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Variable Nanoparticle-Cell Adhesion Strength Regulates Cellular Uptake

Abstract
In receptor-mediated endocytosis, cells exercise biochemical control over the mechanics of adhesion to engulf
foreign particles, featuring a variable adhesion strength. Here we present a thermodynamic model with which
we elucidate that the variable adhesion strength critically governs the cellular uptake, yielding an uptake phase
diagram in the space of ligand density and particle size. We identify from the diagram an endocytosed phase
with markedly high uptake, encompassed by a lower and an upper phase boundary that are set, respectively, by
the enthalpic and entropic limits of the adhesion strength. The phase diagram may provide useful guidance to
the rational design of nanoparticle-based therapeutic and diagnostic agents.
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In receptor-mediated endocytosis, cells exercise biochemical control over the mechanics of adhesion to

engulf foreign particles, featuring a variable adhesion strength. Here we present a thermodynamic model

with which we elucidate that the variable adhesion strength critically governs the cellular uptake, yielding

an uptake phase diagram in the space of ligand density and particle size. We identify from the diagram an

endocytosed phase with markedly high uptake, encompassed by a lower and an upper phase boundary that

are set, respectively, by the enthalpic and entropic limits of the adhesion strength. The phase diagram may

provide useful guidance to the rational design of nanoparticle-based therapeutic and diagnostic agents.
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Inspired by viral invasion of cells [1–3], significant
efforts have been recently devoted to the design of syn-
thetic nanoparticles (NPs) as drug carriers and/or imaging
contrast agents [4–7]. The NPs are surface coated with
ligands (e.g., antibody, peptide, and aptamer) that specifi-
cally target surface proteins (receptors) of cancer cells,
thereby enhancing therapeutic efficacy and mitigating ad-
verse side effects. Though advanced nanotechnology al-
lows precise control of size, shape, and ligand density of
NPs, how these design parameters interrelatedly affect NP-
cell adhesion strength and hence the cellular uptake of NPs
remains less understood. Experiments in vitro showed that
the uptake kinetics is strongly dependent on the particle
size and shape [8–11]. Analytical models [2,12,13] con-
cerning single NP endocytosis elegantly derived that the
endocytic time minimizes at an optimal particle radius of
�25 nm, which appears to agree well with experiments.
However, the optimal size of the minimal endocytic time
may not necessarily correlate to that of the highest uptake
rate since the kinetics of simultaneous endocytosis of many
NPs might be considerably different from the single-NP
models. Statistical thermodynamic models [14,15] shed
significant light on the underlying mechanisms of cellular
uptake. However, effects of some important design pa-
rameters of NPs such as particle size and ligand density
appeared not to be the focus of these studies. Hence, it
remains unclear what parameter space controls cellular
uptake. Identifying the controlling parameter space of
NP-cell adhesion is critically important not only for under-
standing the evolutionary design of viruses, but also for
engineering NP-based therapeutic and diagnostic agents
and for assessing the toxicity of NPs.

In this Letter, we develop a thermodynamic model with
which we elaborate that the adhesion strength between NPs

and the cell is thermodynamically controlled and biochemi-
cally regulated. The variable adhesion strength leads to an
interrelated effect of particle size and ligand density on the
cellular uptake, featuring an uptake phase diagram in the
two-parameter space. Through thermodynamic analysis,
we identify from the diagram three characteristic phases:
an endocytosed phase with high uptake of a couple of
thousand, a ligand-shortage phase, and a receptor-shortage
phase with vanishing uptake. We reveal that the upper and
lower boundaries are, respectively, set by the entropic and
enthalpic limits of the adhesion strength. The phase diagram
offers a first-hand design map for bioengineering of NPs.
Our thermodynamic model concerns a cell immersed in

a solution with dispersed NPs of bulk density ’. We
assume that the receptors of an initial surface density �0

are diffusible within the membrane plane. The cross-
sectional area of the receptors is A0, and hereafter used
as the unit area. The NPs are assumed to be spherical and
uniformly coated with immobile ligands with a surface
density �g. For NPs of radius R, L ¼ bK�gc represents
the maximal possible number of receptors accessible to
each NP, where K ¼ 4�R2 is the surface area and the
brackets denote taking the floor of the enclosed variable.
We assume that at thermodynamic equilibrium N NPs
adhere to the membrane with different degrees of wrapping
(see Fig. 1). We characterize the degree of wrapping by the
fraction of wrapped area, � � k=K 2 ð0; 1�, where k 2
ð0; K� is the wrapped area. We denote by nkl the number of
NPs, each of which is wrapped by l receptors with a
wrapped area k. A double sum over k and l quantifies the
total number of adherent NPs:

