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studied by general equilibrium theorists.  What makes them so applicable for 

macroeconomics and finance is the well accepted fact that models with a representative 

agent and without financial frictions yield equilibrium outcomes that are inconsistent 

with the empirical realities of financial markets.  The general financial models are 

characterized by two main features: heterogeneous agents and financial frictions.  The 

ability of these models to be applied in the fields of macroeconomics and finance in the 

future depends upon the frontier research in general equilibrium today.  Over the past 20 

years, research in general equilibrium has predominantly focused on a single friction: 

incomplete financial markets.  The papers contained in this dissertation will analyze the 

equilibrium effects, both positive and normative, of two seldom researched frictions: 

bankruptcy and transaction costs.  It is the hope that by studying financial frictions in 

isolation, we may learn which frictions have the greatest effect on welfare, which 

frictions are most able to be controlled by the government, and how to satisfactorily 
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Chapter 1

Introduction

The models studied in the �eld of general equilibrium capture a trading environment

in its purest form. Trades are both competitive and anonymous: competitive in that

households can trade any amount of good or asset at the posted market price and

anonymous in that households only adjust their trading decisions as the price changes

and not based on who they trade with. It is these non-strategic interactions that

characterize markets in which a su¢ ciently large number of households trade.

While economists continue to search for the perfect model that is consistent with

the empirical realities of the latest trendy topic, whether that topic is money, �scal

stimulus, or banking regulation, the benchmark has remained the Walras-Arrow-

Debreu model (Walras, 1874; Arrow and Debreu, 1954) in a static setting and the

GEI model in a dynamic setting. These models represent the frictionless version of

economic trade and are the progenitor of entire �elds of economic thought, including

real business cycle macroeconomics and �nance.

The incentives that the households face, namely the market prices, are determined

endogenously. While this may make it di¢ cult to prove analytical results in these

models, it is only with such generality that an economist can quantify the normative

1
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and positive e¤ects of a policy change. For the theory to be well-de�ned, households

must have perfect foresight for the entire future history of market prices so that they

can make optimal contingency plans for all possible future realizations.

I will now discuss several modeling decisions in general equilibrium as they relate

to the �eld in general and speci�cally my three research papers.

Time horizon

The trading environment can either occur over a �nite number of periods or over

an in�nite number of periods. The households have perfect foresight and know the

length of time that they will be participating in the trading environment. A �nite

time horizon is the natural �rst choice due to the conceptual problems of in�nite time.

For many applications, a �nite time horizon permits a robust analysis. Suppose

that a proposed model has the following two conditions: (i) households are alive for

the entire length of the economy and (ii) any choices by households are immediately

resolved in the following period and have no impact on future consumption. Then a

�nite time horizon is appropriate. In this case, the choices of households only have

consequences for the following period. Concerning the choices made in the terminal

period, adjustments can be made to the consumption bundle so that the decisions by

households at this terminal period have similar consequences as prior decisions.

With an in�nite time horizon, there are two possibilities: either households can

be in�nite-lived or they can be �nite-lived. When the households are �nite-lived,

households that �die out�each period are replaced by a new generation of households.

This is the overlapping generations model (Samuelson, 1958). While this model

is certainly the most plausible as it mirrors a realistic demographic structure, more

research has been devoted to the case of in�nite-lived households.

The �rst conceptual di¢ culty with in�nite-lived households is how they compare
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consumption bundles at di¤erent points in time. Households that are indeed immortal

would never consider consumption today to be any more valuable than consumption

tomorrow, because at any point in time the horizon of all future time periods remains

unchanged. However, to prove the existence of equilibria in this setting, the house-

holds must discount future consumption. Speci�cally, the preference orderings must

be continuous in the Mackey topology. Discounting is natural for �nite-lived house-

holds or households with an uncertain length of life, but appears to be unnatural for

in�nite-lived households.

The second conceptual di¢ culty is that in the in�nite horizon, the preferences

are represented by expected utility, despite a modeler�s reluctance to claim that the

expected utility axioms are satis�ed or that probabilistic beliefs are required for house-

hold choice. The expected utility form is certainly tractable and satis�es the desirable

property of intertemporal consistency, but leaves much to be desired on other fronts.

Chapter 2 utilizes a �nite time horizon, speci�cally two time periods, to model

bankruptcy. Chapter 3 considers the dynamic aspects of bankruptcy, aspects that

can only be analyzed by extending to an in�nite time horizon. Chapter 4 uses a

�nite time horizon, speci�cally two time periods, to model transaction costs.

Households

In general equilibrium, the number of households needs to either be countably

in�nite or uncountable to justify the competitive trade assumption that households

are price takers. There are then two possibilities. The �rst is that households are

idiosyncratic, that is, their preferences and endowments in all time periods are inde-

pendent of those of other households. Typically, these idiosyncrasies are generated

by a random process that is common to all households. Otherwise, the modeler

would have to provide details as to what the preferences and endowments are for an
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in�nite number of households.

The second possibility is that each households belongs to one of a �nite number

of types. The type of a household does not change throughout time. In this

formulation, the preferences and endowments of a household are entirely dependent

on what the preferences and endowments are for any household of the same type.

In reality, what determines a household�s preferences and endowments is likely

to be a combination of factors that are unique to the household and factors that

are shared by all households of a particular type (e.g., occupation). A majority of

general equilibrium models are written with a �nite number of types. In this way,

it is possible to analytically compute equilibria and analyze welfare under the Pareto

criterion.

Chapters 2 and 4 are both models with a �nite number of types of households.

Chapter 3 is a model with a continuum of idiosyncratic households that belongs to

the class of Bewley (1986) models. In these models, a household�s idiosyncratic

endowment is determined by a random Markov process. Reasons for using such a

model will be discussed in section 1.2.

Preferences and endowments

The preferences of households will be formulated over the entire consumption

bundle, which includes consumption both in the current period and in all possible

realizations in future time periods. In order to have well-de�ned and objective pref-

erences, the households are assumed to have perfect foresight. That is, households

can correctly anticipate the prices in all realizations and how their decisions in the

current period will a¤ect the chosen consumption bundle in all realizations. Perfect

foresight is a necessary condition of another desirable property of preferences, in-

tertemporal consistency, and is a standard assumption in nearly all economic models
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of competitive markets.

The preferences are uniquely represented (up to a monotonic transformation)

by a utility function. The economy will then be speci�ed in terms of the utility

functions of households rather than the preference relations. While the length of

the time horizon will determine whether a restricted utility form, such as expected

utility, or a more general form will be used, the utility functions must satisfy four

standard assumptions. In order to obtain regularity results and compute equilibria,

it is assumed that the utility function for each household is C2; di¤erentiably strictly

increasing, di¤erentiably strictly quasi-concave, and satis�es the boundary condition.

These will be referred to as the "smooth assumptions". The boundary condition

states that the closure of the upper contour set with respect to any strictly positive

consumption must lie in the strictly positive orthant.

The endowments to households can be both the endowment of physical com-

modities and the endowment (potentially) of any �nancial contracts, though in the

following chapters only the endowment of physical commodities is considered. The

speci�cation of the endowments of physical commodities for all households is crucial

as the endowment summed over all households equals the aggregate resources in a

closed economy. In Chapters 2 and 3, the economies are closed. In Chapter 4, the

transaction costs create an environment in which asset trade on the markets reduces

the aggregate resources.

The assignment of endowments ultimately determines how resources are allocated,

but "generically" does not a¤ect the e¢ ciency of an equilibrium allocation according

to the Pareto criterion. A feasible allocation is one in which the households consume

all, and no more, than the aggregate resources. A feasible allocation is e¢ cient

under the Pareto criterion (henceforth, Pareto e¢ cient) if there does not exist any

other feasible allocation such that the utility is strictly higher for some and weakly
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higher for all households. A "generic" subset A � B � Rn of a set B is one in which

A is open in B and A has full measure in B (meaning that the complement ACB with

respect to B is a measure zero subset of B).

Suppose that for a particular assignment of endowments, the resulting equilibrium

allocation is Pareto ine¢ cient. Then over a generic subset of endowments, the

resulting equilibrium allocations are Pareto ine¢ cient. As a partial converse, suppose

that for a robust subset of endowments (a subset that is not measure zero), the

resulting equilibrium allocations are Pareto e¢ cient. Then, for any possible choice

of endowments, the resulting equilibrium allocation must be Pareto e¢ cient.

The intratemporal dynamics of trade

There are several di¤erent interpretations of how the abstract Walras-Arrow-

Debreu markets can be translated into the actual trade of commodities and assets by

households. In the standard general equilibrium models with full commitment, we

do not have to wed ourselves to one interpretation as the outcomes are equivalent. I

will discuss two alternatives:

1. Market facilitator interpretation: The facilitator knows the preferences and en-

dowments of all households. Given this, the facilitator can post prices for com-

modities and assets that satisfy the aggregate consistency conditions. These

conditions are the standard market clearing conditions stating that total pur-

chases must equal total sales. Households approach the market facilitator, sell

their endowments, and choose how much of each commodity to buy and how

much of each asset to trade taking as given the listed prices. The facilitator can

be thought of as either an omnibenevolent individual or as a zero-pro�t �rm

with the technology to transfer commodities and assets to the unit of account

and vice-versa.
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2. Random matching interpretation: Each period, two households are randomly

matched. The prices of a potential transaction are posted, so the house-

holds have only to decide how much they are willing to trade (if any) at the

posted prices. Within the same time period, two new households are randomly

matched. The process continues until no matching of households generates

trade between the pair. All of the matching occurs simultaneously and at zero

cost. The prices are known by all households and are the ones that satisfy the

aggregate consistency conditions.

In the model of transaction costs in Chapter 4, the size of the transaction costs

is assumed to be a parameter of the model. The transaction costs are only present

for the trading of assets, not commodities. The model can �t either interpretation.

Under the "market facilitator interpretation", the facilitator would be a �nancial

broker who is responsible for purchasing assets from sellers and hoarding these assets

for eventual sale to purchasers. The storage technology of this broker will be the

transaction costs. As these storage costs are lost to the economy, the transaction

costs will be real costs implying a reduction in the aggregate resources. In this way,

the transaction costs can be endogenized (Martins-da-Rocha and Vailakis, 2010).

Under the "random matching interpretation", suppose that a search cost must be

paid whenever two households are matched. Due to the limited trading capacity of

each matched pair, it is clear that for a larger asset sale or purchase, more matchings

will be required and hence higher search costs must be paid. In this way, the eventual

assumption that the transaction costs are a convex function of the asset size (either

purchase or sale) can be justi�ed.

Financial contracts

Finally, as the models of interest are not static models without a �nancial sector,
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but dynamic models with a �nancial sector (called general �nancial models or GEI

models), I must discuss the nature of the �nancial contracts. In each time period,

there are a �nite number of di¤erent aggregate states that can be realized. These

aggregate states are observed by all households. As such, �nancial contracts can be

written on the history of aggregate state realizations.

The contracts will be resolved in just one time period. The contracts traded in

time t will represent a claim to the numeraire commodity in time t+1: The value of

the claim, what I will later call the asset payout, will be conditional on the aggregate

states in time t and t+1: For example, if a contract promises the claim to a constant

amount of the numeraire commodity regardless of the realization of the aggregate

state, then this will be called a "risk-free bond".

Given the claims of �nancial contracts, market prices will be endogenously deter-

mined so that the aggregate consistency conditions are satis�ed. In all the following

chapters, the �nancial contracts are in zero net supply, so the aggregate consistency

conditions simply require that the total number of contracts sold equals the total

number purchased. If the �nancial contracts were to be claims to the production

bundle of a public �rm (a "stock"), then the �nancial contracts would be in unit net

supply. In this case, the economy is not closed as the aggregate resources are equal

to the sum of the production bundles and the total household endowments.

A �nancial contract traded in time t will be bought or sold in terms of the unit

of account in time t (as dictated by the market price) and the claims will be made

in time t + 1 in terms of the numeraire commodity. Such a "numeraire �nancial

contract" is a special case of a "real �nancial contract" in which the claim is made

over the vector of commodities in time t+ 1: The other type of �nancial contract is

a "nominal �nancial contract" in which the claim is made over the unit of account in

time t+ 1:
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I will now argue for the use of "numeraire �nancial contracts" against those who

argue that the stocks and bonds that are traded in the actual �nancial markets have

payouts in terms of the unit of account. Suppose that the numeraire commodity is

"money" loosely de�ned as currency and "liquid" assets, where "liquid" corresponds

to whatever speci�cation of M1, M2, M3, or M4 you are most familiar. Consump-

tion of this commodity can certainly provide utility. Then the numeraire �nancial

contracts will have claims in terms of money. This di¤ers from the nominal �nancial

contracts whose claims are in terms of the unit of account. The price of money does

not enter into these latter claims. The price of money is endogenously determined

by the monetary policy and the extent to which households use it to facilitate the

exchange of goods. It is directly related to the in�ation rate, which is the rate by

which the price for a representative bundle of goods has increased from one period to

the next.

So with nominal �nancial contracts, there is a disconnection between the real

side and the �nancial side as the claims do not account for the changing price level.

The numeraire �nancial contracts, on the other hand, have claims in terms of the

purchasing value of the unit of account. This contract is adjusted for in�ation,

so a risk-free bond would actually be an in�ation-indexed bond. Now that the

argument has been reduced to a choice between o¤ering in�ation-indexed bonds and

�xed-income bonds, the choice of the former is not indefensible.

There are a �nite number of �nancial contracts and their claims are linear func-

tions of the asset position and are linearly independent. This simply means that

upon removing a contract, trading in a convex combination of the remaining con-

tracts cannot replicate the claims of that missing contract. The task is not to �nd

an �optimal�structure on the claims of contracts as in Demange and Laroque (1995).

Even in their stylized model without any of the frictions that I wish to consider, the
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task proved challenging. Rather, the claims of the contracts, what I will later call

the asset structure, will be considered a �xed parameter in all three models in the

following chapters.

Conditional on time t being reached, suppose there are S <1 possible realizations

of the aggregate state in time t + 1: Further, suppose that the households do not

receive idiosyncratic realizations each period, but rather belong to a �nite number of

types. Thus the preferences and endowments of all households of a particular type

are only determined by the aggregate state realizations. Let the number of �nancial

contracts traded at t be equal to J: These contracts were assumed to be independent,

so if J = S; then the contracts span the entire space of uncertainty. The case J = S

will be denoted the "complete markets case" and the complimentary case J < S will

be denoted the "incomplete markets case".

Incomplete markets is a friction unto itself and provides one �nal reason why only

numeraire �nancial contracts are considered rather than nominal �nancial contracts.

With nominal �nancial contracts and incomplete markets, for a generic subset of

endowments, the resulting equilibrium allocation is indeterminate. This means that

the set of possible equilibria is a continuum and any comparative statics exercises

become meaningless.

For the frictions that I consider, namely bankruptcy and transaction costs, the dis-

tinction between complete and incomplete markets is less important. Under both of

my frictions, for a generic subset of endowments, the resulting equilibrium allocation

is Pareto ine¢ cient. Thus, the connection between the static trading environment of

the Walras-Arrow-Debreu model and the dynamic environment of the GEI model is

broken and all analyses must be undertaken in the dynamic environment. Any results

that I prove will not be particular to the complete markets case or the incomplete

markets case and this is especially noteworthy for the normative result of Chapter 4.
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All �nancial contracts can be reduced to the market price at which the contract

trades and the �xed promises that each unit of the contract has a claim to. This

is in part due to the implied assumption that the �nancial contracts are not secured

with collateral and their trade is entirely competitive (linear pricing). The only thing

that is variable in the model will be the price of the contract. In keeping with the

traditions of general equilibrium, I will call the �nancial contract simply an "asset".

The asset is traded at an asset price in time t and the prescribed claims will be called

"asset payouts" in time t+1: The asset payouts of all assets for all realizations of the

aggregate states will be collectively called the "asset structure". The asset structure

will be �xed throughout and no discussion will be given of its origins.

I will now introduce the models that will be presented in Chapters 2-4. Chaper

2 introduces a 2-period model of bankruptcy. Chapter 3 considers the dynamic

consequences of bankruptcy in an in�nite time horizon model by making use of the

"credit score". Chapter 4 introduces a model with transaction costs on asset trades

and analyzes the welfare implications of a planner adjustment of these costs.

1.1 Bankruptcy in a 2-Period Model

The model is a 2-period model with uncertainty in which a �nite number of aggregate

states can be realized in the second period. Denote the �rst time period as t = 0 and

the second time period as t = 1: The model is a general �nancial model (GEI) as

assets are available for trade to allow households to transfer wealth across time and

states of uncertainty. The costs and bene�ts of an asset trade are separated across

time in the favor of the seller. The seller collects the bene�ts of an asset sale at

t = 0 and then has a negative claim on the asset payouts at t = 1 (indebted by the

amount of the payout). As no mechanism exists to perfectly and costlessly enforce
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the commitment that the seller made at t = 0; the option for the seller to renege is

available. We have now entered the class of default and bankruptcy models.

The household that bought the asset at t = 0 lies on the other side of this trans-

action. The buyer has paid the cost of the asset already and the bene�t of the asset

at t = 1 is equal to the positive claim on the asset payout. However, if the seller

does not repay what it owes, then the buyer will not reap any bene�t from the asset.

Thus, for �nancial trade to even take place, there must exist clearly speci�ed penal-

ties for a seller that chooses to renege. These penalties serve two purposes: �rst as a

deterrent to the seller, and second as a way to transfer wealth from the seller to the

buyer if the seller chooses to renege at t = 1:

The penalties incurred by the seller who chooses to renege depend upon whether

the asset was secured or unsecured. If the asset is secured, then choosing to renege

means the seller must forfeit some pre-contracted amount of collateral. For an

unsecured asset, that is not the case.

Default is a term that encompasses many mechanisms. Throughout these chap-

ters, default will be the decision by a seller of a particular secured asset to renege.

Default is thus a decision made on an asset-by-asset basis. The penalties for default

are independent of the other assets that are held.

Bankruptcy, as it is de�ned in the legal code and implemented in my model, is

the process by which a household discharges its unsecured debt. Bankruptcy is thus

a decision made over the entire portfolio of assets. The penalties of bankruptcy

include the loss of all nonexempt asset purchases in a household�s portfolio. From

the de�nitions of default and bankruptcy, it should be clear that when there is but a

single asset available for trade, bankruptcy is simply a special case of default where

the collateral is de�ned as the amount of perishable commodity at t = 1 with value

equal to the cost of bankruptcy. So the mechanism of bankruptcy cannot be studied
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independent of that for default unless there is more than one asset.

I only consider unsecured asset markets for three reasons. First, I wish to isolate

the e¤ects of the bankruptcy policy. Second, complementary research research by

Geanakoplos and Zame (2002) on secured assets has already been developed. Third,

even with only secured assets, if the collection of payouts allows for "recourse", then

unsecured asset markets may still play a role. Without recourse, when a seller of

a secured asset defaults, it forfeits the collateral to the buyer and the process ends.

The buyer does not have the legal right to seek further repayment. However, with

recourse, if the value of the collateral does not cover the amount of debt owed, then

the outstanding amount becomes unsecured debt. With this unsecured debt, the

seller then has to decide, given its other asset holdings, whether to repay the amount

in whole or declare bankruptcy.

Just as in the case with secured assets (Geanakoplos and Zame, 2002) in which no

households would be willing to buy an asset that wasn�t backed by collateral, there

must be nontrivial costs of bankruptcy. While the purpose of the bankruptcy legal

code is to ultimately grant a discharge of debt on a household�s asset sales, the costs

of bankruptcy are actually only a function of the household�s asset purchases. First,

the bankrupt household must forfeit its nonexempt asset purchases. These purchases

are con�scated by the bankruptcy court and used to pay back creditors. Second, in

order to maintain possession of its exempt asset purchases, the bankrupt household

must pay the administrative cost of submitting a detailed record of its asset purchases

to the court. The cost is assumed to be strictly increasing in the value of the asset

purchases. To drive home the point, if a household has only asset sales, then it can

discharge its entire debt without cost.

The bankruptcy code allows eligible households to renege on their obligations

and declare bankruptcy, but does not permit them to renege on paying these costs
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of bankruptcy. Eligible households, in keeping with the 2005 Bankruptcy Abuse

Prevention and Consumer Protection Act, will be those households whose average

income over the prior 6 months is above the median level for their state of residence.

Whether a household is eligible for bankruptcy or not, there is a limited liability

condition on the total value that it can owe. In this 2-period model without the

possibility for future borrowing, the maximum amount that a household can owe, in

either bankruptcy costs or �nancial obligations, is equal to the value of its endowments

of physical commodities. In this situation, the household will have zero consumption

and whatever value is still owed beyond this maximum amount will be discharged

debt and will lower the payouts for creditors. As the utility function satis�es the

boundary condition, a condition of equilibrium is that households will never make

�nancing decisions such that they owe this maximum amount in any state at t = 1:

Consider a particular asset j and de�ne the sellers of this asset as "debtors for asset

j" and the buyers of this asset as "creditors for asset j". As is common with large

�nancial institutions, it is assumed that the funds collected from debtors, both solvent

and bankrupt, are pooled and then used to pay back the creditors. The creditors

are anonymous so they are reimbursed in proportion to their asset purchase. The

decision by a single debtor to declare bankruptcy and return to the pool less than what

it originally owed will then lower the asset payout for all creditors. This reduction

in payouts will a¤ect the market clearing prices for assets.

These asset prices will be independent of the size of the loan. To rationalize

this outcome, I must interpret the intratemporal dynamics of trade to be occurring

via the random matching of a debtor and a creditor. In this way, a single creditor

cannot know what the total size of a debtor�s asset sale will be and the debtor has

no incentive to reveal this information. The asset price cannot be conditioned on

the asset size. This is in contrast to the polar case espoused by Chatterjee, Corbae,
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Nakajima, and Ríos-Rull (2007). In their model, zero pro�t �nancial intermediaries

coordinate the asset trades and each debtor would request their entire asset sale from

an intermediary. A larger asset sale, as it entails a higher chance of less-than-full

repayment to creditors, must then lead to a strictly lower asset price. Otherwise, a

�nancial intermediary could make strictly positive pro�t by cherry-picking the smaller

asset sales.

In my model, the asset price is constant across asset size whereas in Chatterjee,

Corbae, Nakajima, and Ríos-Rull (2007), the asset price is strictly decreasing in asset

size. Neither outcome is per se �correct�as the pricing function for �nancial contracts

is in reality a step function. Both outcomes have their own advantages, but ultimately

result from the chosen interpretation of the intratemporal dynamics of trade: "market

facilitator interpretation" for their outcome and "random matching interpretation"

for mine.

As households will typically hold a diverse portfolio composed of both sales and

purchases, a natural question arises. If a household must use the payouts from its

purchases in order to repay the debt it owes on its sales, can bankruptcy by other

households lower these payouts enough to force the household into bankruptcy? Such

a mechanism will be called a "chain reaction of bankruptcy". This possibility for

a chain reaction was proposed by Dubey, Geanakoplos, and Shubik (2005) and the

equivalent jargon "contagion" has been studied frequently in �nance.

In all cases, a household that would otherwise have remained solvent had it re-

ceived its full payout is forced to declare bankruptcy when its purchases return a

lower value. In the context of bankruptcy, a further mechanism exists that can exac-

erbate the problem. The funds that are collected from bankrupt households do not

have a �xed nominal value, but are directly related to the value of the household�s

asset purchases. If bankruptcy occurs in the economy, the court will then have less
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valuable asset purchases that it can use to pay back creditors. The described chain

reaction occurs instantaneously and does not introduce any dynamic elements into

the equilibrium.

It appears that chain reactions are an inescapable aspect of a bankruptcy equilib-

rium that exacerbates the ine¢ cient allocation of resources. However, this may not

be the case. In Chapter 2, I will prove in a simple model that chain reactions are

not possible and will provide rationale for why they may be unlikely in more general

models.

The answer has to do with the dynamics of the model. The asset prices must be

such that markets clear. These asset prices determine the size of a household�s asset

trade and are ultimately determined by creditors� expectations about their future

asset payouts. In this way, the equilibrium can self-correct away from chain reaction.

Bankruptcy may induce lower asset payouts for creditors, but this will also lower

the asset price, and creditors will be able to increase their asset purchases. In

the end, both the value of the asset purchases paid at t = 0 and the value of the

asset purchases received at t = 1 may not change for the creditors. The value of a

household�s portfolio remains nearly unchanged, so if the household did not declare

bankruptcy at the original asset payouts and prices, then it will not do so even when

other households�bankruptcy declarations drive down the payouts.

1.2 Bankruptcy in an In�nite Horizon Model

The 2-period model is limited because the decision to declare bankruptcy is always

a static one. After declaring bankruptcy and paying the appropriate penalties,

there are no dynamic costs or reputation costs to pay. This is not an adequate

representation of actual �nancial markets. At any given point in time, the terms
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at which a household can borrow depend on its past �nancial decisions. Also, the

decision to declare bankruptcy in this period will a¤ect its access to credit in the

future.

The model by Sabarwal (2003) included a �nite number of periods (� 2) where

the investment constraints for households could be conditioned on a household�s re-

payment history. In this way, a household�s current access to credit can be based

on its past �nancial decisions. But what about the other direction? A current

bankruptcy declaration must impose consequences for household borrowing multiple

periods into the future. With a �nite time horizon, it is not possible to adjust the

payouts in the terminal period so that the bankruptcy decision in that terminal pe-

riod, with all its imputed dynamic costs, is identical to the bankruptcy decision faced

in previous periods. An in�nite time horizon solves this problem and allows for a

cleaner equilibrium analysis as the possibility exists for stationary equilibrium.

Modern �nancial institutions use the credit score as an inexpensive summary

of a household�s past �nancial decisions. While there are other means by which

lenders can forecast a borrower�s repayment likelihood in order to set the terms of

borrowing, unsecured loans (typically smaller than secured ones) require a measure

that is inexpensive and commonly used. The FICO credit score is used by at least

75% of �nancial institutions and is inexpensive compared to the cost of acquiring a

household�s entire credit history. Bankrupty is the single worst thing that a household

can do to its credit score, so it is natural for this dynamic model of bankruptcy to

incorporate an adaptation of the FICO credit score.

The credit score serves two purposes in actual �nancial markets. First, it allows

the �nancial markets, in an environment where borrowers have private information

about their repayment likelihood, to form beliefs about these likelihoods and thus set

appropriate terms of borrowing. Second, for a household deciding whether or not
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to declare bankruptcy, the credit score captures the reputation costs that must be

paid. The household has perfect foresight and knows how its decision today will a¤ect

its credit score in the future. As the credit score changes, the subsequent interest

rates for borrowing will change. The exact level of interest rates are determined

endogenously, but the �likely�outcome is that a bankruptcy declaration will lead to

higher interest rates for borrowing in the future.

With this formulation, I have moved away from the past literature�s ad hoc rep-

resentation of dynamic bankruptcy costs. In the works of Kehoe and Levine (1993)

and Alvarez and Jermann (2000), if a household decided to declare bankruptcy, it

was permanently excluded from the market and forced to subsist on endowments

alone. In their formulation, individual rationality constraints are added so that no

one declares bankruptcy in equilibrium.

In Chatterjee, Corbae, Nakajima, and Ríos-Rull (2007), households are forbidden

from borrowing on the asset market for the length of time that a bankruptcy declara-

tion remains on the credit report. This is a representative view of the macroeconomics

literature. This is an improvement, but still an exogenous market participation re-

striction is used to simplify the model.

In my setup, the asset prices dictate whether or not households are lent to and at

what terms. The asset prices are conditioned on whether or not the household has a

bankruptcy declaration on its credit report. Implicitly, this information is available

and able to be accessed by the markets without cost.

The FICO credit score contains 5 components: payment history (35%), amount

owed and amount of available credit (30%), length of credit history (15%), mix of

credit (10%), and new credit (10%). In the model, the credit score will only be

payment history, speci�cally bankruptcy history. There are three reasons why only

bankruptcy history makes up the credit score in the model. First, the �nal three
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components of the FICO credit score are equal for all households in the model. Sec-

ond, in a model without investment constraints, the second component of the FICO

credit score is not appropriate. Finally, declaring bankruptcy is the single worst thing

a household can do to lower its credit score. Without transaction costs, a house-

hold would never carry debt across time periods and would only have incomplete

repayment when declaring bankruptcy.

Thus, the "credit score" in the model will be the number of periods since a prior

bankruptcy declaration. I use quotation marks with "credit score" as the version in

the model does not have all the features of the actual credit score that most people are

familiar with. According to the legal code, a notice of a past bankruptcy declaration

(called a "bankruptcy �ag") must be removed after 10 years. Thus, a household

whose last bankruptcy occurred more than 10 years ago has the same "credit score"

as a household who has never declared bankruptcy. The "credit score" will take

integer values in the set 0� 10; where the most recent declarers have a "credit score"

of 0 and those without a bankruptcy �ag have a "credit score" of 10:

The "credit score" in my model serves the two purposes of actual credit scores as

previously introduced. First, the markets can use this variable to form beliefs about

a borrower�s repayment likelihood and appropriate asset prices can be set. Second,

households with perfect foresight know how a bankruptcy declaration will determine

their "credit score" over the foreseeable future (it will reset the "credit score" to 0)

and what this will imply for the endogenous asset prices.

Past literature, notably Chatterjee, Corbae, and Ríos-Rull (2008) and Elul and

Gottardi (2008), model credit scores as only satisfying the �rst purpose. In both of

their models, if a household declares bankruptcy in some period, then in that period,

and in every period thereafter until the bankruptcy �ag is removed, there is a proba-

bility p > 0 that the bankruptcy �ag is removed. The parameter p is constant across
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time and is chosen so that on average a bankruptcy �ag remains on a credit report

for 10 years. So, the �nancial markets receive either a "Yes, bankruptcy �ag" or

"No, bankruptcy �ag" signal. This still allows them to form beliefs about repayment

likelihood. However, these random signals do not fully capture the reputation costs

of bankruptcy. Rather than perfect foresight and penalties for up to 10 years, the

household�s reputation costs of bankruptcy are determined as an expectation over a

random, arti�cial construct of the model.

