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Abstract

We investigate a learning algorithm for the classification of nonnegative data by
mixture models. Multiplicative update rules are derived that directly optimize
the performance of these models as classifiers. The update rules have a simple
closed form and an intuitive appeal. Our algorithm retains the main virtues of
the Expectation-Maximization (EM) algorithm—its guarantee of monotonic im-
provement, and its absence of tuning parameters—with the added advantage of
optimizing a discriminative objective function. The algorithm reduces as a spe-
cial case to the method of generalized iterative scaling for log-linear models. The
learning rate of the algorithm is controlled by the sparseness of the training data.
We use the method of nonnegative matrix factorization (NMF) to discover sparse
distributed representations of the data. This form of feature selection greatly
accelerates learning and makes the algorithm practical on large problems. Ex-
periments show that discriminatively trained mixture models lead to much better
classification than comparably sized models trained by EM.

1 Introduction

Mixture models[11] have been widely applied to problems in classification. In these prob-
lems, one must learn a decision rule mapping feature vectors ( �� ) to class labels ( � ) given
labeled examples. Mixture models are typically used to parameterize class-conditional dis-
tributions, ���	�
���� �� , and then to compute posterior probabilities, ���� � � �� � , from Bayes rule.
Parameter estimation in these models is handled by an Expectation-Maximization (EM)
algorithm[3], a learning procedure that monotonically increases the joint log likelihood,��������� ���	�
�� ��� � � � , summed over training examples (indexed by � ). A virtue of this algo-
rithm is that it does not require the setting of learning rates or other tuning parameters.

A weakness of the above approach is that the model parameters are optimized by maxi-
mum likelihood estimation, as opposed to a discriminative criterion more closely related
to classification error[14]. In this paper, we derive multiplicative update rules for the pa-
rameters of mixture models that directly maximize the discriminative objective function,� ������� ���	��� � � �� � � . This objective function measures the conditional log likelihood that
the training examples are correctly classified. Our update rules retain the main virtues of
the EM algorithm—its guarantee of monotonic improvement, and its absence of tuning
parameters—with the added advantage of optimizing a discriminative cost function. They
also have a simple closed form and appealing intuition. The proof of convergence com-
bines ideas from the EM algorithm[3] and methods for generalized and improved iterative



scaling[2, 4].

The approach in this paper is limited to the classification of nonnegative data, since from
the constraint of nonnegativity emerges an especially simple learning algorithm. This lim-
itation, though, is not too severe. An abundance of interesting data occurs naturally in
this form: for example, the pixel intensities of images, the power spectra of speech, and
the word-document counts of text. Real-valued data can also be coerced into this form by
addition or exponentiation. Thus we believe the algorithm has broad applicability.

2 Mixture models as generative models

Mixture models are typically used as generative models to parameterize probability dis-
tributions over feature vectors �� � . Different mixture models are used to model different
classes of data. The parameterized distributions take the form:

���� �� � � ��� � �����	��
 ������ ���� � (1)

where the rows of the nonnegative weight matrix � 
 � are constrained to sum to unity,� � � 
 � ��� , and the basis functions

� � �
���� are properly normalized distributions, such

that ������ � � � ���� ��� for all � . The model can be interpreted as the latent variable model,

���	�
���� � � � �� ���	�
�� � � � ���� � � �� � (2)

where the discrete latent variable � indicates which mixture component is used to gen-
erate the observed variable �� . In this setting, one identifies

� � �
���� � ��� � �� � � � �	� and��
 � � ���	� � � � � � ��� � . The basis functions, usually chosen from the exponential family,

define “bumps” of high probability in the feature space. A popular choice is the multivariate
Gaussian distribution:� � �

���� � ����! � " � � � �$#&%('*),+.-0/21 �� � �� 1 �3 � ��40"65 #� �
�� 1 �3 � ��7 �

(3)

with means �3 � and covariance matrices " � . Gaussian distributions are extremely versatile,
but not always the most appropriate. For sparse nonnegative data, a more natural choice is
the exponential distribution: � � �

���� �98;:�< � :>= 5�?�@BAC�A � (4)

with parameter vectors �< � . Here, the value of 3 indexes the elements of �< � and �� . The
parameters of these basis functions must be estimated from data.