N ¼ XK
k¼1

Xlk
l¼1

nkl; (1)
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where lk ¼ bk�gc. This two-dimensional (in k and l dimen-

sions) wrapping-size distribution function is different from
previous models [2,12,13,15–18] in that the receptor den-
sity in NP-membrane bound regions depends on the degree
of wrapping. For convenience, we hereafter denote the
double summation appeared in Eq. (1) by the symbol

P
2.

The adherent NPs partition the membrane of a total areaM
into planar and curved regions. The total bound (curved)
membrane area is Mb ¼

P
2knkl, leaving the planar mem-

brane area Mf ¼ M�Mb. Conservation of receptors

yields

M�0 ¼ Mf�f þ
X
2

lnkl; (2)

where �f is the receptor density in the planar membrane

region. Corresponding to the wrapping-size distribution
nkl, a system free energy functional can be written as

WðnklÞ ¼ Mf½�f ln�f þ ð1� �fÞ lnð1� �fÞ�
þX

2

knkl�g½ð�klÞ � lnð�klÞ þ ð1� �klÞ

� lnð1� �klÞ� þ
X
2

nkl½lnðnkl=MÞ � 1�

� N ln’� �
X
2

lnkl þ
X
2

nklwk; (3)

where �kl ¼ l=lk. The first two terms in Eq. (3) are the
translational entropies of the bound and free receptors,
respectively. The third term accounts for the configurational
entropy of the 2D mixture of wrapped NPs [15]. The term
�N ln’ accounts for the enthalpy change by taking N NPs
out of the solution and adhering to the membrane. The term
��

P
2lnkl represents the total binding energy,where � is the

binding energy of a ligand-receptor pair. The last term sums
up three membrane deformation energies, i.e., wk � Ck þ
�k þ�k, where Ck and �k are, respectively, the bending
and stretching energies stored in the membrane segment
adhering to the NP, and�k is the deformation energy stored
in the strongly curved membrane detaching from the NP-
membrane contact [19]. We note that Ck ¼ 8��� is linear
in k (or exchangeably �) and �k ¼ k�� is quadratic in k,
where � is the membrane bending rigidity with units of

energy and � is the membrane tension. The energy �k is
nonlinear in k and vanishes at� ¼ 0 and� ¼ 1, resembling
an effective capillary energy. Compared to the previous
models [14,15,17], the free energy functional treats
wrapping-size distribution as a two-dimensional function
and introduces ligand density as an additional model pa-
rameter, which facilitates the study of interrelated effects of
particle size and ligand density.
Minimizing the free energy functional with respect to its

independent variables nkl yields

nkl ¼ M’ek�kl�wk ; (4)

where �kl is naturally defined as the adhesion strength

�klð�g;�fÞ ¼ �ðl=kÞ þ ðl=kÞ ln�f þ ð1� l=kÞ lnð1� �fÞ
� �g½�kl lnð�klÞ þ ð1� �klÞ lnð1� �klÞ�:

(5)

Taking �g as a prescribed parameter, �kl and hence nkl can

be fully determined provided that �f is known. A simple

bisection searching scheme is efficient to find �f that

satisfies conservations of membrane area and of the recep-
tors. The cellular uptake of our interest is the sum over all
the possible l 2 ð0; LÞ: nK ¼ P

lnKl.
Equation (4) shows that NP wrapping size follows a

simple Boltzmann distribution with the characteristic en-
ergy �ekl ¼ k�kl � wk. This simple expression manifests
that NP wrapping is driven by adhesion but penalized by
membrane deformation. One notes that the last two terms
of the adhesion strength are negligibly small as compared
to the first two terms, yielding

�klð�g;�fÞ � ��kl�g þ �kl�g ln�f: (6)