Additionally, with my formulation of the "credit score", I will show in Chapter 3

what assumptions on the parameters are required so that equilibrium properties of

the "credit score" match the empirical properties of the actual credit score. Such

empirical facts that will be veri�ed are:

i. a household�s access to credit increases signi�cantly as it moves from "credit

score" 9 to "credit score" 10 (Musto, 2004).

ii. interest rates for borrowers are strictly decreasing functions of the "credit score".

1.3 Transaction Costs and Planner Intervention

Transaction costs can be direct (examples include taxes, fees for market facilitators,

and search costs), implicit (adverse selection), or even hidden (when a scarce resource

such as collateral or money is required to support a transaction that can then not be

used for any other concurrent transactions). As mentioned in the previous section,

without transaction costs in the model (and intermittent closing of markets can be

thought of as imposing in�nitely large transaction costs on trade), households would

never choose to carry debt across time periods. In fact, there are many economic

phenomena that cannot result in models when transaction costs are not present.
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The rationale to justify the absence of transaction costs in most economic models

is that economic analysis requires simple models to be able to get answers to the

speci�c questions at hand. So even though all agree that transaction costs are

present in actual �nancial markets, they will only be explicitly modeled when the

question of interest involves transaction costs. Chapter 4 will look at transactions

costs imposed on the trade of assets and how adjustments in these transaction costs

by an omniscient social planner can lead to a welfare gain.

When modeling transaction costs, the following questions must be answered: (i)

what form should the transaction costs take?, (ii) who or what determines the transac-

tion costs?, and (iii) where do the costs go after being collected from the households?

There are of course di¤erent answers to these modeling questions, but I make choices

that are the most plausible and the most widely adopted in the previous literature.

The transaction costs will be determined by a function whose domain is the set

of possible asset positions. This function will be heterogeneous across households

and is assumed to be C3 and di¤erentiably strictly convex. While this rules out

such common transaction costs as a linear tax scheme, the assumptions are required

both to maintain the convexity of the households�budget sets and to allow standard

results in di¤erential topology to be applied.

The codomain of the function is the set of asset positions. Thus, the transaction

costs are real transaction costs meaning that assets are the economic object collected

from each transaction. As such, in the presence of transaction costs, the number of

assets still available for trade will decrease with implications for the market clearing

asset prices. As with all other chapters, the assets will be numeraire assets meaning

that each asset represents a claim to an amount of the numeraire commodity. As

the numeraire assets are removed, the aggregate supply of the numeraire commodity

is decreased with implications for the market clearing commodity prices.
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I assume that the transaction costs in the economy are �xed by outside forces.

These outside forces include the unmodeled technology of a market facilitator to

transfer trade o¤ers into actual transactions and the legal and market institutions in

place. Having some control over the legal institutions will be a social planner. Sup-

pose the social planner can adjust the tax rate, but cannot make any other changes.

So the social planner is clearly not capable of completely removing all the transaction

costs. The justi�cation for planner intervention is the fact that for a generic subset

of endowments, the resulting equilibrium allocation will be Pareto ine¢ cient. The

exact problem of the planner will not be addressed for it su¢ ces to mentions only

its motivation. Given the original equilibrium in which allocations are ine¢ cient,

the planner adjusts the transaction costs in such a way so as to e¤ect a Pareto im-

provement. That is, all households will have strictly higher utility after the planner

adjustment as compared to the original equilibrium.

As I do not model the planner as a government whose expenditures are publicly

�nanced by some part of transaction costs, it is assumed that the value of the collected

transaction costs is simply discarded. An equivalent assumption is that the value is

spent in a way that does not a¤ect the utility of any of the households. This assump-

tion may be an extreme view of public �nance, but even if the collected transaction

costs are used for some worthwhile expenditure, the allocation will remain ine¢ cient.

The government may still seek to adjust the transaction costs to achieve a welfare

gain without sacri�cing the worthwhile expenditure. If the adjustments of the trans-

action costs are budget neutral and lead to a welfare gain when the transaction costs

are discarded (my result in Chapter 4), then a welfare gain would also be achieved

by a government who can adjust the transaction costs while still providing the same

level of worthwhile expenditure.
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Constrained suboptimality

When dealing with a friction, the question to ask is if the resulting equilibrium

allocation satis�es some optimal welfare properties. My result is in the class of

"generic constrained suboptimality" results. As such, I will brie�y describe the

progression of thought in this line of literature.

The literature began with the recognition that while the complete markets case

of GEI, as envisioned by Arrow (1953), Debreu (1959), and Radner (1972), wherein

households transfer wealth across time and states of uncertainty using a complete

set of assets, guarantees that the equilibrium allocations are Pareto e¢ cient, this

optimality result relies crucially on the assumption that markets are complete. As

recognized by Hart (1975) among others, if the set of assets is incomplete, then

for a generic subset of endowments, the resulting equilibrium allocations are Pareto

suboptimal.

When speaking about suboptimality, often an omniscient planner is introduced

as the welfare properties concern non-market allocation of resources. The planner

would know the preferences and endowments of all households. Pareto suboptimality

then means that the planner can make household-speci�c transfers such the utility

will be increased for all households. If the planner makes transfers that depend upon

a household�s preferences or endowments, then these transfers are not "anonymous".

If the planner makes transfer that are independent across households, then these are

anonymous. My result in Chapter 4 considers anonymous intervention.

The above comparison between what the planner can do and what the households

can do using the available markets seems unfair. The households can only use the

available set of incomplete asset markets while the planner can make transfers as if

a complete set of asset markets existed. So, for a sensible suboptimality result, the

planner cannot be free to make any transfers, but must make transfers that respect
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the �xed asset structure.

This is the notion of "constrained suboptimality". An equilibrium allocation is

constrained suboptimal if the planner can choose the asset holdings for all households

(that satisfy aggregate consistency) and make wealth transfers in the initial period

such that the households will then choose the consumption bundle in each state and

their resulting utility is strictly higher. The households�choice of their consumption

bundle in each state is a static choice as the wealth of households in each state is �xed

by the planner�s choice of their assets and the asset structure. This intervention by

the planner is not anonymous.

The following constrained suboptimality result, the original constrained subopti-

mality result, was �rst stated by Stiglitz (1982) and was then later formally proven by

Geanakoplos and Polemarchakis (1986). When the asset structure is incomplete and

there are at least two physical commodities in each state, then for a generic subset of

endowment and utilities, the equilibrium allocations are constrained suboptimal.

The historical timeline above indicates that most of the work in the �eld considered

incomplete markets as the friction. I will shortly discuss the recent work, including

mine, on frictions other than incomplete markets. Before that, I will need to clarify

the statement of the "generic constrained suboptimality" theorem as a technical result

used in the proof of the theorem will also be used in my result. Speci�cally, I will

discuss what it means for a result to hold over a generic subset of the set of utility

functions when this set by de�nition is not a subset of a �nite-dimensional Euclidean

space.

Quadratic perturbations

This technique is used in both Geanakoplos and Polemarchakis (1986) and Ci-

tanna, Kajii, and Villanacci (1998). I follow the exposition of Citanna, Kajii, and
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Villanacci (1998) beginning on pg. 505. The set of utility functions belongs to the

in�nite-dimensional set of functions from the consumption set RG+ to R where G is the

total number of goods in the economy. The following result extends Debreu (1970,

1972, 1976). For a generic subset of endowments, the equilibrium allocations for any

asset structure containing numeraire assets are �nite and locally unique.

Choose any endowment within this generic subset and choose any utility function

uh satisfying the smooth assumptions described in the opening monologue. The

resulting equilibrium allocations for household h; denoted as xhi 2 RG+ for i = 1; 2; ::;

are �nite in number. These allocations are further locally unique. Consider any

allocation xh within an open set around xhi and write the utility function for x
h in

terms of the G�G symmetric perturbation matrix Ah :

uh
�
xh;Ah

�
= uh

�
xh
�
+
1

2

h�
xh � xhi

�T
Ah
�
xh � xhi

�i
:

If the norm of Ah is small enough, then the function uh
�
�;Ah

�
is a subset of the set

of utility functions satisfying the smooth assumptions. The symmetric matrix Ah

belongs to the G(G + 1)=2�dimensional Euclidean space. Moreover, if a sequence

of perturbation matrices converge An ! A; then a sequence of utility functions con-

verge uh (�;An)! uh (�;A) in the C3 uniform converge topology (this is the topology

chosen for the set of utility functions). This can be veri�ed by taking derivatives of

uh
�
xh;Ah

�
:

Any utility function uh (�) that is in an ��neighborhood around the function uh (�)

can be represented by uh
�
�;Ah

�
with a symmetric matrix Ah in an �0�neighborhood

around A
h
= 0: Thus, for any utility function uh (�) ; I can state results for generic

subsets of RG(G+1)=2; the Euclidean space containing all possible perturbation matri-

ces.
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With this technique, I am able to state results holding over a generic subset of

utility functions. I will also consider generic subsets of the transaction costs functions.

Recall that these functions specify the amount of transaction cost that must be paid

for any possible asset positions.

"Constrained" suboptimality

There are certainly more frictions than just incomplete markets that can restrict

market performance. Even if only considering incomplete markets, there are a variety

of di¤erent restrictions that you can impose on the planner�s intervention. For

instance, I previously de�ned that an allocation is constrained suboptimal if a planner

can adjust the assets of households and make wealth transfers in the initial period

such that the utility of all households strictly increases. What if the planner was

prevented from making wealth transfers in the initial period so that a household�s

initial wealth is the sum of the value of the endowments and the value of the assets

chosen by the planner? In that case, a generic "constrained" suboptimality result

holds, but stronger assumptions are required. Notably, an upper bound on the

number of households is needed.

So for any set of "constraints" facing a planner, the question of interest is whether

planner intervention can lead to a Pareto improvement. A general system of equations

that restrict the intervention of the planner will be labeled the "constraints". If,

over a generic subset of parameters, the planner is able to intervene and e¤ect a

Pareto improvement while adhering to the "constraints", then the original equilibrium

allocation is generically "constrained" suboptimal. When the "constraints" are those

fromGeanakoplos and Polemarchakis (1986) as described twice already, then these are

simply constraints and the welfare result is titled generic constrained suboptimality.

The paper of Citanna, Kajii, and Villanacci (1998) set a framework so that for any
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set of "constraints", an equilibrium allocation is generically "constrained" suboptimal

if a rank condition (ND) and a dimensionality condition are met. Several works,

including Cass and Citanna (1998) on the impact of �nancial innovation, have since

utilized this framework. I will focus attention on those papers dealing with taxation

as this is a special case of transaction costs.

Pareto-improving tax schemes

The papers by Citanna, Polemarchakis, and Tirelli (2006) and del Mercato and

Villanacii (2006) both consider the normative e¤ects of a planner introducing a

tax/subsidy scheme. The asset structure for both must be incomplete and there are

no other frictions a¤ecting the original equilibrium. The intervention is anonymous

in Citanna, Polemarchakis, and Tirelli (2006) and subsequently requires an upper

bound on the number of households whereas del Mercato and Villanacci (2006) have

a non-anonymous intervention but do not require an upper bound on the number of

households. The intervention in Citanna, Polemarchakis, and Tirelli (2006) is taxes

on asset purchases and the collected taxes are then redistributed back to the house-

holds lump sum using a �xed distribution scheme. The intervention of del Mercato

and Villanacci (2006) is the taxation of outside money (basically a risk-free bond)

leading to an adjustment of each household�s portfolio. In either case, the result is

that over a generic subset of endowments and utilities, there exists a tax scheme that

the planner can employ such that the resulting allocation provides higher utility for

all households.

In these papers, taxation is seen as a partial �x of the ine¢ encies caused by

incomplete markets. This suggest that the primary purpose of taxation is for the

reallocation of resources for normative gains. Well before resources can be reallocated,

a tax system must be imposed that provides funds for the creation and enforcement
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of the legal institutions (to protect property rights) and for the provision of public

goods. So it would seem prudent to analyze an economy in which the only friction is

from a given tax system and then determine if there exists a way in which the planner

could adjust the tax system in order to e¤ect a Pareto improvement. This is the

contribution I make in Chapter 4.

In Chapter 4, I consider an economy in which transaction costs are already present.

The planner then makes anonymous adjustments to the transaction costs that satisfy

budget balance. Budget balance is satis�ed when the value collected from all the

transaction costs does not change. The asset structure can be either complete or

incomplete. The only friction under consideration is transaction costs and that

friction is also the tool in the hands of the planner. I prove that given an upper

bound on the number of households, for a generic subset of endowments, utilities,

and transaction costs, there exists a planner adjustment of the transaction costs such

that resulting allocation provides strictly higher utility to all households.

The result clearly has normative implications for tax policy. The limitation of

the result is that it assumes that the planner is omniscient, namely that it knows

the possible parameters (tuples of preferences, endowments, and transaction costs)

that the �nite number of households can have. Given that a planner may not be

omniscient, the following question is naturally of interest. For any parameters of

the household (lying in a generic subset), does there exist a �universal�adjustment

by the planner such that all households receive strictly higher utility? If so, then an

uninformed planner can choose this �universal�adjustment and still e¤ect the desired

Pareto improvement. My result remains silent on such a question, but my hunch

from working with these models is that no such �universal�adjustment exists.
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Chapter 2

Bankruptcy in a 2-Period Model

2.1 Introduction

In the development and study of general �nancial models, two fundamental features

have been commitment and perfect foresight. With these two foundations, households

are modeled as making all economic decisions for the entire �nite length of the model

at the initial date-event. At this node, households not only directly trade in the

commodity and asset markets currently open, but also make contingent transactions

in all future commodity and asset markets. While this simple framework has been

shown to be an invaluable tool for analyzing �nancial markets, the reality is that no

mechanism exists to freely and perfectly enforce commitment.

In this work, I relax the assumption that households must ful�ll their commitments

in the �nancial markets. Simply put, households are permitted to sell assets in the

initial date-event, reap the bene�t (increase in wealth) at that time, and then decide

not to repay the debt owed at a future date-event. A similar idea was developed

by Dubey et al. (2005) and termed "default". In their paper, a household chooses

to hold a portfolio of assets. At the time when the debt from a past sale of an

32
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asset comes due, the household can choose what fraction (if any) of this debt to

repay. The cost of less than complete repayment is utility loss, with greater loss for

a greater amount of debt left outstanding.

My model of bankruptcy di¤ers noticeably from Dubey et al. (2005). As above,

a household chooses to hold a portfolio of assets. At any future date-event, the

household considers the value of the entire portfolio. If the value is su¢ ciently

negative, the household may choose to default on the entire portfolio. The idea

of defaulting on an entire portfolio and not making good on any commitments is

what I term "bankruptcy". The household only has a binary choice: bankruptcy or

solvency. Declaring bankruptcy is not costless, but unlike Dubey et al. (2005), the

cost is a �nancial one a¤ecting the budget set, rather than changing the households�

preferences.

Concerning bankruptcy and not default, the two theoretical contributions are

by Sabarwal (2003) and by Araujo and Pascoa (2002). In both of these papers,

exemption levels are exogenously speci�ed for all physical commodities and these

levels can vary across households. A bankruptcy declaration would force the bankrupt

household to forfeit its endowments of commodities above the exemption level. In my

work, I suggest that the bankruptcy exemptions written in the legal code are actually

written on asset purchases and not on physical commodities. Under my formulation,

a bankruptcy equilibrium with exemptions is guaranteed to exist so long as the size of

the exemptions is bounded. The exemptions are only introduced to better represent

the U.S. legal code; they play no role in guaranteeing existence.

There are two types of credit that can be obtained by debtors: secured credit

and unsecured credit. With secured credit, the market sets both an asset price and

a collateral requirement for an asset sale. Thus, a household declaring bankruptcy

would be forced to forfeit this collateral (and possible additional resources if the
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creditor is granted �recourse�). The creditors are treated equally and their asset

payouts depend upon the pooled repayments of all debtors. Secured credit has

already been analyzed in the model by Geanakoplos and Zame (2002).

This model considers only unsecured credit, the second type of credit. Unsecured

credit is exactly as its name indicates, an asset for which there are no collateral re-

quirements when selling. A household declaring bankruptcy on unsecured credit still

repays their creditors, but this repayment is not speci�ed by the �nancial contract.

Unlike secured credit, this repayment may be zero. In the model, bankrupt house-

holds must forfeit their nonexempt asset purchases and must pay a bankruptcy cost

that is strictly increasing in the value of the purchases. This cost is the cost of �ling

detailed records of a bankrupt household�s asset purchases with the court in order

to obtain bankruptcy exemptions. It is these funds that are used by the perfectly

e¢ cient bankruptcy court (which operates without any loss of resources) to pay back

a bankrupt household�s creditors. As with secured credit, the creditors are treated

equally and their asset payouts depend upon the pooled repayments of all debtors.

Chapter 7 bankruptcy is the most common form of household bankruptcy (ac-

counting for over 70% of the individual bankruptcies1) and is also the most interesting

to model. Brie�y, chapter 7 allows a bankrupt household to completely discharge its

�nancial debt at the cost of forfeiting its nonexempt assets.2 The cost of declaring

chapter 7 bankruptcy is not tied at all to the total amount of debt accrued. In

contrast, chapter 13 (which composes all but the remaining 0:1% of individual bank-

ruptcies3) involves a 5-year repayment plan between the debtor and its creditors.4

Such a dynamic cannot be modeled in a 2-period model and even if it could, a house-

1http://en.wikipedia.org/wiki/Chapter_7_bankruptcy
211 U.S.C. §7
3http://en.wikipedia.org/wiki/Chapter_7_bankruptcy
411 U.S.C. §1322(d)



CHAPTER 2. BANKRUPTCY IN A 2-PERIOD MODEL 35

hold is still responsible (eventually) for all or most of its debt. Chapter 7 bankruptcy

and the unsecured credit markets together present the greatest potential for abuse of

bankruptcy privileges. For this reason, a household holding debt in the unsecured

markets will opt for chapter 7 bankruptcy.

The obvious abuse of bankruptcy privileges is that a household would borrow as

much as possible knowing that its debt would be erased in the following period. A

recent 2005 clari�cation of the bankruptcy law sought to reduce the number of abuses.

It states that any household applying for chapter 7 bankruptcy must pass a "means

test". Simply put, if a household�s average income over the previous 6 months is

above the state median, then (unless a large number of statutorily allowed expenses

can be deducted) the household�s chapter 7 claims are transferred to chapter 13.5 In

this instance, the household would not be able to discharge the entire debt and would

be subject to the 5-year repayment plan as regulated by chapter 13. Therefore, if the

household will fail the "means test" in some state next period, then the household

will not run up debt beyond its means to repay in that state. Chatterjee et al.

(2007) show that this new "means test" policy is welfare improving in a dynamic

macroeconomic model of bankruptcy.

While investment constraints may be observed in reality, a bankruptcy model must

be written in a manner so that assets are endogenously constrained. Otherwise, the

households would only choose to sell assets at the arbitrary constraint and nowhere

else. Araujo and Pascoa (2002) have two models in their paper: one with investment

constraints (model 1) and one without (model 2). Model 2 of Araujo and Pascoa

(2002) was the �rst work in the literature to remove the constraints and bound the

assets endogenously. I do neither of the following, but the two most straightforward

511 U.S.C. §707(b)(1) and the Bankruptcy Abuse Prevention and Consumer Protection Act of
2005
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methods to bound assets without investment constraints are either (i) to assume that

the cost of bankruptcy strictly increases with the size of the debt or (ii) to assume

that the bankruptcy cost is in terms of wage garnishments that approach complete

as the size of the debt becomes unbounded. Araujo and Pascoa took the second

approach. Such an assumption requires that the cost of bankruptcy depends on

a household�s debt at the time of bankruptcy. This is contrary to the U.S. legal

framework as summarized above.

Further looking at model 2 of Araujo and Pascoa (2002), existence is only guaran-

teed when the asset payouts for creditors are strictly concave functions of the assets

("nonproportional reimbursement"). Such an assumption is required in their setup

as the assets may be linearly dependent for bankrupt households. With dependent

payouts, the asset choices of households may not be bounded, so it is clear that some

additional assumption is required. The problem with the assumption of "nonpro-

portional reimbursement" is that it contradicts the U.S. bankruptcy code. The code

states that creditors with a claim in a bankruptcy case are divided into 6 classes.6

Repayment for a lower class will only occur once the classes above have been repaid

in full. Thus, throughout this work, I will assume that all creditors belong to the

same class and are repaid equally, that is, the model is constructed using the rule of

"proportional reimbursement".

After the existence of the general model is proven, I will analyze an economy with

two households and two assets. With only a single asset available for trade, the model

of bankruptcy is identical to the Dubey et al. (2005) model of default, so at least two

assets must be considered. In both the aforementioned Dubey et al. (2005) work and

in the �nance literature, there exists the possibility for chain reaction of default (or

contagion). Brie�y, a chain reaction of default occurs when default by one household

611 U.S.C. §726
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lowers the asset payouts by just enough so that other households will now default,

other households that would have remained solvent had they received their entire

asset payouts. I prove for the simple economy with two households that a chain

reaction of bankruptcy cannot be an equilibrium phenomenon. Thus, households

who declare bankruptcy given the prices of the bankruptcy equilibrium would have

made the same decision given the prices of the full commitment equilibrium.

Suppose that bankruptcy imposes real costs on the economy. Such costs would

be the resources lost in the process whereby the bankruptcy court liquidates bank-

rupt households�assets and distributes these funds to the creditors. I dedicate a

brief section to explaining how the real costs are incorporated and how the proof of

existence generalizes. As it turns out, the only signi�cant di¤erence, and an interest-

ing implication, is that the asset payouts for creditors are smaller when bankruptcy

imposes real costs on the economy.

This paper is organized into four remaining sections. Section 2.2 introduces the

model and proves the existence of a bankruptcy equilibrium, the fundamental concept

in this paper. Section 2.3 considers the possibility for a chain reaction of bankruptcy

in a simple economy with two households. Section 2.4 generalizes the model to

include real costs of bankruptcy. Section 2.5 contains the existence proof.

2.2 The Model

I consider a 2-period general �nancial model with uncertainty. Let there be S states

of uncertainty in the second time period and denote the �rst time period as state

s = 0; so that the states belong to the �nite set s 2 S = f0; :::; Sg: In each state,

there are L physical commodities and the commodity l = L will be the numeraire

(meaning that all other commodities in that state are priced relative to l = L). I
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will denote commodities with a subscript and states in parentheses.

Let the set of households be denoted by h 2 H where H~[0; 1] and
R
h2Hdh = 1:

I will denote household variables and parameters with a superscript. De�ne the

Borel-measurable function �(A) : H ![0; 1] as

�(A) =
R
h2A�Hdh:

There are a �nite number of distinct types of households denoted by f 2 F =

f1; :::; Fg: De�ne Hf = fh 2 H : h is of type fg : I explicity assume, though the

assumption is without loss of generality, that � (Hf ) =
1
F

8f: Further, to be of

the same type f; I require that 8h; h0 2 Hf ; X
h = Xh0 = Xf (consumption set),

uh(�) = uh
0
(�) = uf (�) (utility function), and eh = eh

0
= ef (endowments). These

household primitives will be introduced shortly. Throughout this paper, I will refer to

both households and types of households as simply households. No confusion should

arise, but households will be linked with equilibrium variables (since households of

the same type may make di¤erent optimizing decisions), while types will be linked

with parameters (as all households of the same type have identical parameters).

De�ne G = L(S+1) and denote household consumption as xh 2 RG+. Concerning

notation, xh(s) 2 RL+ is the vector of consumption by household h of all commodities

in state s and xhl (s) 2 R+ is the scalar denoting the consumption by household h of

good (s; l); or the lth physical commodity in state s: The primitives for the households

are the consumption set Xf , the utility function uf : Xf ! R, and the endowment of

physical commodities ef 2 RG+ in all states. To characterize and compute equilibria,

I assume that the model satis�es standard smooth assumptions:

A.1 Xf = RG+:
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A.2 uf is C2; di¤erentiably strictly increasing (i.e., 8xf 2 Xf ; Duf (xf ) >> 0),

di¤erentiably strictly quasi-concave (i.e., 8xf 2 intXf s.t. Duf (xf )�f = 0 and

�f 6= 0, then �T
fD

2uf (xf )�f < 0), and satis�es the boundary condition (i.e.,

8xf 2 intXf ; clU f (xf ) � intXf where U f (xf ) = fx0 2 Xf : u(x0) � u(xf )g).

A.3 ef >> 0:

To transfer wealth between states of uncertainty, the households have access to

numeraire assets in zero net supply. Let there by J � S assets that are traded at

state s = 0 and return strictly positive payouts rj(s) > 0 in states s > 0: I collect

the asset payouts into the S � J yields matrix

Y =

266664
r1(1) ::: rJ(1)

: :

r1(S) ::: rJ(S)

377775
with the payouts in terms of the numeraire commodity l = L: The assumptions

placed on the parameter Y are:

A.4 Y is a strictly positive matrix with full column rank and is in general position.7

Denote the portfolio of household assets as zh 2 RJ where zhj 2 R is the scalar

denoting the amount of asset j held by household h: For each asset j; I will call a

household a creditor (on asset j) if zhj � 0 and a debtor (on asset j) if zhj < 0:

Let the equilibrium commodity prices be denoted by p 2 RGnf0g: Under as-

sumption (A:2); the prices are strictly positive p >> 0: As commodity l = L is

the numeraire, I normalize pL(s) = 1 8s � 0: The assets pay out in this numeraire
7By general position, I mean that any J rows of Y will be linearly independent.
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commodity, so Y has real units. To consider the nominal value of the asset payouts,

I will make the identity transformation

Y =

266664
pL(1) 0 0

0 ::: 0

0 0 pL(S)

377775 �
266664
r1(1) ::: rJ(1)

: :

r1(S) ::: rJ(S)

377775 :

Thus, I view the yields matrix Y as a matrix with payouts in terms of the unit of

account. Let the equilibrium asset prices be denoted by q 2 RJ : The asset prices

can be thought of as the nominal returns of the assets in state s = 0: De�ne the

(S + 1)� J returns matrix as

R =

0B@ �q

Y

1CA ;

where R (as with Y ) pays out in the unit of account.

The model introduced thus far is standard with one exception: the asset payouts

are assumed to be strictly positive. The importance of this assumption will be made

clear shortly. In all lack of commitment models, there are two technical issues to

consider when proving existence: convexity and boundedness.

2.2.1 Convexity

The budget set written in terms of zh 2 RJ is not convex. For some given state

s > 0; the asset payouts are a concave function of assets for bankrupt households and

the asset payouts are a concave function of assets for solvent households, but over

the entire domain of asset holdings (and allowing a household to choose to be either

bankrupt or solvent), the asset payouts are not a concave function of assets.

This is akin to the problem contained in the Dubey et al. (2005) model of default.
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In their model, the threshold between being a debtor and a creditor was exactly set

at zero asset holdings. By de�ning �h 2 RJ+ as asset purchases and �h 2 RJ+ as

asset sales, it is unambiguous (and state independent) that a debtor for asset j is a

household with �hj > 0: By de�ning twice as many asset variables
�
�h; �h

�
2 R2J+

as compared to zh 2 RJ ; Dubey et al. (2005) are able to maintain the convexity of

the household�s optimization problem.8 In my model, the threshold between being

bankrupt and solvent depends on all the assets in the portfolio and the state-speci�c

payouts of each. Therefore, in order to employ the Dubey et al. (2005) scheme to

convexify the budget set, I would need to not only split the assets into purchases and

sales, but also introduce an additional S variables that would denote the di¤erent

values that a portfolio could take in each state s > 0: For obvious reasons, I choose

not to do this.

Moreover, the bankruptcy problem in reality is a nonconvex one, either a house-

hold is or is not bankrupt. In order to obtain existence, I will therefore need a

continuum of each of the �nite types of households f 2 F :9 With the continuum, the

integrated budget set across all households of type f 2 F will be convex. Further,

while the demand correspondence for each individual household is guaranteed to be

upper hemicontinuous, but not convex-valued, the demand correspondence for each

type f 2 F will be convex-valued.

8Dubey et al. (2005) have arti�cially doubled the number of independent assets. Consider the
statement from Zame (1993): "by separating purchases from sales, I have allowed for the possibility
that agents go long and short in (i.e., buy and sell) the same security. I have implicitly contemplated
this possibility in the [GEI] model, but when default is not possible, such an action is irrelevant.
However, when default is possible, such an action may not be irrelevant; it may bene�t a trader to
go long and short in the same security if he does not intend to meet all his obligations [sic]".

9This was recognized independently by both Sabarwal (2003) and Araujo and Pascoa (2002).
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2.2.2 Boundedness, bankrupt households

When households declare bankruptcy, the asset payouts for creditors will be deter-

mined by the pooled repayments of all debtors. The creditors will receive propor-

tional reimbursement, so their asset payout is rhj (s) = �j(s)rj(s): The endogenous

variable �j(s) is the overall repayment rate. The overall repayment rate is equal to

the weighted sum of the individual repayment rates of all debtors. A formal de�ni-

tion will be provided shortly. The asset payouts for a particular household will then

di¤er depending upon if the household is a creditor or a debtor:

rhj (s) = �j(s)rj(s) if zhj � 0 and rhj (s) = rj(s) if zhj < 0 8j:

Solvent households are required to ful�ll their �nancial commitments entirely.

The �nancial payout for a solvent household in state s > 0 is given by:

rh(s) � zh =
X

j
rhj (s)z

h
j :

A bankruptcy discharge may not always be permitted. In this model, households

with income above the median level are not eligible for bankruptcy and must ful�ll

their �nancial commitments. I will denote the l = 1 physical commodity as the

income of the household from the labor it provides. I assume that for some state

s > 0; the household will receive an income above the median. De�ne emed(s) to

be the median income in state s > 0:10 The "means test" assumption can be state

formally.