Generative models can be viewed as a prototype method for classification, with the pa-
rameters of each mixture component defining a particular basin of attraction in the feature
space. Intuitively, patterns are labeled by the most similar prototype, chosen from among
all possible classes. Formally, unlabeled examples are classified by computing posterior
probabilities from Bayes’ rule,

� �	��� � �� � � ��� � �� � � � � �	�����EDGF ��� �
�� � �H �����	���IH � � (5)

where ���� � � denote the prior probabilities of each class. Examples are classified by the
label with the highest posterior probability.



An Expectation-Maximization (EM) algorithm can be used to estimate the parameters of
mixture models. The EM algorithm optimizes the joint log likelihood,

��� � � � ����� ��� � �� � � � � ������ � � � � (6)

summed over training examples. If basis functions are not shared across different classes,
then the parameter estimation for ���	�
���� �� can be done independently for each class label � .
This has the tremendous advantage of decomposing the original learning problem into sev-
eral smaller problems. Moreover, for many types of basis functions, the EM updates have a
simple closed form and are guaranteed to improve the joint log likelihood at each iteration.
These properties account for the widespread use of mixture models as generative models.

3 Mixture models as discriminative models

Mixture models can also be viewed as purely discriminative models. In this view, their
purpose is simply to provide a particular way of parameterizing the posterior distribution,��� ��� � �� � . In this paper, we study posterior distributions of the form:

���	��� � � � �� � � � � � 
 � � � � ��������� � ��� � � � ������ (7)

The right hand side of this equation defines a valid posterior distribution provided that the
mixture weights � 
 � and basis functions

� �.�
���� are nonnegative. Note that for this inter-

pretation, the mixture weights and basis functions do not need to satisfy the more stringent
normalization constraints of generative models. We will deliberately exploit this freedom,
an idea that distinguishes our approach from previous work on discriminatively trained
mixture models[6] and hidden Markov models[5, 12]. In particular, the unnormalized basis
functions we use are able to parameterize “saddles” and “valleys” in the feature space, as
well as the “bumps” of normalized basis functions. This makes them more expressive than
their generative counterparts: examples can not only be attracted to prototypes, but also
repelled by opposites.

The posterior distributions in eq. (7) must be further specified by parameterizing the basis
functions

� � �
���� as a function of �� . We study basis functions of the form�����

���� � =
	� @�� 	 � (8)

where �� � denotes a real-valued vector and �� denotes a nonnegative and possibly “ex-
panded” representation[14] of the original feature vector. The exponential form in eq. (8)
allows us to recover certain generative models as a special case. For example, consider
the multivariate Gaussian distribution in eq. (3). By defining the “quadratically expanded”
feature vector: �� � � � � � # � � ' � ����� � ��� � � # � # � � # � ' � ����� � ��� 5 # ��� � � (9)

we can equate the basis functions in eqs. (3) and (8) by choosing the parameter vectors �� �
to act on �� in the same way that the means �3 � and covariance matrices " � act on �� . The
exponential distributions in eq. (4) can be recovered in a similar way. Such generative
models provide a cheap way to initialize discriminative models for further training.

4 Learning algorithm

Our learning algorithm directly optimizes the performance of the models in eq. (7) as clas-
sifiers. The objective function we use for discriminative training is the conditional log
likelihood, ��� �9� � ����� ��� ��� � � �� � � � (10)



summed over training examples. Let � � 
 denote the binary matrix whose � � th element
denotes whether the � th training example belongs to the � th class. Then we can write the
objective function as the difference of two terms,

� � � ��� 1 � 5 , where:

� � � � � � � � � 
 � � � 
 � 
 � =
	� @ � 	�� (11)

� 5 � � � � � � � 
 �E� 
 � =�	� @ � 	 � � (12)

The competition between these terms give rise to a scenario of contrastive learning. It is
the subtracted term,

� 5 , which distinguishes the conditional log likelihood optimized by
discriminative training from the joint log likelihood optimized by EM.