The first term in Eq. (6) represents the enthalpic compo-
nent of adhesion strength that locally amounts to the
wrapping sites. Whereas the second term represents the
entropic penalty that varies with the global distribution of
receptors.
From Eq. (4) one identifies the limiting condition under

which the cellular uptake vanishes: �eKl ¼ 0 for all l.
Corresponding to the decomposition of the adhesion
strength in Eq. (6), the limiting condition can be ap-
proached at critically low enthalpic contribution or large
entropic penalty. If neglecting the entropic penalty but
considering the local energy balance of a fully wrapped
NP, endocytosis would not occur provided that the maxi-
mal possible enthalpic adhesion strength ð�KlÞmax � ��g is

still insufficient to overcome the membrane deformation
cost. The extreme condition yields a lower bound of ligand
density

�g;min ¼ 1

�

�
�þ 2�

R2

�
(7)

at fixed R, and a lower bound of particle radius

Rmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�=ð�g�� �Þ

q
(8)

FIG. 1 (color online). Schematic of three possible associations
of NPs to the lipid membrane: suspended in solution, partially
wrapped with different degrees of wrapping, and endocytosed.
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at fixed �g. Below the lower bounds, cellular uptake van-

ishes because the NPs are short of ligands (�g is too small).

This regime is noted as ‘‘ligand-shortage.’’
On the other hand, at critically large ligand density or

particle size, the receptor density (�f) in the planar mem-

brane region reaches an entropic limit at which adhesion
becomes insufficient to overcome membrane deformation
cost. The entropic limit gives rise to an upper bound
beyond which the cellular uptake vanishes, a regime noted
as ‘‘receptor shortage.’’ We resort below to numerical
simulations to determining the upper boundary.

In our analysis presented below, we use the thermal
energy (kBT) as the unit for all the energy quantities. Our
choice of the physical constants is guided by the existing
experimental data or literature whenever possible. Unless
otherwise explicitly mentioned, we choose A0 ¼ 225 nm2,
� ¼ 20 [20], �0 ¼ 0:05 [21,22], � ¼ 20, � ¼ 0:225 [23]
(0.001 kBT=nm

2), M ¼ 3:14� 106 (corresponding to a
membrane area of 10 �m cell), and ’ ¼ 10�5. All the
values without specified units are in reduced units. We
systematically computed the cellular uptake as a function
of particle radius R and ligand density �g, which allows us

to construct a phase diagram on the R� �g plane, as shown

in Fig. 2. In the phase diagram, three characteristic regions
separated by two phase transition boundaries (dashed and
dash-dotted lines) can be identified. Encompassed by the
transition boundaries, region II is of markedly high cellular
uptake, and therefore noted as the endocytosed phase. In
both regions I and III, the cellular uptake vanishes; we
denote these two regions, respectively, as ‘‘ligand-shortage
phase’’ and ‘‘receptor-shortage phase’’ for the above-
mentioned reasons. The lower transition boundary follows
well with the enthalpic limit (dotted line) set by Eqs. (7) or
(8). In the endocytosed phase, one identifies a subregion

within which the uptake is noticeably higher. In the sub-
region, particle size ranges from 25 to 30 nm in radius,
which coincides with both the experimentally determined
optimal size [10,11] and that predicted by the kinetic
models for minimal endocytic time [8,12,13,24,25]. The
cellular uptake in the subregion is on the order of thou-
sands, which also agrees with the experimental data
[10,11]. However, since ligand density has been rarely
reported in prior experiments, our modeling results thus
invite well-controlled experiments for validating the pre-
dicted optimal ligand density.
We next elucidate the uptake mechanisms through en-

ergetic analysis. Horizontal or vertical cuts of the phase
diagram give rise to the representative curves shown in
Fig. 3. These curves share similar features: with increasing
�g (top panel, at fixed R) or R ( bottom panel, at fixed �g),

the cellular uptake nK (solid lines) rises sharply from zero
to a peak, and then gradually decreases. For fixed R, the
deformation energy cost (wK) for endocytosing an NP
remains constant. As �g exceeds the threshold �g;min,

endocytosis becomes energetically possible. Increasing
�g from �g;min draws more receptors for wrapping, i.e.,

d�f ��d�g, thus increasing the entropic penalty. A li-

gand density only slightly above �g;min causes insignificant

change in �f (see supplementary data [26]), and the linear

increase of the enthalpic component of the adhesion
strength leads to an exponential increase of the cellular
uptake towards its maximum according to Eq. (4). Beyond
the maximum uptake, further drawing receptors from the
free to bound membrane regions becomes entropically
very expensive. From Eq. (6), the change in the adhesion
strength in this regime can be written as

d�Kl ¼ ð�þ ln�fÞd�g þ ð�g=�fÞd�f: (9)

One notes that the first and second terms on the right-hand
side of Eq. (9) represent the enthalpic and entropic changes
of the adhesion strength, respectively. For small �f, the

change of the adhesion strength is entropically dominant.