A.5 8f 2 F ; 9s > 0 s.t. ef1(s) > emed(s):

10emed(s) is de�ned as e : �(A0) = �(A00) = 0:5 where A0 = ff 2 F : ef (s) � eg and A00 = ff 2
F : ef (s) � eg:
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De�ne S�f = fs > 0 : e
f
1(s) � emed(s)g as the set of states at which households of

type f are "eligible" to declare bankruptcy.11

Let �j 2 [0; �j] be the exemption level (in terms of the unit of account) for asset j:

The presence of exemptions is not required for the proof of existence, so I allow for no

exemptions, �j = 0: To guarantee that the asset choices are bounded, I must assume

that the exemption level is bounded above, �j � �j with �j < 1: Upon declaring

bankruptcy, a household discharges its debt on all its asset sales, forfeits its asset

purchases with value above the exemption level, and pays the cost of bankruptcy.

The process of receiving bankruptcy exemptions and that of paying the cost of

bankruptcy are closely related. To receive the bankruptcy exemptions, a bankrupt

household must submit detailed records of all its asset purchases to the bankruptcy

court. This process typically requires the household to hire legal counsel. The cost

of submitting the records (or of hiring the legal counsel) will be strictly increasing in

the value of the household�s asset purchases.

De�ne the variables (x)+ = maxfx; 0g and (x)� = minfx; 0g: De�neH0
s as the set

of bankrupt households in state s > 0: The �nancial payout for a bankrupt household

h 2 H0
s is given by:

P
j min

n
rhj (s)

�
zhj
�+
; �j

o
�
P

j �jr
h
j (s)

�
zhj
�+
:12

The �rst term signi�es that a bankrupt household may keep up to �j of the value of

its purchases rhj (s)
�
zhj
�+
for each asset j: The second term is the cost of bankruptcy.

The assumption that the bankruptcy cost is strictly increasing in the value of the

11If I were to introduce spot prices into the de�nition of S�f ; then a small price change may switch
s 2 S�f to s =2 S�f or vice-versa. As a result, the budget correspondence would not be continuous.
12As with the �nancial payout for solvent households, there is an assumption that the payout

cannot be smaller than the negative value of a household�s endowments, that is, households are not
permitted to hold negative wealth. In equilibrium, this lower bound would never be reached due to
assumption (A:2):
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asset purchases is given simply as:

A.6 � >> 0:

The following intuition motivates claim 1 that assumptions (A:5) � (A:6) su¢ ce

to prove the boundedness of assets for bankrupt households. If Arrow securities were

permitted, it would be optimal for any household to sell an arbitrarily large amount

of the Arrow security paying out in state s: Such a sale would result in an arbitrage

pro�t, higher payout in the initial state without reducing payout in any other state.

Arrow securities are not permitted in this model (assumption (A:4)). However,

a household may be able to replicate an Arrow security with some combination of

the available assets. Such a combination of assets must contain both purchases and

sales. To obtain an arbitrage pro�t with this combination of assets, the household

must transact an arbitrarily large amount of each asset. This will force the household

to pay an arbitrarily large cost of bankruptcy on its asset purchases. Thus, the

assumption (A:6) with � >> 0 prevents the most basic form of arbitrage imaginable

for a bankruptcy model.

Claim 2.1 For bankrupt households h 2 [s>0H0
s; the assets z

h are bounded.

Proof. Consider a household h 2 [s>0H0
s of type f: If h declares bankruptcy in

some state, then its wealth is equal to

p(s)ef (s) +
P

j min
n
rhj (s)

�
zhj
�+
; �j

o
�
P

j �jr
h
j (s)

�
zhj
�+

(2.1)

in those states and at least one such state exists since h 2 [s>0H0
s: If h remains

solvent in some state, either by choice or by force [s =2 S�f ], then its wealth is equal to

p(s)ef (s) +
P

j r
h
j (s)z

h
j (2.2)



CHAPTER 2. BANKRUPTCY IN A 2-PERIOD MODEL 45

in those states and at least one such state exists by (A:5): Suppose that there exists

an optimal sequence of asset choices
�
z�j
�
8�2N such that z

�
j ! 1 as � ! 1 for

some j: From (2:1) and with � >> 0 and �j � �j bounded above, h would be

consuming outside the consumption set Xf = RG+ for some � < 1 (contradiction).

With zh bounded above, suppose there exists an optimal sequence of asset choices

(z�k)8�2N such that z
�
k ! �1 as � ! 1 for some k: Then from (2:2) and with

rhj (s) = rj(s) > 0; h would be consuming outside of the consumption set Xf = RG+

for some � <1 (contradiction).

2.2.3 Repayment rates

As this model only contains 2 periods, a household h will declare bankruptcy in some

state s > 0 if (i) the household is eligible, s 2 S�f with h 2 Hf and (ii) the choice is

optimal:

P
j min

n
rhj (s)

�
zhj
�+
; �j

o
�
P

j �jr
h
j (s)

�
zhj
�+

>
P

j r
h
j (s)z

h
j : (2.3)

For these bankrupt households, the nonexempt asset purchases and the bank-

ruptcy cost are turned over to the bankruptcy court. The total collected value is:

P
j �jr

h
j (s)

�
zhj
�+
+
P

j

�
rhj (s)z

h
j � �j

�+
: (2.4)

The court then liquidates the assets and returns the value to those creditors that

are owed funds by the bankrupt household. A bankrupt household has total debtP
j rj(s)

�
zhj
��
: I make the following distribution assumption.

A.7 If h 2 H0
s; then 8j; the fraction

rj(s)(zhj )
�P

j
rj(s)(zhj )

� of (2:4) is returned to the asset j

creditors.
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De�ne the individual repayment rate �h(s) 2 [0; 1] as the repayment rate of any

debtor h in state s > 0: If h is a debtor on multiple assets, assumption (A:7) implies

that the individual repayment rate is identical for all those assets in state s: De�ne

�h(s) = 1 for solvent households. From assumption (A:7); a bankrupt household

originally owes rj(s)
�
zhj
��
on asset j in state s; but only pays back �h(s)rj(s)

�
zhj
��

of this value where:

�h(s) = �
P

j �jr
h
j (s)

�
zhj
�+
+
P

j

�
rhj (s)z

h
j � �j

�+P
j rj(s)

�
zhj
�� : (2.5)

The bankruptcy inequality (2:3) holds i¤ �h(s) < 1: Further, the �nancial payouts

can now be written in an identical manner for both solvent and bankrupt households

using �h(s) : X
j
�j(s)rj(s)

�
zhj
�+
+
X

j
�h(s)rj(s)

�
zhj
��
: (2.6)

The overall repayment rate �j(s) is determined in equilibrium such that the re-

payment rate expected by creditors is equal to the weighted sum of the individual

repayment rates across all debtors:

�j(s)

Z
h2H

�
zhj
�+
+

Z
h2H

�h(s)
�
zhj
��
= 0 8j;8s > 0: (2.7)

Equation (2:7) implies that

Z
h2H

�X
j
�j(s)rj(s)

�
zhj
�+
+
X

j
�h(s)rj(s)

�
zhj
���

= 0 8s > 0:
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2.2.4 De�nition of bankruptcy equilibrium

I will now write down the budget set for a household h 2 Hf :

Bh(p; q; �) =

8>>>>>>>>>>><>>>>>>>>>>>:

(x; z) 2 Xh � RJ :

p(0)(ef (0)� x(0))� qz � 0;

8s 2 S�f : p(s)
�
ef (s)� x(s)

�
+

max
n
rh(s)zh;

P
j

h
min

n
rhj (s)

�
zhj
�+
; �j

o
� �jr

h
j (s)

�
zhj
�+io � 0;

8s =2 S�f : p(s)(ef (s)� x(s)) + rh(s) � zh � 0:

9>>>>>>>>>>>=>>>>>>>>>>>;
:

I de�ne a bankruptcy equilibrium as
�
(xh; zh)h2H; p; q; �

�
s.t.

8h 2 H, given (p; q; �) (xh; zh) 2 argmaxuh(x):
subj to (x;z)2Bh(p;q;�)

(H)

Z
h2H

zhj = 0 8j: (M)

1

F

X
f2F

efl (s) =

Z
h2H

xhl (s) 8(l; s):

�j(s)

Z
h2H

�
zhj
�+
+

Z
h2H

�h(s)
�
zhj
��
= 0 8j;8s > 0: (2.7)

As with the Dubey et al. (2005) model of default, a no-trade outcome is always

an equilibrium. By no-trade, I mean that the creditors expect the overall repayment

rate �j(s) = 0 8s > 0 and will not purchase asset j: The equilibrium asset price

will be qj = 0; so debtors will not sell asset j: This no-trade outcome trivially

satis�es equation (2:7): Thus, pessimistic beliefs by the creditors can be self-ful�lling

in equilibrium.
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The no-trade equilibrium is not rational, though certainly an equilibrium. The

reason that the beliefs by creditors are irrational is that assumption (A:5) forces all

debtors to repay their debt in some state s > 0: Thus, creditors should rationally

expect a strictly positive repayment rate in some state and will be willing to purchase

a strictly positive amount of asset j: Adhering to the idea suggested by Dubey et

al. (2005), I need only introduce some tremble that prevents creditors from forming

beliefs that �j(s) = 0 8s > 0: The existence of an equilibrium with this tremble is

actually what is shown in section 2.5.

2.2.5 Boundedness, solvent households

If
Z
h2H

�
zhj
�+

> 0; then equation (2:7) can be rearranged (using the market clearing

condition
Z
h2H

zhj = 0) as:

�j(s) = 1 +

Z
h2H

�
1� �h(s)

� �
zhj
��Z

h2H

�
zhj
�+ : (2.8)

When
Z
h2H

�
zhj
�+

> 0; the overall repayment rate �j(s) 2 [0; 1] : Recalling that

�h(s) < 1 if h 2 H0
s; the following intuitive results hold:

1. If zhj � 0 8h 2 H0
s (or H0

s = ;), then �j(s) = 1:

2. If zhj < 0 for some h 2 H0
s; then �j(s) < 1:

Claim 2.1 above showed how the bankruptcy setup is able to bound the assets

zh for bankrupt households. Claim 2.2 will bound the assets zh for entirely solvent

households, that is, those households that do not declare bankruptcy in any state

s > 0; the households h =2 [s>0H0
s: Collect the household-speci�c asset payouts
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rhj (s)

�
8j;8s>0 into the household speci�c yields matrix Y

h: For the following claim,

de�ne the set of entirely solvent households of type f asH�
f = fh 2 Hf : h =2 [s>0H0

sg :

Claim 2.2 For any f 2 F ; the set
Z
h2H�

f

zh is bounded.

Proof. Suppose that
Z
h2H�

f

zh is not bounded for some f 2 F : Divide the assets into

subsets s.t. for sequences of assets (z�1 ; ::; z
�
J)8�2N :

1. If
Z
h2H�

f

z�j ! +1 as � !1; then j 2 J +:

2. If
Z
h2H�

f

z�k ! �1 as � !1; ; then k 2 J �:

Under the assumption that
Z
h2H�

f

zh is not bounded, then J + [ J � 6= ;: Since

Y hzh is bounded, then J + 6= ;; J � 6= ;; and Y h does not have full rank in the

limit. Denote the S � (#J + +#J �) matrix Y � as the endogenous payout matrix

with only assets j 2 J + [ J �: For all submatrices of Y � with the number of

rows equal to (#J + +#J �) ; call these submatricesY �
n for n = 1; :::; N where N =0B@ S

#J + +#J �

1CA :

detY �
n ! 0 8n as � !1:

Y � has terms
�
rhj (s); r

h
k(s)

�
j2J+;k2J� : By the de�nition of the asset payouts:

rhj (s) = ��j (s)rj(s) 8�; 8j 2 J +:

rhk(s) = rj(s) 8�; 8k 2 J �:
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For j 2 J +; recall the de�nition of ��j (s) 8s 2 S1 :

��j (s) = 1 +

Z
h2H

�
1� �h(s)

� �
z�j
��Z

h2H

�
z�j
�+ : (2.8)

Since
Z
h2H�

f

z�j ! +1; then
Z
h2H

�
z�j
�+ !1 as � !1: The term

Z
h2H

�
1� �h(s)

� �
z�j
��

is bounded because
Z
h2H0

s

�
z�j
��
is bounded by claim 1 and �h(s) = 1 for h =2 H0

s:

Thus, from (2:8); ��j (s)! 1 8s > 0 as � !1:

Therefore, Y �
n ! Yn 8n as � ! 1; where Yn has terms (rj(s); rk(s))j2J+;k2J� :

As detY �
n ! 0; then detYn = 0 8n:

From (A:4); Y has full column rank and is in general position. Thus, any square

submatrix Yn with J rows will have full rank. Also, for any number of columns

J 0 � J; 9 a square submatrix with J 0 rows and full rank. This contradicts that

detYn = 0 8n:

Theorem 2.1 states the general existence of a bankruptcy equilibrium. The proof

of this theorem is contained in section 2.5.

Theorem 2.1 Given assumptions (A:1)�(A:7); a bankruptcy equilibrium
�
(xh; zh)h2H; p; q; �

�
exists.

2.3 Absence of Chain Reactions

I will analyze an economy with two types of households F = 2; two assets J = 2; and

two states of uncertainty S = 2:13

13Recall that a model with only a single asset is identical to the model of default by Dubey et al.
(2005).
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To compute bankruptcy equilibria, I must specify the system of equations that

characterize the equilibria. The �rst order conditions with respect to assets are given

by:

�hR̂h = 0:

The 1� (S+1) vector �h is the vector of Lagrange multipliers for each of the (S+1)

budget constraints in the household�s problem (H): The returns matrix R̂h is the

household-speci�c (S + 1)� J matrix

R̂h =

0B@ �q

Ŷ h

1CA :

The yields matrix Ŷ h is the household-speci�c S�J matrix with terms r̂hj (s) de�ned

as:

r̂hj (s) = �j(s)rj(s) if zhj � 0 and r̂hj (s) = �h(s)rj(s) if zhj < 0 8j:

I will compare the GEI equilibrium with the bankruptcy equilibrium. I will say

that a "chain reaction of bankruptcy" has occurred if there exists a household h who

chooses to remain solvent in some state s > 0 given the GEI equilibrium prices and

chooses to declare bankruptcy in that state s given the bankruptcy equilibrium prices.

If such a phenomenon occurs, the declaration of bankruptcy by other households

has forced an otherwise solvent household into a bankruptcy position. This "chain

reaction" is instantaneous, but can be examined by comparing the GEI equilibrium

prices with the bankruptcy equilibrium prices.

A natural conjecture would be that a household with a mixture of both asset

purchases and sales, upon receiving a lower payout for its purchases due to bank-
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ruptcy declarations by other households, will then choose to declare bankruptcy. I

prove that with two households, this conjecture is false, that is, a chain reaction of

bankruptcy cannot occur. While the result is only valid for two households, the

result suggests that chain reactions of bankruptcy would be unlikely even with three

or more households.

The costs of bankruptcy (�1; �2) >> 0 and the exemption levels (�1; �2) 2 [0; �1]�

[0; �2] can take any values. Suppose that the household endowments belong to a

generic subset:

e1(1) 6= e2(1) and e1(2) 6= e2(2):

The household with the higher endowment in each state will have endowment above

the median level emed: So by assumption (A:5); one type of household can declare

bankruptcy in each state and no type is eligible to declare in both states.

Let the yields matrix be the full rank 2� 2 matrix Y: Take any state s 2 f1; 2g:

Let household h be a household of type f with s 2 S�f : Let k 6= h be a household of

the other type, k =2 Hf : If household h does not declare bankruptcy in s; the asset

payouts for both households are:

rh(s) = (r1(s); r2(s)) = rk(s):

If household h does declare bankruptcy, the following result holds:

Claim 2.3
�
zh1
�
�
�
zh2
�
< 0 for bankrupt household h 2 H0

s:

Proof. If zh1 � 0 and zh2 � 0; then

P
j r

h
j (s)z

h
j �

P
j min

n
rhj (s)

�
zhj
�+
; �j

o
�
P

j �jr
h
j (s)

�
zhj
�+
;
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so h would not choose to declare bankruptcy (contradicting h 2 H0
s).

If zh1 < 0 and z
h
2 < 0; then

�h(s) = �
P

j �jr
h
j (s)

�
zhj
�+
+
P

j

�
rhj (s)z

h
j � �j

�+P
j rj(s)

�
zhj
�� = 0:

The payout matrix for h now contains the row r̂h(s) = �h(s) (r1(s); r2(s)) = (0; 0):

The equilibrium prices q can never be such that assets 1 and 2 are dependent for

household h:14 With � =
�!
0 ; household h could make an arbitrage pro�t by pur-

chasing arbitrarily large amounts of one asset and selling arbitrarily large amounts

of the other asset. With � >>
�!
0 ; an arbitrage pro�t is ruled out, but household h

will still optimize by purchasing one asset and selling the other. Thus �h(s) > 0 and

there exists only one asset sale zhj < 0:

Suppose without loss of generality that zh1 > 0 and zh2 < 0: This holds for all

households of type f with s 2 S�f : Then the individual repayment rate is equal to:

�h(s) = �
�1r1(s)z

h
1 +

�
rh1 (s)z

h
1 � �1

�+
r2(s)zh2

:

With household h declaring bankruptcy, the overall repayment rate is reduced. For

asset j = 1; the overall repayment rate �1(s) = 1 since the debtors are of type f̂ with

s =2 S�
f̂
: For asset 2 from equation (2:8);

�2(s) = 1 +

�
1� �h(s)

�
zh2

zk2
14Consider when household h of type f declares bankruptcy in state s = 1 2 S�f with �

h(1) = 0:

The �rst order conditions with respect to assets for h are given by: �h

0@ �q1 �q2
0 0
rh1 (2) rh2 (2)

1A = 0: To

satisfy no arbitrage, q1q2 =
rh1 (2)

rh2 (2)
: Even in the unlikely case that the asset prices satisfy this equality,

the choice of assets is arbitrary as the assets are dependent. Thus, some of the possible choices
include assets that will still satisfy the statement of this claim:

�
zh1
�
�
�
zh2
�
< 0:
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where zk2 is the asset purchase of all households of type f̂ with s =2 S�f̂ : By market

clearing, the asset choice is given by zk2 = �zh2 : Thus,

�2(s) = 1 +

�
1� �h(s)

�
zh2

�zh2
=
�zh2 +

�
1� �h(s)

�
zh2

�zh2
=
��h(s)zh2
�zh2

= �h(s):

Therefore, the asset payouts in state s are given by:

r̂h(s) =
�
r1(s); �

h(s)r2(s)
�

r̂k(s) = (r1(s); �2(s)r2(s))

where h are households of type f with s 2 S�f and k are households of type f̂ with

s =2 S�
f̂
: In equilibrium, r̂h(s) = r̂k(s):

The same holds 8s > 0; so Ŷ h = Ŷ for all households h and both types of

households face the same returns matrix R̂ =

0B@ �q

Ŷ

1CA :

The GEI model is the canonical model with full commitment. Without bank-

ruptcy, the returns matrix for the GEI model is R =

0B@ �q

Y

1CA :

Claim 2.4 The set of bankruptcy equilibrium allocations is identical to the set of GEI

equilibrium allocations.

Proof. I will show that the equilibrium allocations are equal by showing that they are

both identical to the set of Arrow-Debreu equilibrium allocations. This is standard

for the GEI equilibria with complete markets. The state prices for the GEI equilibria
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are found as (�(0); �(1); �(2)) : �(0) = 1 and

(�(1); �(2)) =

�
�h(1)

�h(0)
;
�h(2)

�h(0)

�
= (q1; q2) � (Y )�1 :15 (2.9)

From these state prices, the Arrow-Debreu prices can be de�ned.

The bankruptcy model has complete markets as well. Let the asset prices for

bankruptcy equilibria be speci�ed as (q̂1; q̂2) : Then the state prices for the bankruptcy

equilibria are exactly equal to the state prices of the GEI equilibria:

(�(1); �(2)) =

�
�h(1)

�h(0)
;
�h(2)

�h(0)

�
= (q̂1; q̂2) �

�
Ŷ
��1

: (2.10)

Thus, the Arrow-Debreu prices are the same and the GEI equilibrium allocations and

bankruptcy equilibrium allocations are equivalent to the Arrow-Debreu equilibrium

allocations (Pareto optimal allocations).

Recall that I de�ned a "chain reaction of bankruptcy" as that event whereby a

household h chooses to declare bankruptcy in some state s > 0 at the bankruptcy

equilibrium prices and yet chooses to remain solvent in s at the GEI equilibrium

prices.

Theorem 2.2 In the simple economy speci�ed with two household types F = 2; two

assets J = 2; and two states of uncertainty S = 2; it is impossible to have a chain

reaction of bankruptcy.

Proof. Specify the GEI equilibrium prices as
�
p; q;

�!
1
�
and the bankruptcy equi-

librium prices as (p̂; q̂; �̂): If
�
p; q;

�!
1
�
= (p̂; q̂; �̂); the proof is trivial, so suppose�

p; q;
�!
1
�
6= (p̂; q̂; �̂): Consider any household h 2 Hf and let ẑh be the asset choices

15With complete markets,
�
�h(1)

�h(0)
; �

h(2)

�h(0)

�
=
�
�k(1)

�k(0)
; �

k(2)

�k(0)

�
where h 2 Hf and k =2 Hf :
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under (p̂; q̂; �̂): In the GEI equilibrium, without the opportunity for bankuptcy, denote

zh as the asset choices given prices
�
p; q;

�!
1
�
:

Suppose that h declares bankruptcy in state s 2 S�f given the prices (p̂; q̂; �̂): As

�̂
h
(s) < 1 for some h; s; then � <

�!
1 and Ŷ < Y:16 From (2:9) � (2:10); then q > q̂:

From the previous claim, p = p̂ and the equilibrium consumption choices are identical

for both sets of prices
�
p; q;

�!
1
�
and (p̂; q̂; �̂): Thus the asset payouts are identical:

Y zh = Ŷ ẑh =

0B@ p(1)
�
xh(1)� ef (1)

�
p(2)

�
xh(2)� ef (2)

�
1CA :

Premultiplying by (�(1); �(2)) >> 0; then (2:9)� (2:10) imply qzh = q̂ẑh:

In the bankruptcy equilibrium, the individual repayment rate is

�̂
h
(s) = �

P
j �jrj(s)

�
ẑhj
�+
+
P

j

�
rj(s)ẑ

h
j � �j

�+P
j rj(s)

�
ẑhj
�� < 1:

Notice that r̂j(s) = rj(s) for the asset j such that ẑhj � 0: The debtors on this asset

can only be households k 2 Hf̂ where s =2 S�f̂ implies �̂
k
(s) = 1 8k 2 Hf̂ :

Under the prices
�
p; q;

�!
1
�
; h chooses the assets zh given that the economy does

not permit bankruptcy. If given the opportunity to declare bankruptcy, h may change

the assets to yh: This is obvious given that the payout matrix directly depends upon if

bankrupty is declared or not. It is feasible for the household under the prices (p; q; 1)

to choose yh = ẑh; the assets chosen under the prices (p̂; q̂; �̂) when permitted to

declare bankruptcy. If yh = ẑh; then the individual repayment rate under
�
p; q;

�!
1
�

16When writing inequalities with matrices, the matrices are considered as a vector containing all
their elements.
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is:

�h(s) = �
P

j �jrj(s)
�
yhj
�+
+
P

j

�
rj(s)y

h
j � �j

�+P
j rj(s)

�
yhj
�� = �̂

h
(s) < 1:

The �nancial payout in state s is Y (s)zh =
X

j
rj(s)

�
zhj
�+
+
X

j
�h(s)rj(s)

�
zhj
��
:

The assets yh provide the same payout as zh in state s (since Ŷ (s)yh = Ŷ (s)ẑh =

Y (s)zh) and strictly higher payout in state s0 =2 S�f (since �̂ (s0) �
�!
1 implies Y (s0)yh >

Ŷ (s0)ẑh = Y (s0)zh). In state s = 0; to compare qyh against qzh; the equalities

qzh = q̂ẑh = q̂yh allow me to compare qyh against q̂yh: From above, the asset

prices satisfy q > q̂: Thus,
P

j qj
�
yhj
��

<
P

j q̂j
�
yhj
��
: Even though,

P
j qj
�
yhj
�+ �P

j q̂j
�
yhj
�+
; this additional cost of purchases is exactly canceled by strictly higher

payouts � (s0) =
�!
1 � �̂ (s0) :

Therefore, yh dominates zh given that the prices are
�
p; q;

�!
1
�
and that the econ-

omy permits bankruptcy. With the asset choice yh; since �h(s) = �̂
h
(s) < 1; then h

declares bankruptcy. The optimal asset choice must then satisfy �h(s) � �̂
h
(s) for h

to pick the optimal choice over yh: So h declares bankruptcy in state s given prices�
p; q;

�!
1
�
: This completes the proof.

2.4 Real Costs of Bankruptcy

Now suppose that bankruptcy imposes real costs on the economy. De�ne �j;RC(s) as

the overall repayment rate of debtors in such an economy where RC stands for �real

costs�. The amount turned over by bankrupt households to the courts have valueP
j �jr

h
j (s)

�
zhj
�+
+
P

j

�
rhj (s)z

h
j � �j

�+
: Assume that the bankruptcy courts are not

completely e¢ cient in liquidating the assets of bankrupt households and distribut-

ing their value to the creditors. That is, suppose that only �
P

j �jr
h
j (s)

�
zhj
�+
+

�
P

j

�
rhj (s)z

h
j � �j

�+
with � 2 [0; 1) is made available to the creditors. The di¤er-
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ence (1� �)
P

j �jr
h
j (s)

�
zhj
�+
+ (1� �)

P
j

�
rhj (s)z

h
j � �j

�+
is irrevocably lost to the

economy (a real loss of the numeraire commodity). As a result, the market clearing

conditions are appropriately adjusted to account for this loss:

Z
h2H

zhj = 0 8j: (M)

1

F

X
f2F

efl (s) =

Z
h2H

xhl (s) 8(l; s) =2 f(L; 1); :::; (L; S)g:

1
F

X
f2F

efL(s)�
Z
h2H0

s

(1� �)
hP

j �jr
h
j (s)

�
zhj
�+
+
P

j

�
rhj (s)z

h
j � �j

�+i
=

Z
h2H

xhL(s)

8s > 0:

The individual repayment rate �hRC(s) is de�ned as �
h
RC(s) = 1 for solvent house-

holds h =2 H0
s and

�hRC(s) = �
�
hP

j �jr
h
j (s)

�
zhj
�+
+
P

j

�
rhj (s)z

h
j � �j

�+iP
j rj(s)

�
zhj
�� (2.11)

for bankrupt households h 2 H0
s: The equation for the �nancial payouts remains the

same in terms of �h(s) as was de�ned in (2:5) :

X
j
�j(s)rj(s)

�
zhj
�+
+
X

j
�h(s)rj(s)

�
zhj
��
: (2.12)

The resulting equilibrium conditions are similar to (2:7) :

�j;RC(s)

Z
h2H

�
zhj
�+
+

Z
h2H

�hRC(s)
�
zhj
��
= 0 8j; s > 0: (2.13)
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Claim 2.5 Equation (2:13) implies that

Z
h2H

�X
j
�j;RC(s)rj(s)

�
zhj
�+
+
X

j
�h(s)rj(s)

�
zhj
���

=

�
Z
h2H0

s

(1� �)
hP

j �jr
h
j (s)

�
zhj
�+
+
P

j

�
rhj (s)z

h
j � �j

�+i 8s > 0:
(2.14)

Proof. Equation (2:12) can be written equivalently as:

X
j
�j;RC(s)rj(s)

�
zhj
�+
+
X

j
rj(s)

�
zhj
��

for h =2 H0
sX

j
�j;RC(s)rj(s)

�
zhj
�+ �Pj �jr

h
j (s)

�
zhj
�+ �Pj

�
rhj (s)z

h
j � �j

�+
for h 2 H0

s

:

Using these expressions, then (2:14) simpli�es to:

Z
h2H

�X
j
�j;RC(s)rj(s)

�
zhj
�+�

+

Z
h=2H0

s

�P
j rj(s)

�
zhj
���

��
Z
h2H0

s

�P
j �jrj(s)

�
zhj
�+
+
P

j

�
rhj (s)

�
zhj
�+ � �j

�+�
= 0:

(2.15)

Using the de�nition of �hRC(s) from (2:11); then (2:15) simpli�es to:

R
h2H

�P
j �j;RC(s)rj(s)

�
zhj
�+�

+
R

h=2H0
s

�P
j rj(s)

�
zhj
���

+
R

h2H0
s

�hRC(s)
�P

j rj(s)
�
zhj
���

= 0:

By de�nition, �hRC(s) = 1 for h =2 H0
s; so using equation (2:13) �nishes the argument.

With this claim, it is straightforward to write a proof for the existence of a bank-

ruptcy equilibrium with real costs using the results contained in sections 2.2 and

2.5.
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If
Z
h2H

�
zhj
�+

> 0; then I can rearrange equation (2:13) :

�j;RC(s) = 1 +

Z
h2H

�
1� �hRC(s)

� �
zhj
��Z

h2H

�
zhj
�+ : (2.16)

The equation (2:16) yields the following three results. The �rst two are the same as

in section 2.2, while the third one compares the model without real costs to the model

with real costs. The subscript RC will be used to distinguish the overall repayment

rate �j;RC(s) in the model with real costs from the overall repayment rate �j(s) in the

model without real costs.