Our learning algorithm works by alternately updating the mixture weights and the basis
function parameters. Here we simply present the update rules for these parameters; a
derivation and proof of convergence are given in the appendix. It is easiest to write the
basis function updates in terms of the nonnegative parameters

= � @BA . The updates then take
the simple multiplicative form:��
 � � ��
 � / ��� ���� � 
 �
	�� ��� � 5� � 
 �	 7 �

(13)= � @ A � = � @ A / � � � �� � � : 	�� � � � 5� � � : 	 7��� where � ����� +� � : � � :
� (14)

It is straightforward to compute the gradients in these ratios and show that they are always
nonnegative. (This is a consequence of the nonnegativity constraint on the feature vectors:� � :����

for all examples � and feature components 3 .) Thus, the nonnegativityconstraints
on the mixture weights and basis functions are enforced by these multiplicative udpates.

The updates have a simple intuition[9] based on balancing opposing terms in the gra-
dient of the conditional log likelihood. In particular, note that the fixed points of this
update rule occur at stationary points of the conditional log likelihood—that is, where� ����� � � 
 � � �

and
� ����� � � � : � �

, or equivalently, where
� � � � � � 
 � � � � 5 � � � 
 �

and
� � � � � � � : � � � 5 � � � � : . The learning rate is controlled by the ratios of these gradi-

ents and—additionally, for the basis function updates—by the exponent � � � , which mea-
sures the sparseness of the training data. The value of � is the maximum sum of features
that occurs in the training data. Thus, sparse feature vectors leads to faster learning, a
crucial point to which we will return shortly.

It is worth comparing these multiplicative updates to others in the literature. Jebara and
Pentland[6] derived similar updates for mixture weights, but without emphasizing the spe-
cial form of eq. (13). Others have investigated multiplicative updates by the method of
exponentiated gradients (EG)[7]. Our updates do not have the same form as EG updates:
in particular, note that the gradients in eqs. (13–14) are not exponentiated. If we use one
basis function per class and an identity matrix for the mixture weights, then the updates re-
duce to the method of generalized iterative scaling[2] for logistic or multinomial regression
(also known as maximum entropy modeling). More generally, though, our multiplicative
updates can be used to train much more powerful classifiers based on mixture models.

5 Feature selection

As previously mentioned, the learning rate for the basis function parameters is controlled
by the sparseness of the training data. If this data is not intrinsically sparse, then the mul-
tiplicative upates in eqs. (13–14) can be impractically slow (just as the method of iterative



01-10

11-20

21-30

31-40

41-50

51-60

61-70

71-80

NMF basis vectors pixel image

20 40 60 80
0

5

10
NMF feature vector

Figure 1: Left: nonnegative basis vectors for handwritten digits discovered by NMF. Right: sparse
feature vector for a handwritten “2”. The basis vectors are ordered by their contribution to this image.

scaling). In this case, it is important to discover sparse distributed representations of the
data that encode the same information. On large problems, such representations can accel-
erate learning by several orders of magnitude.

The search for sparse distributed representations can be viewed as a form of feature se-
lection. We have observed that suitably sparse representations can be discovered by the
method of nonnegative matrix factorization (NMF)[8]. Let the raw nonnegative (and pos-
sibly nonsparse) data be represented by the ����� matrix � , where � is its raw dimen-
sionality and � is the number of training examples. Algorithms for NMF yield a factor-
ization ���	� � , where � is a �
� � nonnegative marix and

�
is a ����� nonnegative

matrix. In this factorization, the columns of � are interpreted as basis vectors, and the
columns of

�
as coefficients (or new feature vectors). These coefficients are typically very

sparse, because the nonnegative basis vectors can only be added in a constructive way to
approximate the original data.

The effectiveness of NMF is best illustrated by example. We used the method to discover
sparse distributed representations of the MNIST data set of handwritten digits[10]. The
data set has 60000 training and 10000 test examples that were deslanted and cropped to
form

� �
�
� �

grayscale pixel images. The raw training data was therefore represented by
a �
��� matrix, with � �� � � and � ��� � � � � . The left plot of Fig. 1 shows the � ��� �
basis vectors discovered by NMF, each plotted as a

� �
�
� �

image. Most of these basis
vectors resemble strokes, only a fraction of which are needed to reconstruct any particular
image in the training set. For example, only about twenty basis vectors make an appreciable
contribution to the handwritten “2” shown in the right plot of Fig. 1. The method of NMF
thus succeeds in discovering a highly sparse representation of the original images.

