that involves preventing missed and faulty
transitions. In contrast to related and prior work, we have defined
a notion of relative faithful implementation for systems with mul-
tiple rates of evolution. Based on this notion, we have proposed a
runtime instrumentation technique to prevent faulty transitions and
identified sufficient conditions to prevent missed transitions in the
generated code. We have also sketched an implementation to show
how timing delays can be bounded and accounted for, in the model.

In the future, we will consider fully integrating the infrastructure
into the CHARON development environment and provide compre-
hensive techniques to detect missed transitions in the code at run-
time.
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