1. If zhj � 0 8h 2 H0
s (or H0

s = ;), then �j;RC(s) = 1:

2. If zhj < 0 for some h 2 H0
s; then �j;RC(s) < 1:

3. �j;RC(s) � �j(s) with strict inequality if z
h
j �
�P

j

�
zhj
�+�

< 0 for some h 2 H0
s:

Proof. (Statement 3)

For the third statement, the equality �j;RC(s) = �j(s) is obvious if z
h
j �
�P

j

�
zhj
�+� �

0 8h 2 H0
s: This is because �hRC(s) = �h(s) = 0 8h 2 H0

s if
P

j

�
zhj
�+
= 0 and

�j;RC(s) = �j(s) = 1 if z
h
j � 0 8h 2 H0

s:

i. To show that �j;RC(s) < �j(s) under the condition z
h
j �
�P

j

�
zhj
�+�

< 0; �rst

consider the ceterus paribus analysis in which the households�asset choices zh

are held �xed. With � < 1; then �hRC(s) < �h(s) and from (2:16); �j;RC(s) <

�j(s):

ii. Now allow the households to equilibrate under the new repayment rates �j;RC(s):

There exists values of � arbitrarily close to 0 so that �j;RC(s) < �j(s): Suppose
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that as � increases outside this open neighborhood, the equilibrium overall

repayment rates converge �j;RC(s) ! �j(s) from below. Then the equilibrium

asset choices in the model with real costs approach the asset choices in the

model without real costs. If the choices are identical, then �j;RC(s) < �j(s):

Thus, it can never be that �j;RC(s) � �j(s) as this contradicts part (i) of the

proof.

Consider the normative impact of an increase in the real costs, a decrease in the

parameter �: When �j;RC(s) < �j(s) for some j; this change will be Pareto inferior

(utility will not increase for any households and will strictly decrease for some).17

From a normative standpoint, it is obvious that the planner would want to reduce

the real costs parameterized by �; but it is not clear how the planner could use a tax

scheme to �nance such a reduction, a tax scheme that would need to be approved by

some/most/all households. Without a de�nitive normative result, the main bene�t

of this extension is that under a more realistic bankruptcy setup, one with real costs

from the ine¢ ciency of the bankruptcy process, existence is guaranteed and the e¤ects

of this ine¢ ciency on prices and allocation can be quanti�ed.

17There are three types of households to consider: solvent ones that remain so after the increase,
bankrupt ones that remain so after the increase, and solvent household that now declare bankruptcy
as a result of the lower overall repayment rate �: Solvent creditors are strictly worse o¤ as their
asset payouts are lower. Bankrupt households are indi¤erent. For the households that change
their bankruptcy decision, they could have chosen a portfolio to put them in a bankrupt position
previously (and taken advantage of the potential spanning ability of bankruptcy/default as in Zame,
1993), but they chose not to. Thus, these households prefer to remain solvent. However, the prices
are now such that the households will declare bankruptcy, a decision that makes them at least as
worse o¤.
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2.5 Proof of Theorem 2.1

De�ne the upper bound �x 2 RG+ as

�xl(s) = 2
P

f2F e
f
l (s) 8l; s:

De�ne the bounded budget set as

�Bh(p; q; �) =

8>>>>>>>>>>><>>>>>>>>>>>:

(x; z) 2 Xh � RJ : x � �x

p(0)(ef (0)� x(0))� qz � 0;

8s 2 S�f : p(s)(ef (s)� x(s))+

max
n
rh(s) � z;

P
j

�
min

�
rhj (s)(zj)

+; �j
	
� �jr

h
j (s)(zj)

+
�o
� 0;

8s =2 S�f : p(s)(ef (s)� x(s)) + rh(s) � z � 0

9>>>>>>>>>>>=>>>>>>>>>>>;
:

In equilibrium, the constraints x � �x will never bind. Since uh is continuous and

quasi-concave, adding the nonbinding constraints x � �x is innocuous and does not

change the household decision.

Lemma 2.1
Z
h2Hf

�Bh(p; q; �) is a compact set for each type f 2 F :

Proof. The sets are trivially closed. For boundedness, see the proof of claims 2.1

and 2.2 in section 2.2.

I will de�ne a correspondence with the same name as the budget set �Bh(p; q; �)

such that the value of the correspondence is equal to this set. The correspondence

�Bh : ��(!) � �Bh de�ned as (p; q; �) 7�! �Bh (p; q; �) has domain ��(!); the price

space to be de�ned shortly. The price space restricts p(s) > 0 8s � 0: The

correspondence �Bh is well-de�ned and upper hemicontinuous (uhc).

Lemma 2.2 �Bh is lower hemicontinuous (lhc).
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Proof. Consider a sequence (p� ; q� ; ��)! (p; q; �) and (x; z) 2 �Bh(p; q; �): To verify

lhc, I will construct a sequence (x� ; z�) s.t. (i) 9N� s.t. (x� ; z�) 2 �Bh (p� ; q� ; ��)

8� � N� and (ii) (x� ; z�)! (x; z) :

The proof method will be to determine some scaling fraction ��(s) 2 [0; 1] 8s � 0:

This scaling fraction must converge ��(s)! 1 8s � 0: Further, by de�ning

x�(s) =

�
min
s�0

��(s)

�
� x(s) 8s � 0

z� =

�
min
s�0

��(s)

�
� z;

the vector (x� ; z�) will now be a¤ordable. I de�ne �� =
�
min
s�0

��(s)

�
for simplicity.

In order for a household to declare bankruptcy, (i) it must be eligible to do so

and (ii) it must �nd it optimal to do so. By de�nition, the set S�f is independent of

prices. Thus, I only focus attention on the static bankruptcy maximization:

max
n
rh(s) � z;

P
j

�
min

�
rhj (s)(zj)

+; �j
	
� �jr

h
j (s)(zj)

+
�o
:

I will need to show that (��(s))s�0 !
�!
1 and

�
(x�(s))8s�0 ; z

�
�
is a¤ordable given

prices (p� ; q� ; ��) 8� � N�:

Let s = 0:

If p(0)(ef (0)� x(0))� qz > 0; then 9M0 s.t. 8� �M0;

p�(0)(ef (0)� x(0))� q�z > 0:

For these � �M0; set �
�(0) = 1:

If p(0)(ef (0) � x(0)) � qz = 0; then p(0)x(0) + qz > 0 and 9N0 s.t. 8� � N0;
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p�(0)x(0) + q�z > 0: De�ne ��(0) as:

��(0) =

8>>>><>>>>:
p�(0)ef (0)

p�(0)x(0)+q�z

if p�(0)ef (0) < p�(0)x(0) + q�z

and p�(0)x(0) + q�z 6= 0

1 otherwise

9>>>>=>>>>; :

In the limit, p�(0)x(0) + q�z ! p�(0)ef (0) and 8� � N0; p
�(0)x(0) + q�z > 0: Thus

��(0)! 1: To verify feasibility,

p�(0)x�(0) + q�z� = �� (p�(0)x(0) + q�z) :

Since �� � ��(0) and p�(0)x(0) + q�z > 0; then

p�(0)x�(0) + q�z� � p�(0)ef (0):

Thus (x�(0); z�) satis�es the budget constraint for s = 0 given (p�(0); q�) :

Let s > 0:

De�ne the �nancial payout as

w (z; �; s) = max
n
rh(s) � z;

P
j

�
min

�
rhj (s)(zj)

+; �j
	
� �jr

h
j (s)(zj)

+
�o
:

The following two claims will allow me to streamline the argument.

Claim 2.6 w (�z; �� ; s) � �w (z; �� ; s) 8� 2 [0; 1]:

Claim 2.7 min
�
�rhj (s)(zj)

+; �j
	
� �min

�
rhj (s)(zj)

+; �j
	
8� 2 [0; 1]:

Proof of Claim 2.7
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Case 1: Ifmin
�
rhj (s)(zj)

+; �j
	
= rhj (s)(zj)

+; thenmin
�
�rhj (s)(zj)

+; �j
	
= �rhj (s)(zj)

+:

Obviously, �rhj (s)(zj)
+ � �

�
rhj (s)(zj)

+
�
: Case 2: Suppose thatmin

�
rhj (s)(zj)

+; �j
	
=

�j: Ifmin
�
�rhj (s)(zj)

+; �j
	
= �j; then obviously �j � ��j: Ifmin

�
�rhj (s)(zj)

+; �j
	
=

�rhj (s)(zj)
+; then �rhj (s)(zj)

+ � ��j as we are considering case 2.�

Proof of Claim 2.6

Case 1: If w (z; �� ; s) = rh(s) � z; then w (�z; �� ; s) � �
�
rh(s) � z

�
by de�nition.

Obviously, �rh(s) � z � �
�
rh(s) � z

�
; so w (�z; �� ; s) � �w (z; �� ; s) holds. Case 2:

Now consider w (z; �� ; s) =
P

j min
�
rhj (s)(zj)

+; �j
	
�
P

j �jr
h
j (s)(zj)

+: By de�nition,

w (�z; �� ; s) �
P

j min
�
�rhj (s)(zj)

+; �j
	
� �

P
j �jr

h
j (s)(zj)

+: Using claim 2.7 for all

assets j; then

P
j min

�
�rhj (s)(zj)

+; �j
	
� �

P
j �jr

h
j (s)(zj)

+ �

�
�P

j min
�
rhj (s)(zj)

+; �j
	
�
P

j �jr
h
j (s)(zj)

+
�
:

In sum, w (�z; �� ; s) � �w (z; �� ; s) ; completing the argument.�

Returning to the proof of Lemma 2.2, if p(s)(ef (s)� x(s)) + w (z; �; s) > 0; then

9Ms s.t. 8� �Ms;

p�(s)(ef (s)� x(s)) + w (z; �� ; s) > 0:

For these � �Ms; set �
�(s) = 1:

If p(s)(ef (s)� x(s)) + w (z; �; s) = 0; then p(s)x(s)� w (z; �; s) > 0 and 9Ns s.t.

8� � Ns; p
�(s)x(s)� w (z; �� ; s) > 0: De�ne ��(s) as:

��(s) =

8>>>><>>>>:
p�(s)ef (s)

p�(s)x(s)�w(z;�� ;s)

if p�(s)ef (s) < p�(s)x(s)� w (z; �� ; s)

and p�(s)x(s)� w (z; �� ; s) 6= 0

1 otherwise

9>>>>=>>>>; :
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In the limit, p�(s)x(s)�w (z; �� ; s)! p�(s)ef (s) and 8� � Ns; p
�(s)x(s)�w (z; �� ; s) >

0: Thus ��(s)! 1: To verify feasibility,

p�(s)x�(s)� w (z� ; �� ; s) = ��p�(s)x(s)� w (��z; �� ; s)

for �� 2 [0; 1]: From claim 2.6,

��p�(s)x(s)� w (��z; �� ; s) � �� (p�(s)x(s)� w (z; �� ; s)) :

Since �� � ��(s) and p�(s)x(s)� w (z; �� ; s) > 0; then

�� (p�(s)x(s)� w (z; �� ; s)) � p�(s)ef (s):

In summary,

p�(s)x�(s)� w (z� ; �� ; s) � p�(s)ef (s):

Thus (x�(s); z�) satis�es the budget constraint for s > 0 given (p�(s); ��(s)) :

Setting N� = maxfM0; N0; :::;MS; NSg; then (i) (x� ; z�) 2 �Bh (p� ; q� ; ��) 8� �

N� and (ii) (x� ; z�)! (x; z) : This completes the proof of the lemma.18

De�ne the demand correspondence �h =

(
(x; z) 2 argmaxuh(x)

(x;z)2 �Bh(p;q;�)

)
: This corre-

spondence is well-de�ned (using continuity of uh and compactness of �Bh) and uhc

(using the maximum principle and lemma 2.2).

De�ne the values of the correspondence �h as the set �h (p; q; �) : This set is a

18This proof of lhc of the budget correspondence is the key step to ensuring that the demand
correspondence is uhc. The demand correspondence is certainly not continuous as it will contain
jumps that correspond to the jump from solvency to bankruptcy in all states s > 0; but these jumps
are still uhc (household is indi¤erent between the allocation before and after the jump).
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set-valued function that is Borel-measurable with respect to H: Thus, I de�ne

�f (p; q; �) =

Z
h2Hf

�h (p; q; �) :

From Aumann (1966), the set �f (p; q; �) is convex. The correspondence �f (ap-

propriately de�ned as the mapping from the price space ��(!) to the set �f) is

convex-valued. As �h is well-de�ned and uhc 8h 2 H; then �f is well-de�ned and

uhc 8f 2 F = f1; ::; Fg:

De�ne the bounded budget set �Bf (p; q; �) =

Z
h2Hf

�Bh(p; q; �) for each household

type f 2 F : From lemma 1, this set is compact. From Aumann (1966), this set

�Bf (p; q; �) is convex. It is trivially nonempty.

De�ne the price space as (using a normalization other than pL(s) = 1 8s � 0):

��(!) =

8>>>>>>>>>><>>>>>>>>>>:

(p; q; �) 2 RG � RJ � RSJ :

p(s) 2 �L�1 8s � 0;

pl(s) � ! 8l; s

0 � qj � 1
!

8j

0 � �j(s) � 1
!
8j;8s > 0

9>>>>>>>>>>=>>>>>>>>>>;
:

! > 0 is small. By assumption (A:2); p(s) >> 0; so the restriction pl(s) � ! 8 (l; s)

is innocuous for ! small. With ! > 0; the price space ��(!) is nonempty, convex,

and compact.
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De�ne the price correspondence by 	 : �
f2F

�Bf � ��(!) where

	(x; z) =

8>>>>>><>>>>>>:

(p; q; �) 2 ��(!) : � satis�es (2:7)

(p; q) 2

argmax

2664 p(0)

� R
h2H

xh(0)� 1
F

P
f e

f (0)

�
+ q

R
h2H

zh+P
s>0

�
p(s)

� R
h2H

xh(s)� 1
F

P
f e

f (s)

��
3775

9>>>>>>=>>>>>>;
:

The equilibrium condition (2:7) in particular implies

R
h2H

P
j �j(s)rj(s)

�
zhj
�+
+
R

h2H

P
j �

h(s)rj(s)
�
zhj
��
= 0 8s > 0:

This correspondence 	 is trivially well-de�ned and uhc. Since ��(!) is convex and

the objective function is linear in (x; z); the correspondence 	 is convex-valued.

De�ne the overall correspondence � : ��(!) � �
f2F

�Bf � ��(!) � �
f2F

�Bf as the

Cartesian product of the correspondences �
f2F
�f and 	: This correspondence � is

a well-de�ned, convex-valued, and upper hemicontinuous correspondence that is also

a self-map from a nonempty, convex, and compact set into itself. From Kakutani,

there exists a �xed point. From the de�nition of the demand correspondence, the

�xed point satis�es the household optimization problem (H); which is the �rst part

of the de�nition of a bankruptcy equilibrium.

Lemma 2.3 The �xed point from Kakutani satis�es the market clearing conditions

on both commodities and assets.

Proof. From Walras�law and equilibrium condition (2:7) :

p(0)

 
1
F

P
f2F

ef (0)�
R

h2H
xh(0)

!
� q

R
h2H

zh = 0

p(s)

 
1
F

P
f2F

ef (s)�
R

h2H
xh(s)

!
= 0 8s > 0

:
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By assumption (A:2); the commodity prices p(s) >> 0 8s � 0: By assumption

(A:4) and with � > 0 by (A:5); then q >> 0: From the de�nition of the price

correspondence 	 and taking the limit of the price space ��(!) as ! ! 0; the above

equations imply that markets clear:

1
F

X
f2F

efl (s)�
Z
h2H

xhl (s) = 0 8l; s:Z
h2H

zhj = 0 8j:

The proof technique has been well documented and is hence omitted (see for instance

the proof of theorem 1 in Dubey et al. (2005)).
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Chapter 3

Bankruptcy in an In�nite Horizon

Model

3.1 Introduction

The convergence of lack of commitment models from the macroeconomics literature

(represented by Chatterjee, Corbae, Nakajima, and Ríos-Rull (2007)) and default

models from the general equilibrium literature (as pioneered by Dubey, Geanakoplos,

and Shubik (2005)) o¤ers the potential of models that are both competitive with

incentives endogenously determined and tractable for quantitative analysis. This

work is another step toward that potential. The model will capture the key features

of chapter 7 bankruptcy by individuals holding debt in the unsecured credit markets.

This model is not one of default (as in Dubey et al. (2005)) in which a household

chooses how much of its debt to repay on an asset-by-asset basis. Rather this work

considers bankruptcy, or the decision by a household not to repay debt over its entire

portfolio of assets. The bankruptcy decision is inherently a binary decision: either

a household is or is not bankrupt. To avoid the nonconvexity problems that would

71
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otherwise result, I must assume that there are a continuum of households.

Several papers in the general equilibrium literature (Araujo and Pascoa (2002),

Sabarwal (2003), and Hoelle (2010)) have addressed the question of bankruptcy in a 2-

period general �nancial model. Sabarwal even extended the analysis to a longer, �nite

time horizon and suggested that investment constraints be set based on a household�s

repayment history. This only captures the "backward looking" e¤ects of bankruptcy:

how a prior bankruptcy declaration a¤ects a household�s access to credit in the current

period. Faced with the bankruptcy decision in the current period, a successful model

must also incorporate the "forward looking" e¤ects of bankruptcy: how a current

bankruptcy declaration will a¤ect access to credit in the future. With a �nite time

horizon, these "forward looking" e¤ects would unravel from the �nal period. The

model to study the dynamic e¤ects of bankruptcy must have an in�nite time horizon.

Already working with a continuum of households, the natural model to develop will

be an adaptation from the class of Bewley models (Bewley, 1986).1

The goal of this paper is to model the modern �nancial markets for unsecured

credit. The most common example to keep in mind will be the credit card markets.

In the model, the markets will be competitive and anonymous, competitive in that

the asset prices will be the same for all loan sizes and anonymous in that the asset

prices will not depend on a household�s parameters. In order to protect creditors,

whose payouts are reduced when debtors declare bankruptcy, the �nancial markets

have asset prices that are conditioned on a debtor�s current income and credit score.

This is a primitive of the markets. Implicitly, I am assuming that the markets

cannot have the asset prices depend on a more complete credit history, because it is

prohibitively costly to verify any additional information.

1Bewley (1986) contains frequent references to his earlier works in this extended line of his
research.
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The FICO credit score is used by more than 75% of lending institutions and con-

tains 5 components: payment history (35%), amount owed and amount of available

credit (30%), length of credit history (15%), mix of credit (10%), and new credit

(10%).2 In the model, the credit score will only be payment history, speci�cally

bankruptcy history. There are three reasons why only bankruptcy history makes

up the credit score in the model. First, the �nal three components of the FICO

credit score are equal for all households in the model. Second, in a model without

investment constraints, the second component of the FICO credit score is not appro-

priate. Finally, declaring bankruptcy is the single worst thing a household can do

to lower its credit score. Without transaction costs, a household would never carry

debt across time periods and would only have incomplete repayment when declaring

bankruptcy. Thus, the credit score in the model will be the number of periods since

a prior bankruptcy declaration.

The credit score will be an imperfect, yet informative, signal about a household�s

private information. The private information in the model will be the randomMarkov

process that governs a household�s income realizations. The earliest work to analyze

the problem of private information in general equilibrium was Prescott and Townsend

(1984a, 1984b). The private information in these papers is a household�s utility

function. Subsequent research by Bisin and Gottardi (1999) considers the private

information to be the income realizations. They provide a solution to the asymmetric

information problem by showing how a price system can be set up, speci�cally a

system that includes a bid-ask spread, so that competitive equilibria are guaranteed

to exist.

I propose the following model for analyzing bankruptcy in which private infor-

2FICO stands for Fair Isaac and Company and the information was lifted from the website:
www.my�co.com.
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mation surfaces naturally. There are a �nite number of possible aggregate states,

the realizations of which are commonly observed. Households will trade �nancial

contracts in order to transfer income across time and between aggregate states. A

household�s income is determined by a Markov process. The Markov process is pri-

vate information of each household. By assumption, a household�s current income

provides no information about which Markov process governs its income realizations.

The debtors will be partitioned into "pools". These pools are equivalence classes

over income and credit score. Debtors can only sell assets that have been priced for

their pool. This asset price will be proportional to the weighted repayment rates of

all debtors within that pool. Equilibrium asset prices must be set such that the asset

markets clear and no household has an arbitrage opportunity.

One purpose of the credit score is to inform the market of the probability that a

certain debtor will repay its debt next period. For this reason, most papers studying

credit scores (notably Chatterjee et al. (2008) and Elul and Gottardi (2008)) model

them as follows. If a household declares bankruptcy in some period, then in that

period, and in every period thereafter until the bankruptcy �ag is removed, there is a

probability p > 0 that the bankruptcy �ag is removed. The parameter p is constant

across time and is chosen so that on average a bankruptcy �ag remains on a credit

report for 10 years. This setup has the advantage that it is simple and asset prices can

be conditioned (partly) on repayment likelihood. However, it misses the key point

that a bankruptcy declaration by a debtor carries with it costs that last for 10 years.

This is the second purpose of the credit score. The debtor has perfect foresight of

the future asset prices for each of the pools to which it will belong, because it knows

with certainty what its credit score will be in the future. The debtor can make its

asset choices based on the actual dynamics of the bankruptcy process and not simply

as the expectation over some random, arti�cial construct of the model.
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Private information is necessary for dynamic bankruptcy decisions. The �nancial

markets are such that asset prices depend on a debtor�s income and credit score, but

not on its Markov income process. This is because that information cannot be veri�ed

at any cost; it is private. To prove that private information is necessary, suppose that

the asset prices depend not only on a debtor�s income and credit score, but also on its

Markov income process. I prove that the pool of borrowers will be independent across

credit scores in equilibrium. Thus, there are not any dynamic costs of bankruptcy

and all households eligible for bankruptcy will simply declare when their immediate

payout from bankruptcy exceeds their immediate payout from solvency. Such an

outcome is unsatisfactory given the care taken to use an in�nite time horizon because

the bankruptcy decision is entirely static and could be satisfactorily modeled using

only 2 time periods (e.g., Araujo and Pascoa (2002), Sabarwal (2003), and Hoelle

(2010)). Further the equilibrium outcome completely contradicts the empirical facts

about bankruptcy. These can be summarized succinctly by Musto (1999) (among

others): a bankruptcy �ag on a household�s credit report signi�cantly impairs its

ability to borrow on the �nancial markets.

In a simple economy with private information, I prove analytical results stating

that a borrower faces strictly higher asset prices (lower interest rates) as its credit

score increases. The household that is the bad credit risk is the one with the following

private information: given a low income realization, the probability is high that low

income will be realized in the following period. Call this probability the �persistence of

low income�. The assumption needed to prove that asset prices strictly increase with

credit score is that the persistence of low income for the bad credit risk households

is larger than that for the good credit risk households by at least �the appropriate

amount�. Further su¢ cient conditions and a discussion of �the appropriate amount�

are presented.
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This paper makes three contributions. First, the general model is introduced

and the existence of a bankruptcy equilibrium is proven (section 3.2). Second,

I show that the bankruptcy decision simpli�es to a static decision when either all

households have identical private information or when the market allows asset prices

to be conditioned on this information (section 3.3). Finally, I use theoretical results

for a simple economy to show that the asset prices will be strictly increasing with the

credit score (section 3.4). Section 3.5 concludes and discusses the next steps in this

line of research. Section 3.6 collects all the proofs that are too long to be included

in the main sections.

3.2 The Model

Let the length of the model be described by an in�nite-dimension, discrete time

process t 2 f0; 1; ::; Tg where T ! 1: Suppose there is a continuum (with unit

measure) of households h 2 H~[0; 1]:

There is one physical commodity in each time period, which can be thought of as

money or a composite bundle of multiple commodities. Households are in�nite-lived

and have ex-ante identical utility. Let the utility function U : `+1 ! R be given as:

U(ch) = E0

1X
t=0

�tu
�
ch(t)

�
:

I assume that � 2 (0; 1) and the Bernoulli utility function u : R+ ! R is C2;

di¤erentiably strictly increasing, di¤erentiably strictly concave, and satis�es the Inada

condition (that is, u0
�
ch(t)

�
!1 as ch(t)! 0).
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3.2.1 Primitives

Aggregate States

Let there be a �nite number of possible states s 2 S = f1; ::; Sg with S < 1: Let

the aggregate state that occurs in time period t be denoted by s(t): The notation

s� will be the entire sequence of states from t = 0 to t = � ; s� = (s(0); :::; s(�)) :

At time period � ; the current state s(�) and all prior states s��1 are known by all

households. The transition between states is common knowledge and given by the

Markov transition matrix 
 2 RS;S: Elements of 
 are denoted by ! (s0js) ; that is,

the probability that state s0 occurs tomorrow given that the state today is s:

Income

Households are endowed each period with some strictly positive amount of the com-

modity, which for simplicity will be called income. The realized income for household

h in time period t is denoted by eh(t): The set of possible income realizations is a

�nite set E = fe1; :::; eIg with I < 1 and ei > 0 8i: Without loss of generality,

e1 < e2 < ::: < eI : The income realizations will be randomly determined by a

Markov process that will depend both on the aggregate state and the household type.

Markov income process

The Markov income process will be private information. The set of possible Markov

processes is a �nite set k = f1; :::; Kg with K < 1: A household with Markov

process k is said to be of "type k" and this is unchanged over time. Let �ks 2 RI;I

be the transition matrix for a household of type k from period t to period t+1 given

that the aggregate state in time period t is s(t) = s: Denote the elements of the

matrix �ks as �
k
s(i; j): The term �ks(i; j) is the probability that a household of type
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k with income eh(t) = ei and state s(t) = s realizes the income eh(t + 1) = ej: For

simplicity, when e = ei and e0 = ej; de�ne �ks(e
0je) = �ks(i; j):

I would like to be able to use the law of large numbers to state that �ks(i; j) is

also the fraction of all households of type k with income eh(t) = ei that transition to

income eh(t+1) = ej given that the aggregate state is s(t) = s: As described by Judd

(1985), when a continuum of agents draw realizations from an iid random process,

the set of sample realizations that satisfy the law of large numbers is not measurable.

There are several possible solutions to this problem. First, I could incorporate a

small amount of dependence into the income process as suggested by Feldman and

Gilles (1985). Second, I could specify the set of households not as a continuum, but

rather as a process for which the law of large numbers is applicable and which has

the same cardinality as the continuum. Such a process is the hyper�nite process as

analyzed by Sun (1998).3 I will choose the latter solution.

For each aggregate state s and each household type k; de�ne the distribution over

the set of possible incomes E as �ks 2 �I�1: Each term of the vector �ks is denoted �
k
s(i)

and this is the fraction of all households of type k that have income eh(t + 1) = ei

given s(t) = s: Mathematically, �ks is the unique eigenvector of �
k
s satisfying the

constraint
PI

i=1 �
k
s(i) = 1: I assume that the transition matrices are such that the

income distributions will be identical across household types and aggregate states:

�ks = �k
0
s0 8k; k0 and 8s; s0: That is, there is no aggregate risk.4

3There are two reasons to model the set of households as a hyper�nite process. First, the
asymptotic properties of �nite processes are embedded in the limit setting. In particular, the exact
law of large numbers applies. Second, the external cardinality of the index sets of a hyper�nite
process is the same as the cardinality of the continuum.

4At a minimum, I must require that �ks = �
k0

s 8k; k0 and 8s for if the distribution di¤ers across
types, the income of a household carries information about its type. The equilibrium asset prices,
as determined in this framework, depend upon the repayment rates of all debtors, regardless of their
type. Thus, I could certainly allow the income to be informative of a household�s type and the
bankruptcy equilibrium would still be well-de�ned. I choose not to and instead keep the household�s
type as entirely private information.
I claim that �ks = �

k0

s 8k; k0 and 8s implies �ks = �k
0

s0 8k; k0 and 8s; s0: Suppose otherwise, that is,
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De�ne e =
PI

i=1 �
k
s(i) � ei for any (s; k) as the aggregate income (identical across

states). Likewise, de�ne the median income (identical across states):

emed = e� where
PI

i=1 �
k
s(i)�1 fei � e�g =

PI
i=1 �

k
s(i)�1 fei � e�g = 0:5 for any (s; k):

"Credit score"

I will use the quotation marks around "credit score" to indicate that the "credit score"

in the model is equivalent to a household�s bankruptcy history. It does not contain

all the elements that we associate with the actual FICO credit score.

I will model bankruptcy to satisfy the following three legal facts:

1. A household cannot declare bankruptcy twice in any 6-year period.

2. A bankruptcy declaration remains on a household�s credit report for 10 years.

3. According to recent legislation5, households that fail the "means test" cannot

declare bankruptcy. A household fails this test if its income is above the median.

Let the length of a time period be equal to 5 years. De�ne the "credit score"

b 2 B =f0; 1; 2g as the number of periods since the prior bankruptcy declaration (if

one exists). If a household h declares bankruptcy in time period t; then bh(t) = 0:

From Fact 1, the household cannot then declare bankruptcy in time period t+ 1; so

bh(t+1) = 1: If a household decides to declare bankruptcy in time period t+2; then

bh(t+ 2) = 0: Otherwise, bh(t+ 2) = 2:

suppose �ks = �
k0

s 6= �ks0 = �k
0

s0 for some s; s
0; k; k0: It is not true that given the stationary distribution

�ks = �k
0

s for state s(t) = s that the distribution for state s(t + 1) = s0 6= s will be equal across
types k; k0: This is simply because the transition matrix will not (generically) become stationary in
one period. In summary, for the income to not carry information about a household�s type, I must
assume that �ks = �

k0

s0 8k; k0 and 8s; s0:
5U.S.C. §707(b)(1) and the Bankruptcy Abuse Prevention and Consumer Protection Act of 2005.
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Finally, for any time period in which bh (�) = 2; if the household decides to remain

solvent next period, then bh (� + 1) = 2: In accordance with Fact 2, a household whose

last bankruptcy occurred two periods ago has the same "credit score" as a household

that has never declared bankruptcy.

Fact 3 implies that if at some time period t the income realization eh(t) > emed;

then the household cannot declare bankruptcy. Thus, bh(t) = 0 only if eh(t) � emed

and bh(t � 1) > 0: I will say that a household is "eligible" for bankruptcy in time t

if eh(t) � emed and bh(t� 1) > 0:

3.2.2 Financial markets

The aggregate states are observable by all households. As such, �nancial contracts

can be written on the realizations of these states. The �nancial contracts will specify

the terms of trade for one-period numeraire assets in zero net supply. The number

of assets and the payouts of each will be exogenously �xed.