6 Results

Models were evaluated on the problem of recognizing handwritten digits from the MNIST
data set. From the grayscale pixel images, we generated two sets of feature vectors: one
by NMF, with nonnegative features and dimensionality � � ��� � ; the other, by principal



components analysis (PCA), with real-valued features and dimensionality ��� �� � . These
reduced dimensionality feature vectors were used for both training and testing.

Baseline mixture models for classification were trained by EM algorithms. Gaussian mix-
ture models with diagonal covariance marices were trained on the PCA features, while
exponential mixture models (as in eq. (4)) were trained on the NMF features. The mixture
models were trained for up to 64 iterations of EM, which was sufficient to ensure a high
degree of convergence. Seven baseline classifiers were trained on each feature set, with
different numbers of mixture components per digit (

� �	� � � �  � � � � � ��� � � �  ). The error
rates of these models, indicated by EM-PCA40 and EM-NMF80, are shown in Table 1.
Half as many PCA features were used as NMF features so as to equalize the number of
fitted parameters in different basis functions.

Mixture models on the NMF features were also trained discriminatively by the multiplica-
tive updates in eqs. (13–14). Models with varying numbers of mixture components per
digit (

� � � � � �  � � � � � ) were trained by 1000 iterations of these updates. Again, this was
sufficient to ensure a high degree of convergence; there was no effort at early stopping.
The models were initialized by setting � 
 � ��� and �� � � �� �

for randomly selected fea-
ture vectors. The results of these experiments, indicated by DT-NMF80, are also shown
in Table 1. The results show that the discriminatively trained models classify much better
than comparably sized models trained by EM. The ability to learn more compact classifiers
appears to be the major advantage of discriminative training. A slight disadvantage is that
the resulting classifiers are more susceptible to overtraining.

model EM-PCA40 EM-NMF80 DT-NMF80� ��� ��� ��� �	� �	� ���
1 10.2 10.1 15.7 14.7 5.5 5.8
2 8.5 8.3 12.3 10.7 4.0 4.4
4 6.8 6.4 9.3 8.2 2.8 3.5
8 5.3 5.1 7.8 7.0 1.7 3.2
16 4.0 4.4 6.2 5.7 1.0 3.4
32 3.1 3.6 5.0 5.1
64 1.9 3.1 3.9 4.2

Table 1: Classification error rates (%) on the training set ( 
	�� and the test set ( 
�� ) for mixture models
with different numbers of mixture components per digit ( � ). Models in the same row have roughly
the same number of fitted parameters.

It is instructive to compare our results to other benchmarks on this data set[10]. Without
making use of prior knowledge, better error rates on the test set have been obtained by sup-
port vector machines (

��� �	� � ��� ), k-nearest neighbor (
��� � �

� �� ), and fully connected
multilayer neural networks (

� � � � � ��� ). These results, however, either required storing
large numbers of training examples or training significantly larger models. For example, the
nearest neighbor and support vector classifiers required storing tens of thousands of train-
ing examples (or support vectors), while the neural network had over 120,000 weights. By
contrast, the

� � � discriminatively trained mixture model (with
� � � �

�

� � ) has less
than 6500 iteratively adjusted parameters, and most of its memory footprint is devoted to
preprocessing by NMF.

We conclude by describing the problems best suited to the mixture models in this paper.
These are problems with many classes, large amounts of data, and little prior knowledge
of symmetries or invariances. Support vector machines and nearest neighbor algorithms
do not scale well to this regime, and it remains tedious to train large neural networks with
unspecified learning rates. By contrast, the compactness of our models and the simplicity
of their learning algorithm make them especially attractive.



A Proof of convergence

In this appendix, we show that the multiplicative updates from section 4 lead to monotonic
improvement in the conditional log likelihood. This guarantee of convergence (to a sta-
tionary point) is proved by computing a lower bound on the conditional log likelihood for
updated estimates of the mixture weights and basis function parameters. We indicate these
updated estimates by � H
 � and �� H� , and we indicate the resulting values of the conditional
log likelihood and its component terms by

� H� , � H � , and
� H 5 . The proof of convergence rests

on three simple inequalities applied to
� H� .