FIG. 2 (color online). A two-dimensional phase diagram on
the (R� �g) plane characterizes the interrelated effects of

particle size and ligand density on the cellular uptake. The
dashed and dash-dotted lines are the lower and upper transition
boundaries, respectively. The dotted line represents the theoreti-
cal lower bound derived from local wrapping energetics [Eqs. (7)
or (8)]. The cellular uptake in the endocytosed phase is markedly
high, while those in the other two phases vanish. The color bar
indicates the level of cellular uptake.

FIG. 3 (color online). The effects of ligand density and particle
size on the cellular uptake. All the solid lines represent the total
uptake nK . The dashed lines represent the corresponding uptake
contributed by nKL.
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As a result, the cellular uptake decreases monotonically
with increasing �g.

For fixed �g (bottom panel in Fig. 3), the total number

of ligands increases quadratically with increasing R.
Following the similar arguments, as R goes slightly beyond
the enthalpic threshold Rmin, the cellular uptake increases
exponentially to its maximum. Further increasing R be-
yond the maximal uptake would lead to a decrease in �f

(see supplementary data [26]), i.e., d�f ��dK. Since the

change in the adhesion strength is entropically dominant,
the total adhesion energy K�Kl decreases with increasing
R: dðK�KlÞ ¼ �KldK þ Kð�g=�fÞd�f < 0. On the other

hand, while the bending energy (8��) for endocytosing an
NP is independent of R, the stretching energy (K�) quad-
ratically scales with R. The decrease of the adhesion
energy along with the increase of the deformation energy
with increasing R leads to a monotonically decreasing
cellular uptake. At a sufficiently large particle size, the
cellular uptake vanishes, giving rise to an upper boundary.

Figure 3 also plots the specific term nKL (dashed lines).
This term represents the fraction of the uptake for which all
the ligands on the NP are bound to receptors. The differ-
ence between nK and nKL indicates the extent to which
endocytosis occurs with unbound ligands. A simple analy-

sis reaches the ratio of the consecutive terms 	 ¼
nKL=nKðL�1Þ � e�þlnð�f=LÞ. Note that to derive the ratio,

the last term in Eq. (5) may no longer be negligible.
From our previous analysis, �f monotonically decreases

with increasing R and �g. Thus, for small particle size and/

or small ligand density � � j lnð�f=LÞj and 	 is very large.

In this case, nKL is the leading term of the total uptake, i.e.,
nK � nKL. Oppositely, for large particle size or ligand
density, j lnð�f=LÞj is comparable to � and 	 is small. In

this case, nKL � nK, suggesting endocytosis occurs with
considerable unbound ligands [25]. The difference of nK
and nKL plotted in Fig. 3 captures these trends.

We summarize by commenting that the variable adhe-
sion strength originates from the dual character of recep-
tors in endocytosis: providing adhesion energy and at the
same time carrying entropic penalty. The variable adhesion
strength is tunable through particle size and ligand density,
leading to an uptake phase diagram in the two-parameter
space. We identify an endocytosed phase with finite up-
take, a ligand-shortage phase, and a receptor-shortage
phase with vanishing uptake. The sharp transition from
the endocytosed phase to the ligand-shortage phase is
enthalpy driven, while the gradual transition from the
endocytosed phase to the receptor-shortage phase is en-
tropy driven. We further identified an optimal regime of
R 2 ½25; 30� nm and �g 2 ½0:8; 1� within which the up-

take reaches a maximum of a couple of thousand. Both the
optimal conditions and the maximal uptake agree with the
recent experimental data [10,11]. Our modeling results
provide useful guidance for engineering NP-based thera-
peutic and diagnostic agents.
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