The asset price is the market value of the claims to the asset payouts in the

following time period. A creditor has a positive claim and a debtor has a negative

claim. As the bene�ts of the trade are separated across time (the debtor gains wealth

in the current time period and owes funds in the following period) and no mechanism

exists to perfectly and costlessly enforce commitment, the debtor may choose to renege

on its �nancial commitment. The �nancial contract must then clearly specify what

the consequences are for such an action. As with the asset payouts, the consequences

of bankruptcy will be exogenously speci�ed.

Maintaining the assumptions that the markets are both competitive and anony-

mous, the asset prices will be linear. Without investment constraints or collateral

requirements, the markets do not have the option of o¤ering a menu of �nancial
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contracts that attempt to endogenously separate debtors by their private informa-

tion. The only free variable is the asset price. Debtors will only trade the �nancial

contracts that o¤er the highest asset price.

De�ne J � S to be the number of di¤erent asset payouts available for trade in

all time periods. The payouts for assets traded in time t will depend on both the

aggregate states s(t) and s(t+ 1): These payouts are in terms of the single physical

commodity and are given by the S � J payout matrix R(s) :

R(s) =

266664
r1(1js) :: rJ(1js)

: :: :

r1(Sjs) :: rJ(Sjs)

377775
S�J

:

As is standard in the literature, the matrix R(s) is nonnegative, full rank, and in

general position 8s 2 S: By general position, I mean that any J rows of R(s) will

have full rank.

The total number of assets available for trade in any time period is given by 3�I �J:

For each asset payout j 2 f1; ::; Jg; for each "credit score" b 2 f0; 1; 2g; and for each

income e 2 fe1; :::; eIg; an asset is de�ned. The asset (j; e; b) traded in time period t

by household h will be denoted zhj;e;b(t) with associated asset price qj;e;b(t):

A household will be a debtor on asset (j; e; b) if zhj;e;b(t) < 0 and a creditor other-

wise. The following is an exogenous constraint of the �nancial markets. A household

h can only be a debtor on asset (j; e; b) in time period t if eh(t) = e and bh(t) = b: A

household can be a creditor for any of the assets.

I will de�ne a debtor "pool" as an equivalence class over "credit score" and current

income. That is, a pool contains all debtors with the same "credit score" and current

income. If the "credit score" is b and the current income is e; then I will speak of
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"pool (e; b)". The asset price qj;e;b(t) will be proportional to the weighted repayment

rate of all debtors within the pool (e; b):

3.2.3 Bankruptcy assumptions

The �rst of three assumptions needed to prevent households from having unbounded

asset sales and an arbitrage opportunity is:

Assumption A: 8k; 8s; and 8e; 9e0 such that e0 > emed and �ks(e
0je) > 0:

The payout matrix R(s) satis�es the following assumption:

Assumption B: R(s) has strictly positive terms 8s 2 S:

Before getting to assumption C, I need to specify what the asset payouts will be

for creditors when bankruptcy is declared by other households.

Bankruptcy declarations by some debtors implies that the payouts for creditors

must be diluted. The asset payouts will be considered on an asset-by-asset basis.

The funds paid on asset (j; e; b) are collected from all debtors on this asset. These col-

lected funds are then used as the payouts to the asset (j; e; b) creditors. Creditors are

proportionately reimbursed. If a creditor was originally supposed to receive the pay-

out rj (s0js) �zhj;e;b(t) � 0 for holding asset (j; e; b); then in the presence of bankruptcy,

the creditor will only receive �j;e;b(t+1) �rj (s0js) �zhj;e;b(t) � 0 where �j;e;b(t+1) 2 [0; 1]

is the overall repayment rate for asset (j; e; b): The overall repayment rate �j;e;b(t+1)

is endogenously determined and will be de�ned shortly.

A household who chooses to remain solvent and not declare bankruptcy in time

period t+ 1 will have �nancial payout:

rh (s0js; t+ 1) � zh(t) =
X
j;e;b

rhj;e;b (s
0js; t+ 1) � zhj;e;b(t)
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where the household-speci�c asset payouts rh (s0js; t+ 1) are de�ned as:

rhj;e;b (s
0js; t+ 1) =

8><>: rj (s
0js) if zhj;e;b(t) < 0

�j;e;b(t+ 1) � rj (s0js) if zhj;e;b(t) � 0

9>=>; : (3.1)

The obvious bene�t of a household declaring bankruptcy is that it can escape

its debt obligations. This bene�t may be the most important consideration for the

household, but what drives the existence result is what happens to those assets (if

any) that the household has purchased.

The exemption level for each set of asset purchases (j; e; b)8e;b will be given by

�j 2 R+ (�j < 1). If a household declares bankruptcy, it can keep up to �j of the

value of asset purchases (j; e; b)8e;b ; but must forfeit any value greater than �j: In

order to obtain the exemptions, a bankrupt household must submit a detailed record

of each asset purchase to the bankruptcy court. Assuming that a bankrupt household

has asset purchases with value:

rh (s0js; t+ 1) �
�
zh(t)

�+
=
X
j;e;b

rhj;e;b (s
0js; t+ 1) �

�
zhj;e;b(t)

�+
;

then the nominal cost of submitting the detailed record to the bankruptcy court will

be given by:

� � rh (s0js; t+ 1) �
�
zh(t)

�+
=
X
j;e;b

�j � rhj;e;b (s0js; t+ 1) �
�
zhj;e;b(t)

�+
:

Throughout, the notation will be that (y)+ = maxfy; 0g and (y)� = minfy; 0g:

The next assumption is the third and �nal assumption needed to prevent the

households from having unbounded asset sales:

Assumption C: �j > 0 8j:
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The total �nancial payout for a household that declares bankruptcy in time period

t + 1 is the value of asset purchases below the exemption level minus the cost of

bankruptcy:

X
j

"
min

(X
e;b

rhj;e;b (s
0js; t+ 1) �

�
zhj;e;b(t)

�+
; �j

)
� �j

X
e;b

rhj;e;b (s
0js; t+ 1) �

�
zhj;e;b(t)

�+#
:

At time period t+ 1; a household eligible for bankruptcy faces a binary decision:

it can either choose to remain solvent, with payout denoted by Sh(t + 1); or it can

choose to declare bankruptcy, with payout denoted by Bh(t+ 1); where:

Sh(t+ 1) =
X
j;e;b

rhj;e;b (s
0js; t+ 1) � zhj;e;b(t) (3.2)

Bh(t+ 1) =
X
j

min

(X
e;b

rhj;e;b (s
0js; t+ 1) �

�
zhj;e;b(t)

�+
; �j

)
�
X
j

�j
X
e;b

rhj;e;b (s
0js; t+ 1) �

�
zhj;e;b(t)

�+

3.2.4 Bankruptcy equilibrium

The household problem

The household problem for each household h 2 H will be the sequence of consumption

ch =
�
ch(t)

�
8t ; assets z

h =
�
zh(t)

�
8t =

��
zhj;e;b(t)

�
8j;e;b

�
8t
; and "credit score" bh =�

bh(t)
�
8t that maximizes U(c

h) and are feasible given the sequence of asset prices

q = (q(t))8t =
�
(qj;e;b(t))8j;e;b

�
8t
and overall repayment rates � = (�(t+ 1))8t =��

�j;e;b(t+ 1)
�
8j;e;b

�
8t
: The feasibility requirement means that the vector of sequences�

ch; zh; bh
�
lies in the budget set Bh(q; �):

Given (q; �); �
ch; zh; bh

�
2 argmaxU(ch)
subj to (ch;zh;bh)2Bh(q;�)
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Bh(q; �) =

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

�
ch; zh; bh

�
=
�
ch(t); zh(t); bh(t)

�
8t :

ch(t) � 0; zh(t) 2 R3IJ ; bh(t) 2 f0; 1; 2g;

ch(0) +
X
j;e;b

qj;e;b(0)z
h
j;e;b(0) � eh(0);

ch(t) +
X
j;e;b

qj;e;b(t)z
h
j;e;b(t) � eh(t) +

8><>: Sh(t) if bh(t) > 0

max
�
Bh(t); Sh(t)

	
if bh(t) = 0

9>=>; ;

�
zhj;e;b(t)

�� � �1� 1�eh(t) = e
	
� 1
�
bh(t) = b

	�
= 0

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;

:

(3.3)

A few notes are in order. First, the payout of the bankrupt household is de�ned

such that the household can never be forced to repay more than it initially owed.6

Second, the �nal equation concerning
�
zhj;e;b(t)

��
expresses the exogenous constraint

of the �nancial markets, which states that a household h can only be a debtor on

asset (j; e; b) in time period t if both eh(t) = e and bh(t) = b:

Repayment rates

This section will detail how the individual repayment rates for each household are en-

dogenously determined and how the individual rates ultimately determine the overall

repayment rates. Let the aggregate states be s(t) = s in time period t and s(t+1) = s0

in time period t+ 1:

The individual repayment rate �h(t+ 1) 2 [0; 1] for household h in time t+ 1 will

be the same for each asset. That is, if h owes rj (s0js) � zhj;e;b(t) < 0 on asset (j; e; b)

and only repays �h(t+1) �rj (s0js) �zhj;e;b(t) of it, then when h owes rk (s0js) �zhk;e;b(t) < 0

on asset k; it will only repay �h(t + 1) � rk (s0js) � zhk;e;b(t) of it. This will follow by

de�nition.
6A household would choose to declare bankruptcy even though the payout from bankruptcy is

less than the payout from solvency only if the equilibrium prices dictate that the asset prices are
higher for pools (e; b) with b = 0 or b = 1 compared to pool (e; b̂) with b̂ = 2: I do not rule out this
counter-intuitive scenario in the speci�cation of the model.
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If a household remains solvent in time period t + 1 or if the household declares

bankruptcy with max
�
Bh(t+ 1); Sh(t+ 1)

	
= Sh(t + 1); the individual repayment

rate is unity, �h(t+ 1) = 1:

When a household declares bankruptcy in time t+1 withmax
�
Bh(t+ 1); Sh(t+ 1)

	
=

Bh(t+1); the total funds that are con�scated by the bankruptcy court are the bank-

ruptcy cost and the value of any nonexempt asset purchases. These collected funds

have value:

num =
X
j

"
�j
X
e;b

rhj;e;b (s
0js; t+ 1)

�
zhj;e;b(t)

�+
+

 X
e;b

rhj;e;b (s
0js; t+ 1) �

�
zhj;e;b(t)

�+ � �j

!+#
:

(3.4)

The bankruptcy court decides how this value will be divided among the di¤erent

creditors. Intuitively, if a household was a debtor only on the single asset (j; e; b);

then the entire value should be used to pay back the asset (j; e; b) creditors. De�ne

the total debt of a bankrupt household as the payouts of its asset sales:

den =
X
j;e;b

rj (s
0js) �

�
zhj;e;b(t)

��
: (3.5)

The fraction
rj(s

0js)�(zhj;e;b(t))
�X

j;e;b

rj(s0js)�(zhj;e;b(t))
�
2 [0; 1] of the total value num will be returned

to the asset (j; e; b) creditors for each asset. This household h originally owed

�rj (s0js) �
�
zhj;e;b(t)

��
; but is only paying rj (s0js) �

�
zhj;e;b(t)

�� � num
den

: Thus, the indi-

vidual repayment rate for a bankrupt household is de�ned as:

�h(t+ 1) = �num
den

2 [0; 1]:7 (3.6)

7Since Bh(t + 1) � Sh(t + 1); then
X
j

min

8<:X
e;b

rhj;e;b (s
0js; t+ 1) �

�
zhj;e;b(t)

�+
; �j

9=; � � �

rh (s0js; t+ 1) �
�
zh(t)

�+ � rh (s0js; t+ 1) �zh(t): This implies �r (s0js) ��zh(t)�� � � �rh (s0js; t+ 1) �
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In equilibrium, the expectations held by creditors about the overall repayment

rates �j;e;b(t+1) must be equal to the weighted individual repayment rates across all

debtors:

�j;e;b(t+ 1)

Z
h2H

�
zhj;e;b(t)

�+
= �

Z
h2H

�h(t+ 1)
�
zhj;e;b(t)

��
: (3.7)

The overall repayment rate �j;e;b(t + 1) � 0: If
Z
h2H

�
zhj;e;b(t)

��
= 0 (no trade in

this asset), the value for �j;e;b(t + 1) is not pinned down by (3:7): This keeps open

the possibility that undue pessimism by the creditors about their payouts can be self-

ful�lling in equilibrium (as in Dubey et al. (2005)).8 However, if
Z
h2H

�
zhj;e;b(t)

��
< 0;

the overall repayment rate �j;e;b(t+1) 2 (0; 1]: This is best seen by using the market

clearing condition
Z
h2H

zhj;e;b(t) = 0 (to be introduced shortly) to rewrite equation

(3:7) as:

�j;e;b(t+ 1) = 1 +

Z
h2H

(1� �h(t+ 1))
�
zhj;e;b(t)

��Z
h2H

�
zhj;e;b(t)

�+ : (3.8)

De�nition of a bankruptcy equilibrium

I will now de�ne a bankruptcy equilibrium. As the bankruptcy equilibrium is de�ned

in terms of in�nite sequences of choices (c; z; b) =
�
ch(t);

�
zhj;e;b(t)

�
8j;e;b ; b

h(t)
�
8t;h2H

and prices (q; �) =
�
(qj;e;b(t))8j;e;b ;

�
�j;e;b(t+ 1)

�
8j;e;b

�
8t
; the de�nition is often re-

ferred to as the "sequential" de�nition in the literature (e.g., Miao, 2006).

De�nition 3.1 A bankruptcy equilibrium is a sequence of household choices (c; z; b)

�
zh(t)

�+
+
X
j

0@X
e;b

rhj;e;b (s
0js; t+ 1) �

�
zhj;e;b(t)

�+
� �j

1A+

: By de�nition, �den � num or �num
den �

1:
8This undue pessimism is in fact irrational, though still possible as an equilibrium. With the iid

Markov processes and assumption 1, there will always exist some realization of the income process
in the next time period such that a subset of households cannot declare bankruptcy. This subset
will have unity repayment rates and keep the overall repayment rate � bounded above 0:
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and prices (q; �) such that

(i) the household problem (3:3) is satis�ed,

(ii) markets clear,
Z
h2H

ch(t) = �e 8t and
Z
h2H

zh(t) =
�!
0 8t;

(iii) repayment rates � are determined according to equation (3:7) :

�j;e;b(t+ 1)

Z
h2H

�
zhj;e;b(t)

�+
= �

Z
h2H

�h(t+ 1)
�
zhj;e;b(t)

��
; and

(iv) qj;e;b(t) > 0 8j; e; b; t; and

(v) If
Z
h2H

�
zhj;e;b(t)

��
= 0 for (e; b) 6= (e1; 0) ; then �j;e;b(t+ 1) =

qj;e;b(t)

qj;e1;0(t)
:

A few notes are in order. First, if creditors believe that the overall repayment rate

�j;e;b(t+1) = 0; then this belief is self-ful�lling as qj;e;b(t) = 0 and no trade occurs. I

am not interested in the existence of such trivial equilibria. Thus, the de�nition of a

bankruptcy equilibrium requires that all asset prices are strictly positive. Second, the

possibility exists that even given strictly positive asset prices, households may choose

not to trade certain assets. For these closed asset markets, the overall repayment rate

is not pinned down by (3:7): The creditors need to form beliefs, o¤ the equilibrium

path, that inform them about the repayment rate were they to decide to purchase

those assets. Further explanation of condition (v) is provided in the subsection �asset

pricing�.

Existence of a bankruptcy equilibrium

Let the time horizon be discrete with t 2 f0; :::; �Tg and �T < 1: I will show in

theorem 3.1 that a bankruptcy equilibrium exists for this �nite time horizon. The

proof is contained in section 3.6.

Theorem 3.1 Under assumptions A-C, the truncated bankruptcy equilibrium exists

for all parameters E ;
�
�1s; ::�

K
s

�
8s ; �; u(�); �; �; and (rj(s

0js))8j;s;s0 :
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Theorem 3.2 states that an equilibrium with the discrete, in�nite-length time

horizon exists and that this in�nite-length equilibrium is actually the limit of the

appropriately de�ned truncated equilibrium as �T !1: The proof of theorem 3.2 is

contained in section 3.6.

Theorem 3.2 If a truncated bankruptcy equilibrium exists for any �nite length �T ;

then the limit as �T ! 1 is well de�ned (all equilibrium variables are uniformly

bounded) and the equilibrium at the limit is the desired bankruptcy equilibrium for the

in�nite-time horizon.

The existence that will be proven will be the existence of the stated "sequential"

bankruptcy equilibrium. It remains an open question as to whether a recursive

bankruptcy equilibrium exists. Miao (2006) proves the existence of both a sequential

equilibrium and a recursive equilibrium and shows that they are payo¤ equivalent in

a model without bankruptcy. The key assumption in his work is an exogenous bound

on asset holdings.

Two nonexistence results in full commitment models without an exogenous bound

on asset holdings suggest that a recursive equilibrium cannot be proven to exist in

my bankruptcy model. First, Krebs (2004) proved that a recursive equilibrium with

a compact state space cannot exist unless there are binding investment constraints on

assets. Second, Kubler and Schmedders (2002) proved that a recursive equilibrium

may not exist even when the state space contains the entire vector of contemporaneous

variables.

I refuse to include investment constraints in my model not only for the stated

reason of Krebs (2004) that investment constraints introduce an additional friction,

but mostly because this additional friction will completely dictate the resulting equi-

librium. In a model with bankruptcy, if asset sales are not endogenously curtailed in
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some manner, then all debtors will sell the most assets permitted by the investment

constraint and no fewer.

Asset pricing

Consider the set of assets (j; e; b)8e;b: Let the asset price qj;e1;0(t) be the base price

that all other prices (qj;e;b(t))8(e;b) 6=(e1;0) will be determined relative to. The base price

qj;e1;0(t) will be determined from one market clearing condition.

A household that is a creditor for asset (j; e; b) can also be a creditor for asset

(j; e0; b0) for all (e0; b0) 6= (e; b): The payouts from either remaining solvent or declaring

bankruptcy can be rewritten (using equations (3:4)� (3:6)) as:

Sh(t+1) = Bh(t+1) =
X
j;e;b

�j;e;b(t+1)rj (s
0js)
�
zhj;e;b(t)

�+
+�h(t+1)

X
j;e;b

rj (s
0js)
�
zhj;e;b(t)

��
(3.9)

where the only di¤erence between Sh(t + 1) and Bh(t + 1) is that �h(t + 1) = 1 for

solvent households and �h(t+1) � 1 is endogenously determined by (3:6) for bankrupt

households. Thus any household that is a creditor in both assets (j; e; b) and (j; e0; b0)

will have payouts �j;e;b(t+ 1)rj (s
0js) and �j;e0;b0(t+ 1)rj (s0js) ; respectively.

The de�nition of a bankruptcy equilibrium speci�es that the following "equal

returns conditions" are equilibrium conditions:

�j;e;b(t+ 1)

qj;e;b(t)
=
�j;e1;0(t+ 1)

qj;e1;0(t)
8t: (3.10)

Recall that �j;e1;0(t+1) = 1 by de�nition if the asset (j; e1; 0) is traded in equilibrium.

The discussion of condition (3:10) will be in three parts. For the �rst part, I

justify that
Z
h2H

�
zhj;e1;0(t)

��
< 0 8j in equilibrium. Recall that the pool (e1; 0) has

the lowest current income and are required to repay their debt in t + 1: In the full
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commitment model, I can show that over a generic subset of endowments, there will

exist an equilibrium price qj > 0 such that some households will sell the asset zj and

others will buy the asset. Thus, in the bankruptcy model in which the pool (e1; 0) is

a full commitment pool, at any strictly positive prices qj;e1;0(t) > 0; the households do

not optimally choose assets zhj;e1;0(t) = 0 as this choice is dominated by their choice

speci�ed in the full commitment model (the choice being generically di¤erent from 0).

Thus, asset trades occur and some price qj;e1;0(t) > 0 can be found to clear markets.

The second part of the discussion considers the closed asset market
Z
h2H

�
zhj;e;b(t)

��
=

0 for some (e; b) 6= (e1; 0): From the previous paragraph,
Z
h2H

�
zhj;e1;0(t)

��
< 0 and so

�j;e1;0(t+1) = 1 by de�nition. The value for �j;e;b(t+1) is not pinned down by (3:7);

but the creditors must have the beliefs specifying what the repayment rate would be

if they were to trade in asset (j; e; b): These beliefs o¤ the equilibrium path are given

by condition (3:10); rearranged:

�j;e;b(t+ 1) =
qj;e;b(t)

qj;e1;0(t)
: (3.11)

If qj;e;b(t) 2 (0; qj;e1;0(t)]; then �j;e;b(t + 1) satis�es the sensible belief requirement

�j;e;b(t + 1) 2 (0; 1] when it is set using (3:11): The strict inequality qj;e;b(t) >

qj;e1;0(t) cannot hold or else an arbitrage opportunity exists. This opportunity is

for a household h with eh(t) = e and bh(t) = b to remain solvent while holding an

equal number of sales of (j; e; b) and purchases of (j; e1; 0): The payouts of these two

assets are equal, so letting the number of asset trades become unbounded leads to an

arbitrage pro�t.

The third part of the discussion considers the open asset market
Z
h2H

�
zhj;e;b(t)

��
<

0 for some (e; b) 6= (e1; 0): Suppose, without loss of generality, that
�j;e;b(t+1)

qj;e;b(t)
< 1

qj;e1;0(t)
:

Then, with the �nancial payouts expressed as in (3:9); it is clear that no creditor would
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be willing to purchase asset (j; e; b): The return, de�ned as payout divided by price,

is relatively lower. Thus, it cannot be that
Z
h2H

�
zhj;e;b(t)

��
< 0 as this violates

market clearing
Z
h2H

�
zhj;e;b(t)

��
+

Z
h2H

�
zhj;e;b(t)

�+
= 0: So, no arbitrage requires the

equality
�j;e;b(t+1)

qj;e;b(t)
= 1

qj;e1;0(t)
whenever the asset market (j; e; b) is open.

The equation (3:10) pins down the asset prices for J (3I � 1) assets relative to the

base prices (qj;e1;0(t))8j :

I will utilize the following equilibrium condition throughout sections 3.3 and 3.4.

I state the condition as a claim.

Claim 3.1 A household h with eh(t) = e and bh(t) = b will only be a debtor on asset

(j; e; b) in time t if either:

(i) �h(t+ 1) < �j;e;b(t+ 1) for some realization (e
h(t+ 1); s(t+ 1)) or

(ii)
X

e;b

�
zhj;e;b(t)

�+
= 0:

Proof. Consider a household with eh(t) = e and bh(t) = b: Suppose that the sumX
e;b

�
zhj;e;b(t)

�+
> 0: The household is receiving the price qj;e;b(t) for its sales of asset

(j; e; b) and paying the price of qj;e0;b0(t) for its purchases of some asset (j; e0; b0) with

(e0; b0) 6= (e; b): Given solvency, the expected return on the asset sale (j; e; b) is 1
qj;e;b(t)

and the expected return on the asset purchase (j; e0; b0) is
�j;e0;b0 (t+1)

qj;e0;b0 (t)
: From (3:10);

the return on the sale (what is owed) exceeds the return on the purchase: 1
qj;e;b(t)

�
�j;e0;b0 (t+1)

qj;e0;b0 (t)
: It is only optimal for household h to sell asset (j; e; b) if bankruptcy is

declared for some realization (eh(t + 1); s(t + 1)) and at that realization, the return

on the sale is less than the return on the purchase: �
h(t+1)
qj;e;b(t)

<
�j;e0;b0 (t+1)

qj;e0;b0 (t)
: Using (3:10);

then �h(t+ 1) < �j;e;b(t+ 1) .
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3.3 Necessity of Private Information

The theorem in this section will state that private information is a necessary condition

for dynamic bankruptcy choice to occur in all bankruptcy equilibrium. A dynamic

bankruptcy choice is simply de�ned as the complement of a static bankruptcy choice.

A bankruptcy choice is static if an eligible household declares bankruptcy in any time

period t whenever Bh(t+ 1) > Sh(t+ 1):

To prove necessity, suppose that the Markov income processes are no longer private

information of the households. In this section, it will be taken as given that the

�nancial markets allow the asset prices to be conditioned on income, "credit score",

and the household�s type k: There are now 3 � I �K � J assets available for trade in

each time period. Let the asset holdings be denoted by zhj;e;b;k(t) and the asset prices

by qj;e;b;k(t): The exogenous restriction is that a household h of type k can only be a

debtor on asset (j; e; b; k) in time period t if bh(t) = b and eh(t) = e:

The parameters (� 2 RJ+; � 2 RJ++); by de�nition of their domains, impose an

endogenous bound on the assets (j; e; b; k): Suppose that the values for these pa-

rameters are such that the chosen portfolios
�
zhj;e;b;k

�
8e;b;k satisfy the following two

conditions:

�
X
j

min

(X
e;b;k

rhj;e;b;k (s
0js; t+ 1) �

�
zhj;e;b;k(t)

�+
; �j

)
=
X
j;e;b;k

rhj;e;b;k (s
0js; t+ 1)�

�
zhj;e;b;k(t)

�+
�
X
j

�j
X
e;b;k

rhj;e;b;k (s
0js; t+ 1) �

�
zhj;e;b;k(t)

�+ ' 0 (negligible).

The parameters (�; �) that satisfy the above conditions will be called "large val-

ues" of � and "small values" of �.

Theorem 3.3 Suppose that � takes on "large values" and � takes on "small values".

Then, if the asset prices depend on a household�s type k (no private information),
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there exists a bankruptcy equilibrium in which all eligible households h will declare

bankruptcy in any time period t in which Bh(t) > Sh(t):

Proof. Suppose that qj;e;1;k(t) = qj;e;2;k(t) 8j; e; k; t whenever
Z
h2H

�
zhj;e;1;k(t)

��
< 0

and
Z
h2H

�
zhj;e;2;k(t)

��
< 0: The asset prices are ordered as qj;e;0;k(t) � qj;e;1;k(t) =

qj;e;2;k(t) 8j; e; k; t: A bankruptcy declaration does not have any negative e¤ects on

future asset prices. As a result, an eligible household will declare bankruptcy in time

period t + 1; for any possible realization
�
eh(t+ 1); s(t+ 1)

�
; whenever Bh(t + 1) >

Sh(t+ 1) :9

Consider the statement of claim 3.1: a household h of type k with eh(t) = e and

bh(t) = b will only be a debtor on asset (j; e; b; k) in time t if (i) �h(t+1) < �j;e;b;k(t+1)

for some realization (eh(t + 1); s(t + 1)) or (ii)
X

e;b;k

�
zhj;e;b;k(t)

�+
= 0: A debtor in

case (ii) will �nd it optimal to declare bankruptcy if �h(t+ 1) < 1 holds.

Consider both cases simultaneously. Recall that upon declaring bankruptcy, the

individual repayment rate is de�ned as �h(t+1) = �num
den

from (3:6) with expressions

for num and den in (3:4)� (3:5): Under the assumptions that � has "large values"

and � has "small values", num ' 0: As a debtor on asset (j; e; b; k); den < 0:

Therefore, if a household h declares bankruptcy at some realization (eh(t+1); s(t+1));

�h(t+1) ' 0; which implies Bh(t+1) > Sh(t+1): In fact, no matter which realizations

(eh(t + 1); s(t + 1)) a household h decides to declare bankruptcy at, �h(t + 1) ' 0;

which implies Bh(t+1) > Sh(t+1): Thus, any debtor on asset (j; e; b; k) will declare

bankruptcy whenever it is eligible to do so. For b 2 f1; 2g; de�ne %j;e;b;k(t + 1) as

9A household may declare bankruptcy if Sh(t+1) � Bh(t+1); but �h(t+1) = 1 in this case. From
claim 3.1, the equality �h(t+1) = 1 is satis�ed i¤ household h is not a debtor on any asset (j; e; b; k):
The implication of claim 3.1 is obvious under case (i). For case (ii) of claim 3.1, the implication

also holds as
X

e;b;k

�
zhj;e;b;k(t)

�+
= 0 for a debtor on asset (j; e; b; k) implies Sh(t+1) < Bh(t+1)

using the assumptions that � has "large values" and � has "small values" (see the paragraph in the
body after this footnote).
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the probability that a debtor on asset (j; e; b; k) will remain solvent in t + 1; that is,

the probability that the debtor will have income e(t+ 1) > emed :

%j;e;b;k(t+ 1) =
X

e0:e0>emed

�ks(t)(e
0je) for b 2 f1; 2g:

From the law of large numbers, %j;e;b;k(t+1) is equivalently the percentage of debtors

on asset (j; e; b; k) that will remain solvent in t+ 1:

The decision to declare bankruptcy is independent of the size of the sale zhj;e;b;k(t) <

0: With � "large" and � "small", the individual repayment rates for any household

h are �h(t+1) ' 0 whenever bankruptcy is declared. As de�ned in (3:7); the overall

repayment rate �j;e;b;k(t+ 1) is then given by:

�j;e;b;k(t+ 1) = %j;e;b;k(t+ 1) =
X

e0:e0>emed

�ks(t)(e
0je) for b 2 f1; 2g:

The overall repayment rates are equal across "credit scores": �j;e;1;k(t+1) = �j;e;2;k(t+

1) 8j; e; k: From (3:10); the asset prices are equal across "credit scores": qj;e;1;k(t) =

qj;e;2;k(t) 8j; e; k: This completes the argument.

3.4 Asset Prices Strictly Increasing in "Credit Score"

The "credit score" b(t) in equilibrium should contain nontrivial information about

debtors�repayment rates. In this way, the pools of debtors will be heterogeneous

and di¤erent "credit scores" (in particular, higher) will lead to di¤erent asset prices

(in particular, higher).

I will continue to employ the assumption that � takes on "large values" and �

takes on "small values". Additionally, I remove all aggregate uncertainty and consider
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only 2 household types and 2 incomes, that is, J = S = 1 and K = I = 2: With

J = 1; the subscript j is dropped when denoting assets. The single asset is a risk-free

bond with a payout of 1 for both income realizations, given full commitment.