The first term in the conditional log likelihoodcan be lower bounded by Jensen’s inequality.
The same bound is used here as in the derivation of the EM algorithm[3, 13] for maximum
likelihood estimation:

� H � �9� � � � � � 
 � � � 
 � H
 � =
	� F@ � 	 � � � � 
 ��� �� 
 � ��� � � � � 
 � H
 � = 	� F@ � 	 �� �� 
 � �
� (15)

The right hand side of this inequality introduces an auxiliary probability distribution � �� 
 �
for each example in the training set. The bound holds for arbitrary distributions, provided
they are properly normalized:

� 
 � � �� 
 � � � for all � .

The second term in the conditional log likelihood occurs with a minus sign, so for this term
we require an upper bound. The same bounds can be used here as in derivations of iterative
scaling[1, 2, 4, 13]. Note that the logarithm function is upper bounded by:

����� ��� � 1 �
for all ��� � . We can therefore write:

� H 5 1 � 5 � � � ��� �
	� � 
 � � H
 � =
	� F@ � 	 �� ��� � � � = 	�� � 	 ���� � � ���� � 
 � � H
 � =
	� F@ � 	 �� ��� � ��� = 	�� � 	 � 1 ���� � (16)

To further bound the right hand side of eq. (16), we make the following observation: though

the exponentials
=�	� F@ � 	 � are convex functions of the parameter vector �� H� with elements

� H� : ,

they are concave functions of the “warped” parameter vector

=���	� F@ with elements

=�� � F@BA ,
where � is defined by eq. (14). (The validity of this observation hinges on the nonnega-
tivity of the feature vectors �� �

.) It follows that for any example in the training set, the

exponential

= 	� F@ � 	�� is upper bounded by its linearized expansion around

= � � F@BA � = � � @BA ,
given by: =
	� F@ � 	 � � =
	� @�� 	 ��� �:�� =�� � F@BA 1 =�� � @ A �"! � � :.= 	� @ � 	 �� = � � @BA # � (17)

The last term in parentheses in eq. (17) is the derivative of

= 	� @ � 	 � with respect to the
independent variable

= � � @BA , computed by the chain rule. Tighter bounds are possible than
eq. (17), but at the expense of more complicated update rules.

Combining the above inequalities with a judicious choice for the auxiliary parameters � �� 
 � ,
we obtain a proof of convergence for the multiplicative updates in eqs. (13–14). Let:� �� 
 � � � � � ��
 � = 	� � � 	 � � 5 # � � 
 ��
 � = 	� @ � 	�� � (18)� 5� 
 � � � � ��� � ��� =�	� � � 	 � � 5 # ��
 � =
	� @ � 	 � � (19)

Eq. (18) sets the auxiliary parameters � �� 
 � , while eq. (19) defines an analogous distribu-
tion � 5� 
 � for the opposing term in the conditional log likelihood. (This will prove to be a
useful notation.) Combining these definitions with eqs. (15–17) and rearranging terms, we
obtain the following inequality:



� H� 1 � � � � � 
 ��� �� 
 � / � � ��� � H
 ���
 ��� � � �� H� 1 �� � ��� �� � 7
1 � � 
 ��� 5� 
 ��� � H
 �� 
 � 1 � � � H
 �� 
 � � : � � : ! =���� � F@BA 5 � @BA
	 1 �� #�� (20)

Both sides of the inequality vanish (yielding an equality) if � H
 � � ��
 � and �� H� � �� � . We
derive the update rules by maximizing the right hand side of this inequality. Maximizing
the right hand side with respect to � H
 � while holding the basis function parameters fixed

yields the update, eq. (13). Likewise, maximizing the right hand side with respect to �� H�
while holding the mixture weights fixed yields the update, eq. (14). Since these choices
for � H
 � and �� H lead to positive values on the right hand side of the inequality (except at
fixed points), it follows that the multiplicative updates in eqs. (13–14) lead to monotonic
improvement in the conditional log likelihood.
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