The transition matrices will be such that �k = (0:5; 0:5) 8k; that is, �k =264 �k 1� �k

1� �k �k

375 with �1 > �2: In this economy, bh(t) = 0 only if eh(t) = e1:

Let � be the fraction of households of type k = 1: De�ne the endogenous fraction

~�e;b(t) to be the fraction of all households of type k = 1 in time t with income e(t) = e

and "credit score" b(t) = b:

The theorem of this section will state that all bankruptcy equilibria in all time

periods have asset prices satisfying:

qe1;1(t) < qe1;2(t): (3.12)

For the theorem to be true, I must rule out the equilibrium from section 3 in which

qe;1(t) = qe;2(t) 8e; t and all eligible households subsequently declare bankruptcy

whenever B(t) > S(t):

Lemma 3.1 Suppose that � takes on "large values" and � takes on "small values".

Suppose that J = S = 1 and K = I = 2: Suppose that �k = (0:5; 0:5) 8k and

�1 > �2: Given the initial conditions: (i) no households with b(0) = 0 and (ii)

~�e1;1(0) =
~�e2;1(0) >

~�e1;2(0) =
~�e2;2(0); then ~�e1;1(t) > ~�e1;2(t) 8t:

The proof of lemma 3.1 is contained in section 3.6.

Suppose (for contradiction) that qe;1(t) = qe;2(t) 8e; t and all eligible households

subsequently declare bankruptcy whenever B(t) > S(t): Then from lemma 1, the
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probability that a debtor in pool (e1; b) will remain solvent in t+ 1 is given by:

%e1;b(t+ 1) =
~�e1;b(t)

�
1� �1

�
+
�
1� ~�e1;b(t)

� �
1� �2

�
for b 2 f1; 2g:

As ~�e1;1(t) > ~�e1;2(t) 8t; then %e1;1(t + 1) < %e1;2(t + 1): With � "large" and �

"small", then �e1;b(t + 1) = %e1;b(t + 1) for b 2 f1; 2g; so �e1;1(t + 1) < �e1;2(t + 1):

This contradicts that qe;1(t) = qe;2(t):

The main theorem of this section is stated as follows.

Theorem 3.4 Suppose that � takes on "large values" and � takes on "small val-

ues". Suppose that J = S = 1 and K = I = 2: Suppose that �k = (0:5; 0:5)

8k: Use the initial conditions: (i) no households with b(0) = 0 and (ii) ~�e1;1(0) =

~�e2;1(0) >
~�e1;2(0) =

~�e2;2(0): Then, for every economy ((e1; e2) ; �; u(�); �) satisfying

these assumptions, 9� > 0 s.t. when �1 � �2 +�; qe1;1(t) < qe1;2(t) 8t:

The proof of theorem 3.4 is contained in section 3.6. Short of a characterization

of �; it is instructive to see what su¢ cient conditions, albeit endogenous conditions,

for the inequality qe1;1(t) < qe1;2(t) 8t look like. Lemma 3.2 provides such su¢ cient

conditions. The proof of lemma 3.2 is contained in section 3.6.

Lemma 3.2 Suppose that � takes on "large values" and � takes on "small values".

Suppose that J = S = 1 and K = I = 2: Suppose that �k = (0:5; 0:5) 8k: Use

the initial conditions: (i) no households with b(0) = 0 and (ii) ~�e1;1(0) = ~�e2;1(0) >

~�e1;2(0) =
~�e2;2(0): Suppose that in equilibrium, type k = 1 eligible households in pool

(e1; 1) at t will declare bankruptcy at t + 1: Suppose further that type k = 2 eligible

households in pool (e1; 2) at t will not declare bankruptcy at t + 1 unless they were

also in pool (e1; 2) at t � 1: Then, for every economy ((e1; e2) ; �; u(�); (�1; �2) ; �)

satisfying these assumptions, qe1;1(t) < qe1;2(t) 8t:
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3.5 Conclusion

This work has contributed a framework for the analysis of bankruptcy in the class

of Bewley models. There is a natural information gap between the debtors and the

market, namely that debtors know their repayment likelihood. It has been taken as

given in the model that the asset prices can depend on a debtor�s current income and

"credit score". These two measures are veri�able by the market at minimal cost and

lead to more e¢ cient trade than if the asset prices were identical for all debtors. I

prove the existence of a bankruptcy equilibrium, show that private information is a

necessary condition for a dynamic bankruptcy decision, and also provide conditions

on the parameters such that the asset prices are strictly increasing functions of the

"credit score".

The next step in this line of research is to extend the asset structure to allow for

assets traded on the secured credit markets following the example set by Geanako-

plos and Zame (2002). For the secured assets, the households are given the option

to default with the entire cost of default being the loss of the value of the contracted

collateral. A speci�c case of default will be foreclosure when the asset under consider-

ation is a home mortgage. In my proposed model, a household defaulting on an asset

will still be responsible for the outstanding debt owed after the con�scation of the

collateral (creditors are said to have "recourse"). This outstanding debt is namely

the di¤erence between debt owed and the value of the collateral. If this outstanding

debt is positive, it will become unsecured debt. The household may pay for it either

out of endowments and new asset purchases or the household can decide to declare

bankruptcy over its entire portfolio. Such a model allows for the explicit analysis of

two interesting mechanisms: (i) how a default on a single asset may force a household

(eventually) into bankruptcy and (ii) how a menu of asset prices and collateral re-
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quirements can be determined in the markets for secured assets. In this manner, the

collateral levels can be endogenized without the insurance/collateral intertemporal

trade-o¤ of Araujo, Orrillo, and Pascoa (2000).

3.6 Proofs

Proof of Theorem 3.1

The proof will be carried out in four steps. In Step 1, I will de�ne the budget set

and the price space and prove that they are nonempty, convex, and compact. In Step

2, I will de�ne the demand correspondence and prove that it is well-de�ned, convex-

valued, and upper hemicontinuous. In Step 3, I will de�ne the price correspondence

and prove that it is well-de�ned, convex-valued, and upper hemicontinuous. In Step

4, I will apply Kakutani�s theorem to �nd a �xed point of the Cartesian product of

the demand correspondences and the price correspondence. I will show that this

�xed point satis�es the de�nition of a bankruptcy equilibrium from section 3.2.

Step 1: Budget set and price space

Recall that the payouts for households depend upon if they remain solvent, S(t);

or declare bankruptcy, B(t); and were de�ned in equation (3:2) :

Sh(t) = p(t)
X
j;e;b

rhj;e;b (s
0js; t) � zhj;e;b(t� 1) (3.2)

Bh(t) = p(t)
X
j

min

(X
e;b

rhj;e;b (s
0js; t) �

�
zhj;e;b(t� 1)

�+
; �j

)
�p(t)

X
j

�j
X
e;b

rhj;e;b (s
0js; t) �

�
zhj;e;b(t� 1)

�+
The commodity price in each time period will be given by the sequence p =
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(p(t))8t 2 RT+1: In the de�nition of equilibrium, I made the normalization p(t) = 1

8t: I do not make that same normalization in the proof.

If assets are traded in time periods t = 0; :::; T�1; the overall repayment rates � are

de�ned in time period t = 1; :::; T�1: I assume with the �nite horizon that households

are not permitted to declare bankruptcy in the �nal time period T : This restriction is

innocuous as the actual bankruptcy equilibrium has an in�nite time horizon without

a �nal period T : Then � = (�(t+ 1))8t =
��
�j;e;b(t+ 1)

�
8j;e;b

�
8t
2 R3IJ(T�1)+ are the

overall repayment rates. The asset prices are q = (q(t))8t =
�
(qj;e;b(t))8j;e;b

�
8t
2

R3IJT :

De�ne the sequence of household assets as zh =
�
zh(t)

�
8t =

��
zhj;e;b(t)

�
8j;e;b

�
8t
2

R3IJT : De�ne the sequence of household consumption as ch =
�
ch(t)

�
8t 2 RT+1+ :

De�ne the upper bound on consumption �c = 2 � eI :

De�ne the bounded budget set for each household h 2 H as:

�Bh(p; q; �) =

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

�
ch; zh; bh

�
2 R �T+1

+ � R3IJT � B �T�1 :

ch(t) � �c 8t;

p(0)
�
eh(0)� ch(0)

�
�
X
j;e;b

qj;e;b(0)z
h
j;e;b(0) � 0;

p(t)
�
eh(t)� ch(t)

�
�
X
j;e;b

qj;e;b(t)z
h
j;e;b(t) +

8><>:S
h(t) if bh(t) > 0

Bh(t) if bh(t) = 0

9>=>; � 0;

p( �T )
�
eh( �T )� ch( �T )

�
+ p( �T )

X
j;e;b

rj
�
s( �T )js( �T � 1)

�
zhj;e;b(

�T � 1) � 0:

9>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>;

:

(3.13)

In equilibrium, the constraints ch(t) � �c will be nonbinding. Since the utility

function is quasi-concave and continuous, it is innocuous to add the constraints to

the budget set as the optimal solutions to the household problem will not be a¤ected.

�Bh(p; q; �) is nonempty.
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Lemma 3.3
Z
�Bh(p; q; �) is convex.

Proof. �Bh(p; q; �) is a set-valued function (terminology of Aumann, 1966) or a corre-

spondence. From Aumann (1966),
Z
�Bh(p; q; �)d� is convex provided that �Bh(p; q; �)

is a set-valued function de�ned on the set of households H~ [0; 1] 10 and the values of
�Bh(p; q; �) are subsets of R �T+1

+ � R3IJT � B �T�1:

The proof of lemma 3.4 is found at the completion of the proof of theorem 3.1.

Lemma 3.4 �Bh(p; q; �) is compact.

In terms of � > 0 small, de�ne the price space as:

��
� =

8>>>>>>>><>>>>>>>>:
(p; q; �) :

p(t) � � 8t

� � qj;e;b(t) � 1
�
8t;8j; e; b

p(t) +
X
j

qj;e1;0(t) = 1 8t

� � �j;e;b(t+ 1) � 1 8t;8j; e; b

9>>>>>>>>=>>>>>>>>;
: (3.14)

By de�nition, when
Z
h2H

�
zhj;e;b(t)

�+
> 0 (asset market open), the overall repay-

ment rate �j;e;b(t+1) 2 (0; 1]: In fact, �j;e;b(t+1) is bounded below bymin
k;s

X
e0>emed

�ks (e
0je) >

0 (assumption 1). So set � > 0 small below this bound. If
Z
h2H

�
zhj;e;b(t)

�+
= 0 (as-

set market closed), then �j;e;b(t + 1) 2 (0; 1] is �xed according to the "equal returns

condition" (3:10): The price space ��
� is nonempty, convex, and compact.

Step 2: Demand correspondence

I will write down the household�s truncated optimization problem and de�ne the

10Recall that the set of households is actually a hyper�nite process in order to be able to apply
the law of large numbers.
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household demand. The household problem (H) is given by

max
ch;zh;bh

E0

�TX
t=0

�tu
�
ch(t)

�
(H)

subj to
�
ch; zh; bh

�
2 �Bh(p; q; �):

I will de�ne the household demand correspondence as

�h : ��
� � �Bh

such that given (p; q; �) 2 ��
� ;
�
~ch; ~zh;~bh

�
2 �h(p; q; �) i¤

�
~ch; ~zh;~bh

�
solves (H): �h

is well-de�ned and �; de�ned such that �(p; q; �) =
Z
�h(p; q; �) 8(p; q; �) 2 ��

� ;

is convex-valued. I will show that the correspondence �h is upper hemicontinuous

(uhc). The proof of lemma 3.5 is contained after the proof of theorem 3.1.

Lemma 3.5 �h is a uhc correspondence.

Step 3: Price correspondence

I will now write down the price correspondence

	 :

Z
�Bh � ��

� :

Given
�
ch; zh; bh

�
h2H ; by de�nition (p; q; �) 2 	

��
ch; zh; bh

�
h2H

�
i¤ the following

conditions hold: (i) (p; q; �) 2 ��
� ; (ii) the overall repayment rates � satisfy (3:7); (iii)

(q; �) satisfy the "equal returns condition" (3:10); and (iv) (p; q) satisfy the following

one-period maximization problems (8t : 0 � t � �T � 1):

(p(t); q(t)) 2 argmax
(
p(t)

�Z
ch (t) d�� e

�
+
X
j;e;b

qj;e;b(t)

Z
zhj;e;b(t)d�

)
: (3.15)
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The correspondence 	 is well-de�ned, convex-valued, and uhc. This statement

is trivial given that the objective function in (3:15) is linear in (p; q) and the price

space ��
� is compact.

Step 4: Market clearing

De�ne the overall equilibrium correspondence as the Cartesian product � � 	:

The overall correspondence is well-de�ned, convex-valued, and uhc. It maps from

the Cartesian product
Z
�Bh���

� into itself. The set
Z
�Bh���

� is nonempty, convex,

and compact. Applying Kakutani�s �xed point theorem yields a �xed point of this

overall equilibrium correspondence. By de�nition, the �xed point is such that the

household choice vector
�
ch; zh; bh

�
satis�es the household optimization problem (H)

8h 2 H:

Walras�Law yields the following equations:

p(0)

�Z
ch (0)� e

�
+
X
j;e;b

qj;e;b(0)

Z
zhj;e;b(0) = 0

p(t)

�Z
ch (t)� e

�
+
X
j;e;b

qj;e;b(t)

Z
zhj;e;b(t)�

Z
h:�h(t)=1

Sh(t)�
Z

h:�h(t)<1

Bh(t) = 0

p( �T )

�Z
ch
�
�T
�
� e

�
� p( �T )

X
j;e;b

rj
�
s( �T )js( �T � 1)

� Z
zhj;e;b(

�T � 1) = 0

:

(3.16)

The sum
Z

h:�h(t)=1

Sh(t) +

Z
h:�h(t)<1

Bh(t) is given by:

p(t)
X
j;e;b

�j;e;b(t)rj (s
0js)

Z
h2H

�
zhj;e;b(t� 1)

�+
+ p(t)

X
j;e;b

rj (s
0js)

Z
h2H

�h(t)
�
zhj;e;b(t� 1)

��

after using equation (3:9) where �h(t) = 1 for households with payout Sh(t) and

�h(t) < 1 is endogenously determined from equations (3:4)� (3:6) for the households
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with payout Bh(t):

The equilibrium equation (3:7)

�j;e;b(t)

Z
h2H

�
zhj;e;b(t� 1)

�+
= �

Z
h2H

�h(t)
�
zhj;e;b(t� 1)

��
: (3.7)

then yields that the sum
Z

h:�h(t)=1

Sh(t) +

Z
h:�h(t)<1

Bh(t) = 0:

The equations from Walras�Law in (3:16) can be reduced to:

p(t)

�Z
ch (t)� e

�
+
X
j;e;b

qj;e;b(t)

Z
zhj;e;b(t) = 0

p( �T )

�Z
ch
�
�T
�
� e

�
� p( �T )

X
j;e;b

rj
�
s( �T )js( �T � 1)

� Z
zhj;e;b(

�T � 1) = 0
: (3.17)

The proof of lemma 6 is found at the completion of the proof of theorem 3.1.

Lemma 3.6 Given equations (3:17); the de�nition of the price correspondence dic-

tates that the markets for both commodities and assets clear, that is:

Z
ch (t)� e = 0 8tZ
zhj;e;b(t) = 0 8t; 8j; e; b:

This completes the proof of theorem 3.1.

Proof of Lemma 3.4

Consider any sequence of state realizations s �T : To prove this result, I recognize

that consumption is bounded by de�nition. Then, beginning in time period �T ; I will

show that the assets are bounded by backward induction.11
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Final period: t = �T

The term p( �T )
X
j;e;b

rj
�
s( �T )js( �T � 1)

�
zhj;e;b(

�T�1) is bounded according to the bud-

get constraint at time period t = �T : The payout matrix R
�
s( �T � 1)

�
has full column

rank since I do not allow bankruptcy in the �nal period �T : Consider the summed

asset zhj ( �T � 1) =
X
e;b

zhj;e;b(
�T � 1): There are J summed assets and as R

�
s( �T � 1)

�
has full column rank equal to J; the summed assets

�
zhj (

�T � 1)
�
8j are bounded.

Thus, and most importantly, the value of the assets
X
j;e;b

qj;e;b( �T � 1)zhj;e;b( �T � 1) =X
j

qj;e1;0( �T �1)zhj ( �T �1) is bounded. Without bankruptcy, no arbitrage requires, in

agreement with the "equal returns condition", that qj;e1;0( �T � 1) = qj;e;b( �T � 1) 8e; b:

Backward induction: t < �T

Let s = s(t � 1) and s0 = s(t): With
X
j;e;b

qj;e;b(t)z
h
j;e;b(t) bounded (this is the

inductive hypothesis), the budget constraint at time period t < �T dictates that a

household�s �nancial payout, either Sh(t) or Bh(t); is bounded. I will �rst consider

those households with Et�1�
h(t) < 1 and then those households with Et�1�

h(t) = 1:

Part I: Households with Et�1�
h(t) < 1

A household will choose a vector of assets
�
zhj;e;b(t� 1)

�
8j;e;b in time period t� 1:

From assumption A, there exists a possible realization eh(t) = e0 such that e0 > emed

and the household cannot declare bankruptcy at t: Given that the household has

�nancial payout Bh(t) > Sh(t) for at least one realization by de�nition, then the

asset choices
�
zhj;e;b(t� 1)

�
8j;e;b are made with the expectation of bankruptcy given

some realizations at t and solvency given others.

11There is a natural indeterminacy in a household�s asset choice as all the assets (j; e; b)8e;b provide
"equal returns" to creditors. For solvent households, it is certainly possible that some assets zhj;e;b(t)
are not bounded, but the summed asset zhj (t) =

P
e;b z

h
j;e;b(t) will be proven to be bounded and most

importantly the value
P

e;b qj;e;b(t)z
h
j;e;b(t) will be proven to be bounded.
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Suppose for contradiction that there exists a sequence of asset choices
�
z�j;e;b(t� 1)

�
s.t. z�j;e;b(t � 1) ! +1 as � ! 1: For the realizations at which Bh(t) > Sh(t); as-

sumptions B and C together with �j < 1 imply that the term Bh(t) is unbounded

below. This is a contradiction.

Knowing that the asset choices are bounded above, suppose for contradiction

that there exists a sequence of asset choices
�
z�j;e;b(t� 1)

�
s.t. z�j;e;b(t � 1) ! �1

as � ! 1: Then, for the realizations at which the household does not declare

bankruptcy (�nancial payout is Sh(t)), assumption B and the prior result dictate

that Sh(t) is unbounded below. This is a contradiction

The value
X
j;e;b

qj;e;b(t� 1)zhj;e;b(t� 1) is bounded.

Part II: Households with Et�1�
h(t) = 1

A household will choose a vector of assets
�
zhj;e;b(t� 1)

�
8j;e;b in time period t� 1:

From part I, I already know that the assets
�
zhj;e;b(t� 1)

�
8j;e;b are bounded for all

households with Et�1�
h(t) < 1:

Impose an arti�cial bound on the asset choices of households with Et�1�
h(t) = 1 :

�Dj �
X
e;b

zhj;e;b(t� 1) � Dj 8j:

De�ne the vector D = (Dj)8j 2 RJ+: Then �Bh(p; q; �) is compact, markets clear, and

the equation (3:8) holds for all assets:

�j;e;b(t) = 1 +

Z
h2H

(1� �h(t))
�
zhj;e;b(t� 1)

��Z
h2H

�
zhj;e;b(t� 1)

�+ : (3.8)

Consider what happens as D ! 1: If the constraints cease to bind, the assets

are bounded and the proof is �nished. I will assume that some of the constraints
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continue to bind as D ! 1; that is, the set �Bh(p; q; �) becomes unbounded, and

show that this leads to a contradiction.

For the set of assets for which the constraints continue to bind as D !1; de�ne

J� as the number of di¤erent j: Then the matrix of endogenous payouts of these

assets must have rank < J�: This must be the case, otherwise the bounded matrix

product Sh(t) = Rh(s) � zh(t� 1) would imply bounded asset choices. De�ne A� as

the set of assets (j; e; b) that become unbounded
Z
h2H

��zhj;e;b(t� 1)��!1 as D !1:

For the assets (j; e; b) 2 A�; as the markets must clear, then both
Z
h2H

�
zhj;e;b(t� 1)

�+
and

Z
h2H

�
zhj;e;b(t� 1)

��
become unbounded. I have already shown that

�
zhj;e;b(t� 1)

�
8j;e;b

are bounded for all households with Et�1�
h(t) < 1: Thus, in equation (3:8); the

numerator term
Z
h2H

(1 � �h(t))
�
zhj;e;b(t� 1)

��
remains bounded. In the limit as

D !1; the overall repayment rates �j;e;b(t)! 1 for all assets (j; e; b) 2 A�:

The asset payouts rhj (s
0js; t) ! rj (s

0js) as
Z
h2H

�Bh(p; q; �) becomes unbounded

for all assets (j; e; b) 2 A�: The payout matrix R (s(t� 1)) is in general position.

Thus, all the assets (j; e; b) 2 A� will have an endogenous payout matrix of full rank

J�: This contradiction implies that all the constraints �Dj �
X
e;b

zhj;e;b(t � 1) � Dj

cease to bind as D !1: The value
X
j;e;b

qj;e;b(t� 1)zhj;e;b(t� 1) is bounded.

Proof of Lemma 3.5

I will de�ne the budget correspondence �Bh : ��
� � �Bh such that given (p; q; �) 2

��
� ; the values of the correspondence �B

h will be the entire budget set �Bh(p; q; �): This

correspondence is trivially uhc. The following proof will show that �Bh is also lhc.

The utility function in the programming problem (H) is continuous, so applying the

theorem of the maximum, �h is a uhc correspondence.

Claim 3.2 �Bh is an lhc correspondence.
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Proof. Consider a sequence (p� ; q� ; ��) ! (p; q; �) with
�
ch; zh; bh

�
2 �Bh (p; q; �)

for some h: I will drop the household superscript for all household variables and

parameters. I will �nd some scaling factor (��(t))0�t� �T such that when the variables

(c; z; b) are appropriately scaled:

c�(t) =

�
min
0�t� �T

��(t)

�
c(t) 8t

z�j;e;b(t) =

�
min
0�t� �T

��(t)

�
zj;e;b(t) 8t; 8j; e; b

b�(t) = b(t);

9N s.t. 8� � N; (c� ; z� ; b�) 2 �B (p� ; q� ; ��) and (c� ; z� ; b�)! (c; z; b) : For simplicity,

de�ne �� =
�
min
0�t� �T

��(t)

�
:

The budget set �B (p; q; �) has the so-called scaling propety, so called by Dubey et

al. (2005), meaning that it is fairly straightforward to de�ne the sequence of scaling

fractions ��(t) 2 [0; 1] for 0 � t � �T :

Consider any time period t: I de�ne the �nancial payout in time period t as

wt(p; �; z): If a household declares bankruptcy in time period t with B(t) > S(t); then

wt(p; �; z) = B(t): Otherwise, wt(p; �; z) = S(t): The initial condition is obviously

w0(p; �; z) = 0:

Consider any time period t and if t > 0; let the aggregate states be s = s(t � 1)

and s0 = s(t): If e(t) � c(t) �
X
j;e;b

qj;e;b(t)zj;e;b(t) + wt(p; �; z) > 0; then 9Mt s.t.

e(t) � c(t) �
X
j;e;b

q�j;e;b(t)zj;e;b(t) + wt(p
� ; �� ; z) > 0 holds 8� � Mt: De�ne �

�(t) = 1

for this case.

Otherwise, e(t)�c(t)�
X
j;e;b

qj;e;b(t)zj;e;b(t)+wt(p; �; z) = 0 and c(t)+
X
j;e;b

qj;e;b(t)zj;e;b(t)�

wt(p; �; z) = e(t) > 0: For simplicity, de�ne q(t) � z(t) =
X
j;e;b

qj;e;b(t)zj;e;b(t): De�ne
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��(t) 2 [0; 1] as:

��(t) =

8>>>><>>>>:
e(t)

c(t)+q�(t)�z(t)�wt(p� ;�� ;z) if
e(t) < c(t) + q�(t) � z(t)� wt(p

� ; �� ; z) and

c(t) + q�(t) � z(t)� wt(p
� ; �� ; z) 6= 0

1 otherwise

9>>>>=>>>>; 8�:

(3.18)

With c(t)+ q�(t) � z(t)�wt(p� ; �� ; z)! e(t) and the fact that 9Nt such that the term

c(t) + q�(t) � z(t)�wt(p� ; �� ; z) > 0 8� � Nt; then the fraction �
�(t)! 1 as � !1:

De�ne �� = min
0�t�T

��(t) as the fraction by which both consumption and assets are

scaled down:

c�(t) = �� � c(t) 8t

z�j;e;b(t) = �� � zj;e;b(t) 8t; 8j; e; b:

The "credit score" b(t) is held �xed in the sequence. If the �nancial payout in

time period t is given by wt(p; �; z) = B(t); then in the sequence wt(p� ; �� ; z) = B�(t):

I have left to show that the scaled consumption and asset choices (c� ; z�) are such

that the budget constraints are satis�ed in each time period.

Consider any time period t: As a �rst step for the following argument, I will prove

that the following inequality holds:

��wt(p
� ; �� ; z) � wt(p

� ; �� ; z�) (3.19)

where by de�nition z�j;e;b(t�1) = �� �zj;e;b(t�1) 8j; e; b: There are two possible cases

to consider and I will attack them each in order:

Case 1:

Suppose that a household decides to remain solvent in time period t; that is,
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wt(p
� ; �� ; z) = S(t) = p�(t)

X
j;e;b

�
��j;e;b (t) rj (s

0js) (zj;e;b(t� 1))+ + rj (s
0js) (zj;e;b(t� 1))�

�
:

As this term is linear in zj;e;b(t� 1); then obviously

wt(p
� ; �� ; ��z) = ��wt(p

� ; �� ; z)

and so the inequality (3:19) is satis�ed.

Case 2:

Suppose that a household decides to declare bankruptcy in time period t with

B(t) > S(t); that is, wt(p� ; �� ; z) = B(t) where

B(t) = p�(t)
X
j

min

(X
e;b

��j;e;b (t) rj (s
0js) (zj;e;b(t� 1))+ ; �j

)
�p�(t)

X
j

�j
X
e;b

��j;e;b (t) rj (s
0js) (zj;e;b(t� 1))+ :

The second term is linear in zj;e;b(t� 1); so I have only left to show that (8j):

�� min

(X
e;b

��j;e;b (t) rj (s
0js) � (zj;e;b(t� 1))+ ; �j

)
(3.20)

� min

(X
e;b

��j;e;b (t) rj (s
0js) �

�
z�j;e;b(t� 1)

�+
; �j

)
:

Subcase (a): In this �rst subcase, the entire value of the asset purchases is exempt,

that is,
X
e;b

��j;e;b (t) rj (s
0js) � (zj;e;b(t� 1))+ � �j: Then

X
e;b

��j;e;b (t) rj (s
0js) �

�
z�j;e;b(t� 1)

�+
= ��

X
e;b

��j;e;b (t) rj (s
0js) � (zj;e;b(t� 1))+ � �j:

The terms are then linear in zj;e;b(t� 1); so inequality (3:20) is satis�ed.

Subcase (b): Consider the second subcase where not all of the asset purchases are
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exempt, that is,
X
e;b

��j;e;b (t) rj (s
0js) � (zj;e;b(t� 1))+ > �j: If �

�
X
e;b

��j;e;b (t) rj (s
0js) �

(zj;e;b(t� 1))+ > �j; then trivially ���j � �j and inequality (3:20) is met. If

��
X
e;b

��j;e;b (t) rj (s
0js) � (zj;e;b(t� 1))+ � �j; then the inequality from (3:20) becomes

���j � ��
X
e;b

��j;e;b (t) rj (s
0js) � (zj;e;b(t� 1))+ ;

which is satis�ed under this subcase (b).

I will now show that the budget constraint is satis�ed in time period t: Using

inequality (3:19) :

c�(t) + q�(t) � z�(t)� wt(p
� ; �� ; z�) � �� (c(t) + q�(t) � z(t)� wt(p

� ; �� ; z))

By de�nition �� � ��(t) and c(t) + q�(t) � z(t) � wt(p
� ; �� ; z) > 0 8� � Nt which

implies:

c�(t) + q�(t) � z�(t)� wt(p
� ; �� ; z�) � ��(t) (c(t) + q�(t) � z(t)� wt(p

� ; �� ; z)) :

From the de�nition of ��(t) in equation (3:18); then

c�(t) + q�(t) � z�(t)� wt(p
� ; �� ; z�) � e(t):

Thus, 9N = max f::;Mt; Nt; ::g s.t. 8� � N; (c� ; z� ; b�) 2 �Bh (p� ; q� ; ��) and also

(c� ; z� ; b�)! (c; z; b) : This completes the proof.

Proof of Lemma 3.6

At our disposal are the simpli�ed equations from Walras�Law as found previously
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in equations (3:17) :

p(t)

�Z
ch (t)� e

�
+
X
j;e;b

qj;e;b(t)

Z
zhj;e;b(t) = 0

p( �T )

�Z
ch
�
�T
�
� e

�
� p( �T )

X
j;e;b

rj
�
s( �T )js( �T � 1)

� Z
zhj;e;b(

�T � 1) = 0
: (3.17)

The proof methodology will be to take the equation for time period t : 0 � t �
�T � 1 from (3:17) and use it to show that

Z
ch (t)� e = 0Z
zhj;e;b(t) = 0 8j:

I will rewrite the �rst equation in (3:17) only in terms of the base price qj;e1;0(t)

using the "equal returns condition" (3:10): I will use the fact that �j;e1;0(t+ 1) = 1:

p(t)

�Z
ch (t)� e

�
+
X
j

qj;e1;0(t)
X
e;b

�j;e;b(t+ 1)

Z
zhj;e;b(t) = 0: (3.21)

The normalization will be adjusted for this lemma so that p(t) +
P

j qj;e1;0(t) = 1:

Suppose
Z
ch (t) � e > 0: The de�nition of the price correspondence 	 requires

p(t) = 1�J� and qj;e1;0(t) = � 8j: The equation for time period t from (3:21) yields:

(1� J�)

�Z
ch (t)� e

�
+ �
X
j;e;b

�j;e;b(t+ 1)

Z
zhj;e;b(t) = 0:

There is then an upper bound given by:

�Z
ch (t)� e

�
�

��
X
j;e;b

�j;e;b(t+ 1)

Z
zhj;e;b(t)

1� J�
: (3.22)
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Suppose
X
e;b

�j;e;b(t+1)

Z
zhj;e;b(t) > 0: The de�nition of the price correspondence

	 requires p(t) = �; qj;e1;0(t) = 1 � J�; and qk;e1;0(t) = � 8k 6= j: The equation for

time period t from (3:21) yields:

(1� J�)
X
e;b

�j;e;b(t+1)

Z
zhj;e;b(t) = ��

X
k;e;b:k 6=j

�k;e;b(t+1)

Z
zhk;e;b(t)� �

�Z
ch (t)� e

�

As
Z
ch (t) � 0; then an upper bound is given by:

X
e;b

�j;e;b(t+ 1)

Z
zhj;e;b(t) �

��
X

k;e;b:k 6=j

�k;e;b(t+ 1)

Z
zhk;e;b(t) + �e

(1� J�)
(3.23)

From the proof of lemma 3.4,
X
e;b

zhj;e;b(t) is bounded below 8h and thus so is

X
e;b

�j;e;b(t + 1)

Z
zhj;e;b(t): Take a sequence � ! 0 such that de�ning ��

� with this �;

the upper bounds (3:22) and (3:23) imply:

Z
ch (t)� e � 0X

e;b

�j;e;b(t+ 1)

Z
zhj;e;b(t) � 0 8j:

As p(t) > 0 and qj;e1;0(t) > 0 8j; then (3:21) implies (8t : 0 � t � �T � 1):

Z
ch (t)� e = 0 (3.24)X

e;b

�j;e;b(t+ 1)

Z
zhj;e;b(t) = 0 8j:
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De�ne the adjusted asset holdings for each household as:

�hj;e;b(t) = �j;e;b(t+ 1)z
h
j;e;b(t) 8j; e; b:

The price for all the adjusted assets (j; e; b)8e;b will be qj;e1;0(t)
12: Then, I have the

condition: X
e;b

Z
�hj;e;b(t) = 0 8j:

Consider any j: There is a natural indeterminacy in the assets in that both

adjusted assets (j; e; b) and (j; e1; 0) provide "equal returns" to the creditors. The

adjusted asset �hj;e;b(t) can be thought of as a full commitment asset with price qj;e1;0(t):

Thus, if
X
e;b

Z
�hj;e;b(t) = 0; then an appropriate division of the adjusted asset pur-

chases
�
�hj;e;b(t)

�
8h;e;b will yield

Z
�hj;e;b(t) = 0 8e; b:

If
Z
�hj;e;b(t) =

Z
�j;e;b(t+ 1)z

h
j;e;b(t) = 0 8j; e; b; then the desired market clearing

condition holds:
Z
zhj;e;b(t) = 0 8j; e; b:

Finally, consider time period �T : What remains of the last equation from (3:17)

is p( �T )
�Z

ch
�
�T
�
d�� e

�
= 0: As p( �T ) > 0; then

Z
ch
�
�T
�
d�� e = 0:

Proof of Theorem 3.2

12A creditor is indi¤erent between spending qj;e;b(t)zhj;e;b(t) and qj;e1;0(t)�
h
j;e;b(t) = qj;e;b(t)z

h
j;e;b(t)

on its purchase and also indi¤erent between the payout �j;e;b(t+1)z
h
j;e;b(t) and 1 ��

h
j;e;b(t) = �j;e;b(t+

1)zhj;e;b(t):

A debtor is indi¤erent between spending qj;e;b(t)zhj;e;b(t) and qj;e1;0(t)�
h
j;e;b(t) = qj;e;b(t)z

h
j;e;b(t)

on its sale. From the second equation of (3:24);
X
e;b

�j;e;b(t + 1)

Z �
zhj;e;b(t)

�+
= �

X
e;b

�j;e;b(t +

1)

Z �
zhj;e;b(t)

��
: Using the de�nition of 	; namely that equation (3:7) holds, then

X
e;b

�j;e;b(t +

1)

Z �
zhj;e;b(t)

��
=
X
e;b

Z
�h(t+1)

�
zhj;e;b(t)

��
: Thus, for any zhj;e;b(t) < 0; I can equivalently de�ne

the adjusted asset holdings as �hj;e;b(t) = �
h(t+ 1)zhj;e;b(t): Using the payouts as written in (3:9); a

debtor is indi¤erent between the payouts �h(t+ 1)zhj;e;b(t) and 1 � �
h
j;e;b(t) = �

h(t+ 1)zhj;e;b(t):
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Equation (3:25) is the tranvsersality condition:

lim
t!1

X
st�1;et�1

X
s(t);e(t)

�h
�
st; et

�X
j;e;b

qj;e;b(t)z
h
j;e;b(t) = 0: (3.25)

The term et = (e(0); :::; e(t)) is the income realizations up to time period t: Given

the joint sequence of realizations (st; et) ; the Lagrange multiplier in time period t

can be written as �h (st; et) : This Lagrange multiplier is associated with the budget

constraint at t that must be satis�ed for household h given the joint realization of

aggregate states and incomes.

The transversality condition is a necessary condition of the household�s optimiza-

tion problem (3:3) and is natural in theoretical work. Basically, the condition does

not allow the optimal portfolio to "leave value" at in�nity. Taking all the contingent

budget constraints, multiplying them by their respective Lagrange multipliers, and

summing over a truncated time horizon yields the single budget constraint:

�TX
t=0

X
st;et

�h
�
st; et

� �
ch
�
st; et

�
� eh(t)

�
+
X
s �T ;e �T

�h
�
s
�T ; e

�T
� X

j;e;b

qj;e;b( �T )z
h
j;e;b( �T )

!
= 0:

With a �nite time horizon ( �T <1), the assets zh( �T ) are not available for trade.

The single budget constraint above is then equivalent to the Arrow-Debreu budget

constraint. Without a �nal time period ( �T ! 1), it must be that the second termP
s �T ;e �T �

h
�
s
�T ; e

�T
� X

j;e;b

qj;e;b( �T )z
h
j;e;b(

�T )

!
vanishes in the limit.

I will use the transversality condition to rule out Ponzi schemes. A natural

thought to have concerning Ponzi schemes in a bankruptcy model is whether it is

possible for a household to run up an unboundedly large debt using a Ponzi scheme

and then simply expunge the debt by declaring bankruptcy. In this model, such a

situation is not possible since the transversality condition must hold for all realizations
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of the aggregate state and income. Consider the decision to initiate a Ponzi scheme

at time period � : It is possible that the realizations (st; et) will provide incomes for

the household in each period such that eh(t) > emed 8t � � : With these realizations,

the household can never have the debt from the Ponzi scheme erased. Therefore, it

is not possible for the household to begin a Ponzi scheme in any period � as such a

scheme would not satisfy the requisite transversality condition (3:25):

The variables
��
ch; zh

�
h2H ; q

�
=
��
ch(t);

�
zhj;e;b(t)

�
8j;e;b

�
h2H

; (qj;e;b(t))8j;e;b

�
8t:0�t� �T

have been shown within the proof of theorem 3.1 to be bounded. These bounds on

the variables do not depend on the time period nor on the size of �T : Thus, the

variables are uniformly bounded. This completes the proof.

Proof of Lemma 3.1

This proof will make use of the following lemma (lemma 3.7). De�ne � to be

the probability that a household will declare bankruptcy next period. The proof of

lemma 3.7 follows the completion of the proof of lemma 3.1.

Lemma 3.7 When � > 0; the asset sale of household h with eh(t) = e1 is strictly

decreasing in �:

Consider the initial conditions: (i) no households with b(0) = 0 and (ii) ~�e1;1(0) =

~�e2;1(0) >
~�e1;2(0) =

~�e2;2(0): Naturally, all households begin with zero initial wealth.

From lemma 3.7, type k = 1 households borrow more and declare more often. Thus,

~�e1;0(1) > �: There are no households with b(1) = 1: As E
�
~�e1;b(1); b

�
= �; then

~�e1;2(1) < �: I will prove the lemma by considering three cases.

Case I: If ~�e1;0(t) � �; then ~�e1;0(t+1) � � 8t: Consider any t � 2: Since �1 > �2;

then more k = 1 survive from (e1; 0) at t to (e1; 1) at t + 1: Thus, ~�e1;1(t + 1) >
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~�e1;0(t) � �: Under the condition for case I, ~�e1;0(t+1) � �: As E
�
~�e1;b(t+ 1); b

�
= �;

then ~�e1;2(t+ 1) < �: Therefore, ~�e1;1(t+ 1) > ~�e1;2(t+ 1):

For cases II and III, consider any time period t with ~�e1;0(t) � � and ~�e1;0(t+1) < �:

AsE
�
~�e1;b(t); b

�
= �; thenE

�
~�e1;b(t); b 2 f1; 2g

�
� � andE

�
~�e1;b(t+ 1); b 2 f1; 2g

�
>

�: From lemma 3.7, which states that k = 1 declares bankruptcy more than k = 2;

~�e1;0(t+ 2) � E
�
~�e1;b(t+ 1); b 2 f1; 2g

�
> �:

Case II: Let ~�e1;0(t) � �: As �1 > �2; then ~�e1;1(t + 1) > ~�e1;0(t) � �: If

~�e1;2(t + 1) � ~�e1;1(t + 1); then from lemma 3.7 (more bankruptcy from k = 1)

~�e1;0(t+2) >
~�e1;1(t+1): Again, as �

1 > �2; then ~�e1;1(t+3) > ~�e1;0(t+2): Continuing,

for any � ; the sequence holds:

~�e1;2(t+ 2� + 3) � ~�e1;1(t+ 2� + 3) > ~�e1;0(t+ 2� + 2) > ~�e1;1(t+ 2� + 1):

In the limit, E
�
~�e1;b(t+ 2� + 3); b 2 f1; 2g

�
! 1; a contradiction.

Case III: Let ~�e1;0(t + 1) < �: As �1 > �2; then ~�e1;1(t + 2) > ~�e1;0(t + 1):

~�e1;0(t + 2) > � implies E
�
~�e1;b(t+ 2); b 2 f1; 2g

�
< �: If ~�e1;2(t + 2) � ~�e1;1(t + 2);

then � > ~�e1;1(t + 2) > ~�e1;0(t + 1): From lemma 3.7 (more bankruptcy from k = 1)

~�e1;0(t+ 3) >
~�e1;1(t+ 2) >

~�e1;0(t+ 1): Continuing, for any � ; the sequence holds:

� > ~�e1;0(t+ 2� + 3) >
~�e1;1(t+ 2� + 2) >

~�e1;0(t+ 2� + 1):

In the limit, ~�e1;0(t + 2� + 1) ! � and ~�e1;1(t + 2� + 2) > ~�e1;0(t + 2� + 1): This

contradicts � > ~�e1;1(t+ 2� + 2):

Proof of Lemma 3.7
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The probability � > 0 implies that in time period t+1; consumption ch(t+1) =

e1+B
h(t+1)�q(t+1) �zh(t+1): The bankruptcy payout Bh(t+1) does not depend

on the asset sale
�
zhe;b(t)

��
:

There is the realization in time period t+1; with the remaining probability 1��;

such that ch(t + 1) = e2 + Sh(t + 1) � q(t + 1) � zh(t + 1): Solvency is required

as e2 > emed and Sh(t + 1) contains the term
�
zhe;b(t)

��
: This latter consumption

ch(t+ 1) = e2 + S
h(t+ 1)� q(t+ 1) � zh(t+ 1) is greater than the former, ch(t+ 1) =

e1 + S
h(t+ 1)� q(t+ 1) � zh(t+ 1): De�ne the �rst as chhigh(t+ 1) and the second as

chlow(t+ 1):

For derivatives with respect to
�
zhe;b(t)

��
; the Euler equation from the household

problem (3:3) is given by:

u0
�
ch(t)

�
= �(1� �)u0

�
chhigh(t+ 1)

�
:

De�ne the function F (�;
�
zhe;b(t)

��
) = u0

�
ch(t)

�
� �(1 � �)u0

�
chhigh(t+ 1)

�
= 0:

Then from the implicit function theorem:

@
�
zhe;b(t)

��
@�

= �
@F
@�

@F

@(zhe;b(t))
�
= �

�u0
�
chhigh(t+ 1)

�
�qe;b(t)u00 (ch(t))� �(1� �)u00

�
chhigh(t+ 1)

� :
This equation is obtained as @ch(t)

@(zhe;b(t))
� = �qe;b(t) and

@chhigh(t+1)

@(zhe;b(t))
� = 1: Let�s consider

the signs of the terms in
@(zhe;b(t))

�

@� :

� u0
�
chhigh(t+ 1)

�
> 0 as u(�) is strictly increasing.

� �qe;b(t)u00
�
ch(t)

�
> 0 as u(�) is strictly concave.

� ��(1� �)u00
�
chhigh(t+ 1)

�
> 0 as u(�) is strictly concave.
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This completes the argument that
@(zhe;b(t))

�

@� < 0:

Proof of Theorem 3.4

To prove the result qe1;1(t) < qe1;2(t) 8t; I must prove that the overall repayment

rates satisfy �e1;1(t+1) < �e1;2(t+1) 8t: De�ne �ke;b(t+1) as the conditional repayment

rate in t+ 1 of debtors of type k in pool (e; b) given that the household is eligible to

declare. De�ne �zke;b(t) as the mean asset choice z
h
e;b(t) < 0 of all type k debtors in

pool (e; b): By de�nition, the overall repayment rate for each pool (e; b) is:

�e;b(t+1) = 1�
~�e;b(t)

�
�1
�
1� �1e;b(t+ 1)

��
�z1e;b(t) +

�
1� ~�e;b(t)

� �
�2
�
1� �2e;b(t+ 1)

��
�z2e;b(t)

~�e;b(t)�z1e;b(t) +
�
1� ~�e;b(t)

�
�z2e;b(t)

:

(3.26)

Case I: �2 ! 0 and �1 2 (0; 1)

From section 3.3, hypothetically if �1 = �2; then the bankruptcy equilibrium is

such that all eligible debtors on asset (e1; 1) declare bankruptcy. Thus, in this case

with �1 > �2; all k = 1 eligible households will declare from pool (e1; 1): The condi-

tional repayment rates are
�
�1e1;1(t+ 1); �

2
e1;1
(t+ 1)

�
= (0; 1) and

�
�1e1;2(t+ 1); �

2
e1;2
(t+ 1)

�
=

(0; 1) : Using equation (3:26) yields:

�e1;1(t+ 1) = 1�
�1~�e1;1(t)�z

1
e1;1
(t)

~�e1;1(t)�z
1
e1;1
(t) +

�
1� ~�e1;1(t)

�
�z2e1;1(t)

�e1;2(t+ 1) = 1�
�1~�e1;2(t)�z

1
e1;2
(t)

~�e1;2(t)�z
1
e1;2
(t) +

�
1� ~�e1;2(t)

�
�z2e1;2(t)

:

As ~�e1;1(t)! 1 and ~�e1;2(t) is uniformly bounded below 1; then �e1;1(t+ 1)! 1� �1

and �e1;2(t+ 1) > 1� �1:
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Case II: �1 ! 1 and �2 � �

The conditional repayment rates are �1e1;1(t+1) = 0; �
2
e1;1
(t+1) � 1; �1e1;2(t+1) =

0; and �2e1;2(t+ 1) � 0: Using equation (3:26) yields:

�e1;1(t+ 1) � 1�
~�e1;1(t)�z

1
e1;1
(t)

~�e1;1(t)�z
1
e1;1
(t) +

�
1� ~�e1;1(t)

�
�z2e1;1(t)

�e1;2(t+ 1) � 1�
~�e1;2(t)�z

1
e1;2
(t) + �2

�
1� ~�e1;2(t)

�
�z2e1;2(t)

~�e1;2(t)�z
1
e1;2
(t) +

�
1� ~�e1;2(t)

�
�z2e1;2(t)

Under �1 ! 1; then ~�e1;2(t)! 0: Thus,

�e1;2(t+ 1) � 1� �2:

Using lemma 3.7,
���z1e1;1(t)�� > ���z2e1;1(t)�� ; so then

~�e1;1(t)�z
1
e1;1
(t)

~�e1;1(t)�z
1
e1;1
(t) +

�
1� ~�e1;1(t)

�
�z2e1;1(t)

>
~�e1;1(t)�z

1
e1;1
(t)

~�e1;1(t)�z
1
e1;1
(t) +

�
1� ~�e1;1(t)

�
�z1e1;1(t)

= ~�e1;1(t):

With �1 ! 1; then ~�e1;1(t) > �: All told,

�e1;1(t+ 1) < 1� �:

The assumption �2 � � �nishes the case.

Using the continuity of the household�s asset choices as a function of (�1; �2) ;

then 9� > 0 so that as long as �1 � �2 +�; the overall repayment rates are ordered

�e1;1(t+ 1) < �e1;2(t+ 1) and this holds for every time period t+ 1:

Proof of Lemma 3.2
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I will prove that these are su¢ cient conditions by showing that they imply the

inequality �e1;1(t+1) < �e1;2(t+1) for every time period t+1: Recall the conditions

are:

1. Suppose that in equilibrium, type k = 1 eligible households in pool (e1; 1) at t

will declare bankruptcy at t+ 1:

2. Suppose further that type k = 2 eligible households in pool (e1; 2) at t will not

declare bankruptcy at t+ 1 unless they were also in pool (e1; 2) at t� 1:

The conditional repayment rates are
�
�1e1;1(t+ 1); �

2
e1;1
(t+ 1)

�
= (0; 1) for pool

(e1; 1): Out of all the k = 2 households in pool (e1; 2); at least 1
1+�2

of them will not

declare. These are the households who were not in the pool (e1; 2) at t � 1: Thus,

the conditional repayment rates are
�
�1e1;1(t+ 1) = 0; �

2
e1;1
(t+ 1) � 1

1+�2

�
:

From equation (3:26) :

�e1;1(t+ 1) = 1�
�1~�e1;1(t)�z

1
e1;1
(t)

~�e1;1(t)�z
1
e1;1
(t) +

�
1� ~�e1;1(t)

�
�z2e1;1(t)

�e1;2(t+ 1) � 1�
�1~�e1;2(t)�z

1
e1;2
(t) + �2 �2

1+�2

�
1� ~�e1;2(t)

�
�z2e1;2(t)

~�e1;2(t)�z
1
e1;2
(t) +

�
1� ~�e1;2(t)

�
�z2e1;2(t)

:

Thus, lemma 3.2 is complete upon showing the following inequality:

�1~�e1;1(t)�z
1
e1;1
(t)

~�e1;1(t)�z
1
e1;1
(t) +

�
1� ~�e1;1(t)

�
�z2e1;1(t)

>
�1~�e1;2(t)�z

1
e1;2
(t) + �2 �2

1+�2

�
1� ~�e1;2(t)

�
�z2e1;2(t)

~�e1;2(t)�z
1
e1;2
(t) +

�
1� ~�e1;2(t)

�
�z2e1;2(t)

:

(3.27)

The left-hand side of inequality (3:27) is equal to the product:

�1~�e1;1(t) �
�z1e1;1(t)

~�e1;1(t)�z
1
e1;1
(t) +

�
1� ~�e1;1(t)

�
�z2e1;1(t)

: (3.28)
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De�ne the convex combination ��z1e1;1(t) + (1� �)�z2e1;1(t) as �ze1;1(t; �) for any value of

� 2 [0; 1]: Then (3:28) is given by:

�1~�e1;1(t) �
�ze1;1(t; 1)

�ze1;1(t;
~�e1;1(t))

:

De�ne the two terms separately as:

A = �1~�e1;1(t) � 0:

B =
�ze1;1(t; 1)

�ze1;1(t;
~�e1;1(t))

� 0:

The right-hand side of inequality (3:27) is equal to the product:

�
�1~�e1;2(t) + �2

�2

1 + �2

�
1� ~�e1;2(t)

��
�

�z�e1;2(t)

~�e1;2(t)�z
1
e1;2
(t) +

�
1� ~�e1;2(t)

�
�z2e1;2(t)

(3.29)

where �z�e1;2(t) is de�ned by:

�z�e1;2(t) =
�1~�e1;2(t)�z

1
e1;2
(t) + �2 �2

1+�2

�
1� ~�e1;2(t)

�
�z2e1;2(t)

�1~�e1;2(t) + �2 �2

1+�2

�
1� ~�e1;2(t)

� :

This can be rewritten as a convex combination

�z�e1;2(t) = �e1;2(t)�z
1
e1;2
(t) +

�
1� �e1;2(t)

�
�z2e1;2(t)

where �e1;2(t) =
�1~�e1;2(t)

�1~�e1;2(t)+�
2 �2

1+�2
(1�~�e1;2(t))

: Using the notation for convex combination,

then (3:29) is given by:

�
�1~�e1;2(t) + �2

�2

1 + �2

�
1� ~�e1;2(t)

��
�
�ze1;1(t; �e1;2(t))

�ze1;1(t;
~�e1;2(t))

:



CHAPTER 3. BANKRUPTCY IN AN INFINITE HORIZON MODEL 123

De�ne the two terms separately as:

C = �1~�e1;2(t) + �2
�2

1 + �2

�
1� ~�e1;2(t)

�
� 0:

D =
�ze1;1(t; �e1;2(t))

�ze1;1(t;
~�e1;2(t))

� 0:

The proof is complete upon showing that AB > CD: Households k = 1 declare

bankruptcy from pool (e1; 1) and k = 2 do not. From lemma 3.7, then
�z1e1;2

(t)

�z2e1;2
(t)
<

�z1e1;1
(t)

�z2e1;1
(t)

and
���z1e1;1(t)�� > ���z2e1;1(t)�� : De�ne two additional terms:

B0 =
1

~�e1;1(t)
:

D0 =
�e1;2(t)

~�e1;2(t)
:

With the two facts from lemma 3.7, then B0 � �D0 � 0 for some � 2 R+ implies

B > �D � 0: This implication is an immediate corollary to the footnote.13 With

A � 0 and C � 0; in order to prove AB > CD; it su¢ ces to show AB0 � CD0:

The �rst term, AB0; is given by:

AB0 = �1:

The second term, CD0; is given by:

CD0 =

�
�1~�e1;2(t) + �2

�2

1 + �2

�
1� ~�e1;2(t)

�� �e1;2(t)
~�e1;2(t)

:

13I prove that e
f > �

x
y > 0; e > f > 0; and

1
�1
� 1

�2
> 0 implies the inequality (�) : e

�1e+(1��1)f >

� x
�2x+(1��2)y > 0: De�ne x̂ = �x: Dividing the left-hand side by e and the right-hand side

by x̂ yields that (�) holds i¤ �1 + (1 � �1) fe < �2 + (1 � �2) yx̂ : As y
x̂ >

f
e ; it su¢ ces to show

�1+(1��1) fe � �2+(1��2)
f
e : Both sides are convex combinations of 1 and

f
e < 1: The inequality

holds as �1 � �2:



CHAPTER 3. BANKRUPTCY IN AN INFINITE HORIZON MODEL 124

Using the de�nition of �e1;2(t) =
�1~�e1;2(t)

�1~�e1;2(t)+�
2 �2

1+�2
(1�~�e1;2(t))

; then

CD0 =

�
�1~�e1;2(t) + �2

�2

1 + �2

�
1� ~�e1;2(t)

��24 �1

�1~�e1;2(t) + �2 �2

1+�2

�
1� ~�e1;2(t)

�
35 = �1:

Therefore, the inequality AB0 � CD0 is trivially satis�ed. This �nished the proof of

lemma 3.2. Notice that the proof is valid for any values of � 2 [0; 1] and �1 > �2:
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Chapter 4

Transaction Costs and Planner

Intervention

4.1 Introduction

Transaction costs are pervasive in �nancial markets, both those in the real world

and those studied in economic models. Some transaction costs are measurable and

apparent such as a tax imposed by the government on the trade of an asset. Other

transaction costs are unmeasurable, but are the accepted explanation for why bene�-

cial trade does not occur. The models of derivative asset pricing rely on transaction

costs to justify the pricing of an otherwise redundant asset. In other �nancial mod-

els, the holding of an asset is divided into purchases and sales. Without transaction

costs, these two variables would be indeterminate.

Recently, interest in explaining the emergence of transaction costs has arisen. One

explanation for transaction costs is that they emerge because a �nancial intermediary

is required to facilitate asset trade. This intermediary must be compensated a market

wage for the labor required to produce such a service. The most recent work that

127
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corrects many of the shortfalls of the previous literature is Martins-da-Rocha and

Vailakis (2010). My work does not attempt to explain why transaction costs emerge,

rather it studies conditions under which an adjustment of these transaction costs can

improve market welfare. The welfare criterion that will be used in this paper will be

the Pareto criterion.

To illustrate the normative rami�cations of transaction costs, suppose that enough

assets exist to span all states of uncertainty. If transaction costs were removed from

the model, then all households would perfectly insure against future risk by trading

�nancial assets. As a result, the equilibrium allocation would be Pareto optimal,

meaning that a planner cannot intervene and make some households better o¤without

making others worse o¤. However, with transaction costs, the equilibrium allocation

is ine¢ cient and there is justi�cation for planner intervention.

The planner will intervene by scaling the transaction costs either up or down.

The underlying shape of the transaction costs functions will remain the same. The

intervention must satisfy �scal balance, meaning that the value of all transactions

costs will be identical before and after the intervention. If the transaction costs are

taxes, this statement says that the planner�s tax reform must be revenue neutral,

that is, the tax revenue collected cannot change. The main result states that over

a generic subset of parameters and subject to an upper bound on the number of

households, there exists an open set of planner interventions that lead to a Pareto

superior allocation. As an immediate corollary, consider an intervention within this

open set of planner interventions. The planner could then increase all transaction

costs locally, still make all households better o¤, and keep a small pro�t for itself.

Recent papers by Citanna et al. (2006) and del Mercato and Villanacci (2006)

analyze the normative impact of a government tax policy. Both papers, although

each in a di¤erent setup, arrive at the same conclusion. That conclusion is that with
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an incomplete markets setup, for a generic subset of endowments and utilities, the

introduction of a tax can be Pareto improving. My result di¤ers from both works

in two key aspects. First, I focus entirely on one friction (transaction costs) and

do not require an incomplete markets setting. Second, these two papers prove that

for an economy without tax frictions, introducing taxes to redistribute wealth will

lead to a Pareto improvement. However, tax frictions must certainly be present in

any economy before a government can redistribute wealth. I prove the regularity

of a transaction costs equilibrium, an equilibrium in which tax frictions are already

present, and then prove my generic planner intervention result given that equilibrium.

My paper is a descendant of the works by Cass and Citanna (1998) and Elul

(1995) that questioned whether �nancial innovation is always welfare improving. In

a setting of incomplete �nancial markets, both of the above papers prove that there is

an open set of payo¤s for the new assets (under additional dimensional restrictions)

such that the introduction of this new asset actually makes all households worse

o¤. As governments are not in the business of creating new assets, I claim that it

is more interesting to study the planner adjustments of transaction costs (taxes), a

frequent action performed by governments. The framework used to prove the Cass

and Citanna (1998) result, the Citanna et al. (2006) result, the del Mercato and

Villanacci (2006) result, and the result presented in this paper was developed by

Citanna, Kajii, and Villanacci (1998).

This paper is organized into three remaining sections. In section 4.2, I introduce

the general equilibrium model with transaction costs in the �nancial markets and

de�ne an equilibrium. In section 4.3, I state and prove the main result of this paper.

In section 4.4, I provide the proofs of two lemmas stated in section 4.2.
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4.2 The Model

Consider a 2 period general equilibrium model with S states of uncertainty in the

second time period. Denoting the �rst period as the s = 0 state, I will number the

states as s 2 S = f0; :::; Sg: At each state, H � 2 households trade and consume

L � 2 physical commodities. There are a �nite number of both households and

physical commodities with h 2 H = f1; ::; Hg: The commodities are denoted by

the variable x: De�ne the total number of goods as G = L(S + 1) and then the

consumption set is the entire nonnegative orthant, xh 2 RG+ 8h 2 H: Concerning

notation, the vector x 2 RHG+ contains the consumptions for all households, the vector

xh(s) 2 RL+ contains the consumption by household h in state s (of all commodities),

and the scalar xhl (s) 2 R+ is the consumption by household h of the good (s; l) or

the lth physical commodity in state s:

Households are endowed with commodities in all states. These endowments are

denoted by e: I assume that all households have strictly positive endowments:

Assumption 1 eh >> 0 8h 2 H:1

In addition to endowments, the household primitives include the utility functions

uh : RG+ ! R subject to the following assumptions:

Assumption 2 uh is C3; di¤erentiably strictly increasing (i.e.,Duh(xh) >> 0

8xh 2 RG+), di¤erentiably strictly concave (i.e., D2uh(xh) is negative de�nite 8xh 2

RG++), and satis�es the boundary condition (clUh(xh) � RG++ where Uh(xh) = fx0 2

RG++ : uh(x0) � uh(xh)g) 8h 2 H:

De�ne the commodity prices as p 2 RGnf0g: Under assumption 2, the prices

satisfy p >> 0: Of all the physical commodities in each state, the �nal one (l = L)

1The notation eh >> 0 means that ehl (s) > 0 8(l; s):
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is called the numeraire commodity, meaning that all other commodities are priced

relative to this one. For simplicity, I normalize the price of the numeraire commodity

pL(s) = 1 in every state s 2 S:

The commodities are perishable, so the households require �nancial markets to

transfer wealth between states. I assume that there are J assets (J � S). These

assets are numeraire assets meaning that the payout of each asset is in terms of the

numeraire commodity l = L: The payouts are assumed to be nonnegative and are

collected in the S � J yields matrix Y :

Y =

266664
r1(1) ::: rJ(1)

: ::: :

r1(S) ::: rJ(S)

377775 :

To get the payo¤ in terms of the unit of account, I make the preserving transformation

Y =

266664
pL(1) 0 0

0 ::: 0

0 0 pL(S)

377775 �
266664
r1(1) ::: rJ(1)

: ::: :

r1(S) ::: rJ(S)

377775 :

Summarizing what I said so far concerning the parameter Y :

Assumption 3 Y is a nonnegative and full rank S � J yields matrix.

The assets are in zero net supply and are denoted by the variable �: As with

consumption, �h 2 RJ is the portfolio held by an individual household h; � 2 RHJ are

the portfolios of all households, and �hj 2 R is the amount of asset j held by household

h:

For each asset j; there exists an asset price qj 2 R, which can be viewed as the

payo¤ of the asset (in terms of the unit of account) in state s = 0: Combining
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the endogenous asset prices with the exogenous payouts, I will represent the overall

returns of the �nancial markets in the (S + 1)� J returns matrix R :

R =

264 �q
Y

375 :
I will model the transaction costs as costs imposed on the trade of �nancial assets.

Initially, all households have zero asset holdings. Upon trading assets, households

must pay the real transaction costs. The transaction costs for the entire portfolio

(paid in the unit of account) will be determined by the mapping

F h : RJ ! R+

F h
�
�h
�
=

X
j
qj � fhj

�
�h
�
:

For any portfolio �h; the value F h
�
�h
�
is the value that must be paid as transac-

tion costs. The transaction costs are nonnegative. The transaction costs depend

(linearly) upon the asset price level. This is natural since the transaction costs

will represent a loss of some physical amount of assets. The transaction costs are

heterogeneous across households.

The mapping fhj is the actual physical amount of asset j that must be paid

as transaction costs. These costs (in terms of asset j) will depend not only on

the position of asset j; �hj ; but also on the position of the other assets �
h
�j: The

transaction costs mappings (parameters of the model) are given by the vector-valued

function fh =
�
fh1 ; ::; f

h
J

�
where

fhj : RJ ! R+ 8j:
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I impose the following assumptions on fhj :

Assumption 4 fhj is C
3; di¤erentiably strictly convex in �hj ; and satis�es

fhj (�) = 0 for any � 2 RJ with �j = 0 8h and 8j: By strict convexity in �hj ; I mean

that aTD2fhj
�
�h
�
a � 0 8a with strict inequality if aj 6= 0 and �hj 6= 0 8j:

Claim 4.1 Given q >> 0; F h is C3; di¤erentiably strictly convex, and satis�es

F h(0) = 0:

Proof. The �rst and the last are obvious. For the second, note that the J � J

Hessian for F h can be equivalently written as:

D2F h
�
�h
�
=
X

j
qj �D2fhj

�
�h
�

where qj is a scalar multiplier of the Hessians D2fhj
�
�h
�
: With q >> 0; since

aTD2fhj
�
�h
�
a � 0 8a; then aTD2F h

�
�h
�
a � 0 8a: For strict inequality, if

�hj 6= 0 8j and since aTD2fhj
�
�h
�
a > 0 8a with aj 6= 0 and this holds 8j; then

aTD2F h
�
�h
�
a > 0 8a 6= 0:

Though this paper does not o¤er an explanation for why the transaction costs are

strictly convex, the recent work by Martins-da-Rocha and Vailakis (2009) may shed

some light on the question. Their work models transaction costs as an endogenous

result of the labor that must be input to produce �nancial intermediation. The labor

to intermediate a �nancial transaction can be supplied by any of the households in

the economy (pure competition). The production set for intermediation needs to

be convex. Further, households receive a convex disutility from labor. As a result,

the equilibrium transaction costs for a portfolio �h 2 RJ are a function of the utility

loss from providing the labor necessary to intermediate �h: Martins-da-Rocha and
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Vailakis implement a linear transaction costs structure (a constant commission paid

by households on all asset trades). With a linear transaction costs structure, there

is only one variable to endogenize: the slope. However, with a convex production

set and convex disutility, the intuitive idea (though harder to implement) is that the

per-unit transaction costs will strictly increase with the size of the trade. This would

endogenously generate the strict convexity of transaction costs that I assume in my

model.

De�ne the canonical representation for the transaction costs mappings as that

speci�cation in which the transaction costs are independent across assets. In this

case, fhj is only a function of �
h
j and D

2F h
�
�h
�
is a positive de�nite, diagonal matrix.

The transaction costs are paid in terms of the numeraire assets and can be likened

to a sieve which collects a certain percentage of the total asset trade. Since the assets

are numeraire and pay out in the real physical commodity l = L; the transaction costs

have a real e¤ect in that the sieve is removing the commodities l = L from the total

resources of the economy. A transaction costs equilibrium is thus de�ned as follows.

De�nition 4.1
��
xh; �h

�
h2H ; p; q

�
is a transaction costs equilibrium if

1. 8h 2 H; given (p; q);�
xh; �h

�
is an optimal solution to the household�s maximization problem

max
x�0;�

uh(x)

subj to p(0)(eh(0)� x(0))� q� �
P

j qj � fhj (�) � 0

8s > 0 p(s)(eh(s)� x(s)) +
P

j rj(s)�j � 0

: (HP)
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2. Markets Clear

P
h x

h
l (s) =

P
h e

h
l (s) 8(l; s) =2 f(L; 1); ::; (L; S)g:P

h x
h
L(s) =

P
h e

h
L(s) +

P
h

P
j rj(s) � �

h
j 8s > 0:P

h �
h
j +

P
h f

h
j

�
�h
�
= 0 8j:

The existence of such an equilibrium is well-known and hence its proof is omit-

ted.

The total �nancial payout in s = 0 for some asset j including both the asset price

and the transactions costs is given by �qj � ~fhj
�
�h
�
where

~fhj : �E ! ~fhj (�E)

~fhj
�
�h
�
= �hj + fhj

�
�h
�
:

�E is the set containing all potential equilibrium portfolios (E for equilibrium),

that is, assets that satisfy household optimization and market clearing. So far nothing

I have said indicates that �E 6= RJ ; but claims 4.2 and 4.3 will do just that. By

construction ~fhj satis�es the conditions of assumption 4. Let ~f
h =

�
~fh1 ; ::;

~fhJ

�
be the

Cartesian product of
�
~fhj

�
8j
with ~fh : �E ! ~fh (�E) :

Claim 4.2 In equilibrium, q �D ~fh
�
�h
�
>> 0 8�h 2 �E:

Proof. The following are the �rst order conditions of the household�s problem (HP )
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with respect to �h where �h are the Lagrange multipliers:

�h

0BBBBBBB@

� (q1; ::; qJ) �D ~fh
�
�h
�

r(1)

:

r(S)

1CCCCCCCA
= 01�J : (4.1)

This is best seen as the (j; k) element of D ~fh
�
�h
�
is

@ ~fhj (�h)
@�k

and the �rst order

condition for any one asset �hk is given as:

�h

0BBBBBBB@

�
P

j qj
@ ~fhj (�h)
@�k

rk(1)

:

rk(S)

1CCCCCCCA
= 0: (4.2)

From (4:2) with
P

s>0 �
h(s)rk(s) > 0 and �

h(0) > 0; then �
P

j qj
@ ~fhj (�h)
@�k

< 0 8k:

This �nishes the proof.

Take the canonical representation for the transaction costs in which fhj is only a

function of �hj : Then ~f
h
j is only a function of �

h
j and D ~f

h
�
�h
�
is a diagonal matrix.

Claim 4.3 Under the canonical representation, equilibrium conditions imply q >> 0

and ~fh : �E ! ~fh (�E) is an invertible function.

Proof. From the previous claim, q �D ~fh
�
�h
�
>> 0 8�h 2 �E: Under the canonical

representation, D ~fh
�
�h
�
is a diagonal matrix. Thus, if I can show that q >> 0;

then q �D ~fh
�
�h
�
>> 0 implies that D ~fh

�
�h
�
has strictly positive diagonal elements

for all �h 2 �E: Applying the Inverse Function Theorem would yield that ~fh is an

invertible function.
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Consider any asset j and suppose for contradiction that qj � 0: Then qj < 0 and
@ ~fhj (�h)
@�j

< 0 8h from (4:2): By the de�nition of

@ ~fhj
�
�h
�

@�j
= 1 +Dfhj

�
�hj
�
< 0;

then Dfhj
�
�hj
�
< �1: Since fhj : R ! R+ has the global minimum at �hj = 0; then

�hj < 0: From the market clearing condition:

P
h
~fhj
�
�hj
�
= 0;

there exists some households such that ~fhj
�
�hj
�
� 0: For these households, the �nan-

cial payout in state s = 0 is given by

�qj � ~fhj
�
�hj
�
� 0

and the payout in states s > 0 is given by

0BBBB@
:

rj(s)�
h
j

:

1CCCCA < 0:

As a result, these households are not optimizing as �hj = 0 is a¤ordable and strictly

preferred. Thus qj < 0 and
@ ~fhj (�h)
@�j

< 0 cannot be an equilibrium outcome for any

household h:

To proceed, I will need to use the inverse function of ~fh : �E ! ~fh (�E) : Under

the canonical representation, ~fh is invertible. Without the canonical representation,

~fh may not be invertible. I will return to this point in lemma 4.2. For now, I state
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the results conditional on ~fh being an invertible function.

Claim 4.4 If ~fh : �E ! ~fh (�E) is an invertible mapping and Y �
h
D ~fh

�
�h
�i�1

is

a nonnegative matrix for all equilibrium �h; then q >> 0:2

Proof. Since ~fh is invertible, the matrix
h
D ~fh

�
�h
�i�1

has full rank. Thus Y �h
D ~fh

�
�h
�i�1

is a full rank matrix. From the �rst order conditions given in (4:1) :

qD ~fh
�
�h
�
=

�
�h(1); ::; �h(S)

�
�h(0)

� Y:

Thus, the asset prices q are given by:

q =

�
�h(1); ::; �h(S)

�
�h(0)

� Y �
h
D ~fh

�
�h
�i�1

:

Since Y �
h
D ~fh

�
�h
�i�1

is a nonnegative, full rank matrix, there exists at least one

strictly positive element in each column. As �h >> 0; then q >> 0:

I will de�ne the new asset variable �h 2 RJ such that

�h = ~fh
�
�h
�
or �hj = ~fhj

�
�h
�
8j:

If ~fh : �E ! ~fh (�E) is invertible, then 9gh : ~fh (�E)! �E such that

gh =
�
~fh
��1

gh
�
�h
�
= �h:

2Since Y is nonnegative by assumption 3 and under the canonical representation D ~fh
�
�h
�
is a

strictly positive, diagonal matrix, then for an open set of matrices around the canonical representa-

tion, Y �
h
D ~fh

�
�h
�i�1

is nonnegative. For this open set, the nonnegativity assumption in claim

4.4 need not be stated.
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The vector gh =
�
gh1 ; ::; g

h
J

�
is such that ghj : ~f

h (�E)! R is C3 8j: Further, if �hj 6= 0

8j; then �hj 6= 0 8j since �hj = ~fhj
�
�h
�
= �hj + fhj

�
�h
�
:

With this alternative asset, I will rede�ne a transaction costs equilibrium.

De�nition 4.2
��
xh; �h

�
h2H ; p; q

�
is a ��transaction costs equilibrium if

1. 8h 2 H; given (p; q);�
xh; �h

�
is an optimal solution to the household�s maximization problem

max
x�0;�

uh(x)

subj to p(0)(eh(0)� x(0))� q� � 0

8s > 0 p(s)(eh(s)� x(s)) +
P

j rj(s)g
h
j (�) � 0

: (HP2)

2. Markets Clear

P
h x

h
l (s) =

P
h e

h
l (s) 8(l; s) =2 f(L; 1); ::; (L; S)g:P

h x
h
L(s) =

P
h e

h
L(s) +

P
h

P
j rj(s)g

h
j

�
�h
�
8s > 0:P

h �
h
j = 0 8j:

De�ne the total �nancial payout in each state s > 0 as the function

Ghs : RJ ! R

Ghs
�
�h
�
=

X
j
rj(s) � ghj

�
�h
�
:

Then Gh : RJ ! RS de�ned as the Cartesian product Gh =
�
Gh1 ; :::; G

h
S

�
is given

equivalently by:

Gh
�
�h
�
= Y �

0BBBB@
gh1 (�

h)

:

ghJ(�
h)

1CCCCA
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where

0BBBB@
gh1 (�

h)

:

ghJ(�
h)

1CCCCA = gh
�
�h
�
: Thus, the derivative of Gh

�
�h
�
(an S � J matrix) is

given by:

DGh
�
�h
�
= Y �Dgh

�
�h
�
:

Dgh
�
�h
�
has full rank and so DGh

�
�h
�
has full column rank.

De�ne the (S + 1)�G price matrix

P =

266664
p(0) 0 0

0 ::: 0

0 0 p(S)

377775 :

I can characterize the ��transaction costs equilibria with a system of equations �:

De�ne n = H(G+ J + S + 1) + J +G� (S + 1) as the number of variables. Given

parameters � =
�
eh; uh; fh

�
h2 H ; the variables � =

��
xh; �h; �h

�
h2H ; p; q

�
constitute

a ��transaction costs equilibrium i¤ �(�; �) = 0 2 Rn where
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�(�; �) =

(FOCx)

:

Duh(xh)� �hP

:

(BC)

:

p(0)(eh(0)� xh(0))� q�h

p(s)(eh(s)� xh(s)) +
P

j rj(s)g
h
j

�
�h
�
8s > 0

:

(FOC�)

:

�h

0B@ �q

Y �Dgh(�h)

1CA
:

(MCx)
P

h2H(e
h
l (s)� xhl (s)) 8l 6= L; 8s � 0

(MC�)
P

h2H �
h

Claim 4.5 If ~fh : �E ! ~fh (�E) is an invertible mapping andD2F h
�
�h
�
�
h
D ~fh

�
�h
�i�2

is a positive semide�nite matrix for all equilibrium �h; then
P

s>0 �
h(s) � D2Ghs

�
�h
�

is a negative semide�nite matrix.3

Proof. I will employ the Einstein summation convention in this proof for notational

simplicity. A good reference is Lee (2006).

3Since D2Fh
�
�h
�
is positive semide�nite from claim 1 and under the canonical representationh

D ~fh
�
�h
�i�2

is a strictly positive, diagonal matrix, then for an open set of matrices around the

canonical representation, D2Fh
�
�h
�
�
h
D ~fh

�
�h
�i�2

is positive semide�nite. For this open set, the

semide�nite assumption in claim 4.5 need not be stated.
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As gh =
�
~fh
��1

; then for any �h :

gh � ~fh
�
�h
�
= �h

Dgh
�
~fh
�
�h
��
�D ~fh

�
�h
�
= IJ :

De�ne �h = ~fh
�
�h
�
and �j =

P
s>0 �

h(s)rj(s) > 0: Then premultiply the above

equation by
�
�1; ::; �J

�
to obtain:

�
�1; ::; �J

�
Dgh

�
~fh
�
�h
��
�D ~fh

�
�h
�
=
�
�1; ::; �J

�
: (4.3)

Equation (4:3) is equivalent to (using the Einstein summation convention):

�jDghj

�
~fh
�
�h
��
�D ~fh

�
�h
�
=
�
�1; ::; �J

�
:

Taking a second derivative yields:

�jD2ghj
�
�h
�
�
�
D ~fh

�
�h
��2

+ �jDkg
h
j

�
�h
�
D2 ~fhk

�
�h
�
= 0: (4.4)

De�ne
�
 1; ::;  J

�
such that  k = �jDkg

h
j

�
�h
�
: Then (4:4) can be written as:

�jD2ghj
�
�h
�
�
�
D ~fh

�
�h
��2

+  kD2 ~fhk
�
�h
�
= 0: (4.5)
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From the �rst order conditions with respect to �hk of the problem (HP2) :

�h

0BBBBBBB@

�qk

rj(1)Dkg
h
j

�
�h
�

:

rj(S)Dkg
h
j

�
�h
�

1CCCCCCCA
= 0:

By the de�nition of �j and  k; the terms  k = �h(0)qk 8k: Thus, (4:5) reduces to

�jD2ghj
�
�h
�
�
�
D ~fh

�
�h
��2

+ �h(0)qkD2 ~fhk
�
�h
�
= 0: (4.6)

By de�nition, F h
�
�h
�
= qkfhk

�
�h
�
: Since ~fh

�
�h
�
= �h + fh

�
�h
�
; then

D2F h
�
�h
�
= qkD2 ~fhk

�
�h
�
:

By de�nition,
P

s>0 �
h(s) �D2Ghs

�
�h
�
= �jD2ghj

�
�h
�
:

Thus, inserting these de�nitions into (4:6) and rearranging terms yields the �nal

equation:

X
s>0

�h(s) �D2Ghs
�
�h
�
= ��h(0)D2F h

�
�h
� h
D ~fh

�
�h
�i�2

: (4.7)

IfD2F h
�
�h
� h
D ~fh

�
�h
�i�2

is a positive semide�nite matrix, then
P

s>0 �
h(s)�D2Ghs

�
�h
�

is a negative semide�nite matrix. This completes the proof.

As a well-known regularity result extended to this model, I state without proof

the following lemma with associated well-known corollary.

Lemma 4.1 The matrix D��j�(�;�)=0 has full row rank on a generic subset of endow-

ments E = f(eh)h2 H : e
h >> 0g:
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Corollary 4.1 Over a generic subset of endowments E = f(eh)h2 H : e
h >> 0g; then

(i) 9l < L (without loss of generality, l = 1) such that (eh1(s) � xh1(s)) 6= 0 8s > 0;

8h and (ii) �hj 6= 0 8j; 8h:

Critical in de�ning the ��transaction costs equilibrium is that the mapping ~fh :

�E ! ~fh (�E) is invertible. Up until now, the results only hold conditional on the

mapping ~fh being invertible. Under the canonical representation, the mapping ~fh is

invertible. No known conditions exist to guarantee that ~fh is always invertible for

the general representation.4 Lemma 4.2 will �nd an open set in which all mappings

~fh will be invertible and this is possible as the set of invertible matrices is an open

set. The proof of lemma 4.2 is contained in section 4.4.

Lemma 4.2 There exists an open set of transaction costs mappings
�
fh
�
h2 H such

that for mappings in this set and endowments
�
eh
�
h2 H in a generic subset of E ; the

mapping ~fh : �E ! ~fh (�E) is invertible 8h 2 H:

The next lemma will be useful in the proof of the main theorem. The result

from the lemma is su¢ cient to prove that, over a generic subset of endowments, all

equilibrium allocations are Pareto ine¢ cient. The proof of lemma 4.3 is contained

in section 4.4.

Lemma 4.3 With H � S; the matrix

0BBBB@
�1(1)(e11(1)� x11(1)) :::: �H(1)(eH1 (1)� xH1 (1))

: :

�1(S)(e11(S)� x11(S)) :::: �H(S)(eH1 (S)� xH1 (S))

1CCCCA
4It is possible to use investment constraints to restrict the asset trade to a subset such that�
~fh
�
h2H

are invertible over the restricted domains. This, however, adds an unwanted additional

friction to this transaction costs model.
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has full column rank on a generic subset of endowments E = f(eh)h2 H : e
h >> 0g:

The fact that ghj is strictly concave leads to the ine¢ ciency of the equilibrium allo-

cation. If ghj was a linear function of �
h
j only (8h and 8j); then the equilibrium would

exactly equal the GEI equilibrium. With complete markets J = S; the equilibrium

allocation would be Pareto optimal.

This ine¢ ciency in the equilibrium allocation, a generic result given lemma 4.3,

justi�es planner intervention. The planner will scale the transaction costs, either

up or down, while satisfying �scal balance. For asset j; qj
P

h2H f
h
j

�
�h
�
is the total

value of the asset lost due to the transaction costs. The planner will intervene by

setting the new transaction costs at
�
1 + j

�
� fhj (:) : The planner tool j can either

be positive (an increase in transaction costs) or negative (a decrease in transaction

costs).5

The planner has tools given by the vector  =
�
:::; j; ::

�
2 RJ : I will call any

equilibrium that results following planner intervention the planner updated equilib-

rium. This is in contrast to the original ��transaction costs equilibrium. If  = �!0 ;

the planner is taking no action and the planner updated equilibrium is identical to

the original ��transaction costs equilibrium.

As a result of the planner intervention, the households are likely to make di¤erent

optimizing decisions. De�ne the asset choices of the planner updated equilibrium

as
�
�̂
h
�
h2H

: De�ne the asset prices of the planner updated equilibrium as (q̂j)8j :

Fiscal balance requires that the value of transaction costs is identical both before and

after the planner intervention:

X
j
qj
X

h2H
fhj
�
�h
�
=
X

j
q̂j
�
1 + j

�X
h2H

fhj

�
�̂
h
�
:6 (BB)

5The analysis is local, so clearly 1 + j > 0:
6Thanks to Antonio Penta for suggesting the rough idea that evolved into the current (BB):
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I will call this the budget balance (BB) equation. Planner inaction ( =
�!
0 ) trivially

satis�es the budget balance equation.

The planner tool  is of dimension J: However due to the budget balance equation

(BB); the planner only has J � 1 degrees of freedom in choosing : To obtain the

result that the planner can use the vector  to generically e¤ect a Pareto improvement,

there must be as many free tools as households. Thus, throughout this work, the

assumption H � J � 1 is essential.7

4.3 The Result

Theorem 4.1 Under assumptions 1-4 with both 2 � H � J � 1 and L � 2 and for

parameters � =
�
eh; uh; fh

�
h2H belonging to a generic subset of � = E �U �F where

E = f(eh)h2H : eh >> 0g; U is the set of utility functions satisfying assumption 2, and

F is the set of transaction costs mappings satisfying assumption 4 and belonging to the

open set given in lemma 4.2, then given the original ��transaction costs equilibrium

allocation, there exists a planner policy satisfying (BB) such that the planner updated

allocation is Pareto superior and the new equilibrium is regular.

Proof The implication of the theorem is that an open set of  exists (call

it A) such that if  2 A; then all households are strictly better o¤ in the planner

updated equilibrium, provided that H � J � 1: As an immediate corollary, take any

 2 A: Then, 9� > 0 s.t. for the new planner intervention 0 =  + (�; :::; �) ;

all households remain strictly better o¤ and the planner receives pro�t equal to

�
X

j
q̂j
P

h2H f
h
j

�
�̂
h
�
> 0:

7If the assumption H � J � 1 appears restrictive, using the idea from Cass and Citanna (1998),
the parameter H can be viewed as the number of di¤erent types of households. All households of
the same type will have parameters (endowments, utilities, and transaction costs mappings) that lie
in an open set around the speci�ed parameters for h 2 H:
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The proof of this theorem will follow the framework of Citanna, Kajii, and Vil-

lanacci (1998), henceforth simply CKV. The principal task will be to show that the

vector of household utilities U (�; ) =
�
u1(x1); ::; uH(xH)

�
is a submersion.

Picking a vector of parameters �� =
�
�eh; �uh; �fh

�
h2 H such that

�
�eh
�
h2 H belongs to a

generic subset of E ; then all resulting ��transaction costs equilibria are regular values

of �: In particular, this means that there exists an open set �0 around �� such that for

any parameters � 2 �0; the resulting equilibria satisfy the rank condition of lemma

4.1. The set of
�
xh
�
h2 H such that

�
u1(x1); ::; uH(xH)

�
>>

�
u1(�x1); ::; uH(�xH)

�
is

an open set where
�
�xh
�
h2 H is the equilibrium allocation resulting from the original

parameters ��: As such, if for some planner tool �; the resulting planner updated

allocation is Pareto superior, then all planner updated equilibrium allocations given

 in an open neighborhood around � are Pareto superior as well.

With the planner intervention, the function ~fhj
�
�h; 

�
= �hj +

�
1 + j

�
fhj
�
�h
�
:

As  is in a local neighborhood around
�!
0 ; then ~fh (:; ) =

�
::; ~fhj (:; ) ; ::

�
remains

invertible. De�ne �h = ~fh
�
�h; 

�
and gh

�
�h; 

�
= �h: Thus, the asset payouts for

all households will be a function of the planner tool :

Take as given the original ��transaction costs equilibrium
��
xh; �h; �h

�
h2H ; p; q

�
:

Given parameters � =
�
eh; uh; fh

�
h2 H ; the variables �̂ =

��
x̂h; �̂h

�
h2H ; p̂; q̂

�
and

policy parameters  constitute a planner updated equilibrium i¤�(�̂; ; �) = 0: � has

one more equation than the system � used to de�ne a ��transaction costs equilibrium

and is de�ned as:
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�(�̂; ; �) =

(FOCx)

:

Duh(x̂h)� �̂
h
P̂

:

(BC)

:

p̂(0)(eh(0)� x̂h(0))� q̂�̂h

p̂(s)(eh(s)� x̂h(s)) +
P

j rj(s)g
h
j

�
�̂h; 

�
8s > 0

:

(FOC�)

:

�̂
h

0B@ �q̂

Y �Dgh(�̂h; )

1CA
:

(MCx)
P

h2H(e
h
l (s)� x̂hl (s)) 8l 6= L; 8s � 0

(MC�)
P

h2H �̂
h

(BB)
P

j q̂j
�
1 + j

�P
h2H

�
�̂hj � ghj (�̂

h; )
�
�
P

j qj
P

h2H
�
�hj � ghj (�

h; )
�

By de�nition, if �(�̂;
�!
0 ; �) = 0 and �(�; �) = 0; then �̂ = �:

De�ne the (H + n+ 1)� (n+ J) matrix 	0 :

	0 =

0B@ D�U(�̂; ) 0

D��(�̂; ; �) D�(�̂; ; �)

1CA :

From CKV, if 	0 has full row rank, 9�̂ 6= � s.t. �̂ satis�es � = 0 (for some ) and

U(�̂) > U(�): The matrix 	0 is square if H + 1 = J , but if H + 1 < J; then there

are more columns than rows and I must remove some columns (it does not matter

which) in order to obtain a square matrix 	: This matrix 	 does not have full rank
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i¤ 9� 2 RH+n+1 s.t. �0(�̂; ; �; �) = 0 where

�0(�̂; ; �; �) =

0B@ 	T�

�T�=2� 1

1CA :

I will have proven the theorem if I can show that for a generic choice of � 2 �, there

does not exist (�; �) s.t.

�(�; �) = 0 (�;�0)

�0(�;
�!
0 ; �; �) = 0:

Counting equations and unknowns, (�;�0) has n equations in �; n variables �;

H + n + 2 equations in �0; and only H + n + 1 variables �: I must show that over

a generic subset of parameters (exactly which generic subset will be discussed next),

the system of equations (�;�0) (more equations than variables) has full rank. To

show full rank of (�;�0) ; I will reference the (ND) condition of CKV, which is a

su¢ cient condition for the full rank of (�;�0) : The condition states that for  =
�!
0

and �̂ = �; the matrix

0B@
0B@ 	T

�T

1CA D��
0

1CA has full row rank (ND)

where � are the parameters on which the genericity statement is made.

When �̂ = �; the budget balance equation simpli�es to:

X
j
qjj

X
h2H

�
�hj � ghj (�

h; )
�
= 0: (BB)

It is this equation that will be used in the set of equations �(�̂; ; �): Additionally,
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as ghj (�
h;
�!
0 ) is equal to the original function ghj (�

h) as de�ned in section 4.2, I will

hide the dependence of
�
gh(�h); Dgh(�h); D2Ghs

�
�h
��
on  up until the point when I

need to consider the �rst order conditions of gh(�h; ) with respect to :

For simplicity, I divide the vector �T into subvectors that each represent a certain

equation in 	: De�ne �T =
�
�uT ;�xT ;��T ;��T ;�pT ;�qT ;�b

�
2 RH+n+1 where

each subvector corresponds sensibly to an equation (row) in 	 as follows:

�uT () U(�; �̂)

�xT () FOCx

��T () BC

��T () FOC�

�pT () MCx

�qT () MC�

�b () BB:

With  =
�!
0 ; the variables

��
x̂h; �̂

h
; �̂h
�
h2H

; p̂; q̂
�
=
��
xh; �h; �h

�
h2H ; p; q

�
: A

subset of the equations �T	 = 0 are given by (corresponding to derivatives with



CHAPTER 4. TRANSACTION COSTS AND PLANNER INTERVENTION 151

respect to
�
(xh; �h; �h)h2H

�
in that order):

:

�uhDu
h(xh) + �xThD

2uh(xh)���ThP ��pT� = 0:

:

(4:8:a) (4.8)

:

��xThP T +��Th

0B@ �q

Y Dgh(�h)

1CA
T

= 0:

:

(4:8:b)

:

��Th

0B@ �q

Y Dgh(�h)

1CA+��ThPs>0 �
h(s) �D2Ghs

�
�h
�
+

�qT +�b
��
::; qjj; ::

� �
IJ �Dgh(�h)

��
= 0:

:

(4:8:c)

where � is the (G� S � 1)�G matrix

� =

2666664

�
IL�1 0

�
0 0

0 ::: 0

0 0

�
IL�1 0

�
3777775

and
P

s>0 �
h(s)�D2Ghs

�
�h
�
is the J�J negative semide�nite matrix de�ned in section

4.2.8

For simplicity, I break up the analysis into two cases. They are Case I: �xTh 6= 0
8The term

�
::; qjj ; ::

� �
IJ �Dgh(�h)

�
is the 1� J derivative matrix of (BB) with respect to �h:

The proof of the result requires me to prove the (ND) condition for �! = 0: Thus, this term has
value 0 and will be ignored in future analysis.
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8h 2 H and Case II: �xTh = 0 for some h 2 H: In Case I, I show that (ND) holds

over a generic subset of parameters. In Case II, I show that the system of equations

(�;�0) will generically not have any solution.

Case I: �xTh 6= 0 8h 2 H

Claim 4.6
�
�uh;�p

T ;�qT
�
6= 0 8h 2 H:

Proof. Suppose that
�
�uh;�p

T ;�qT
�
= 0 for some h: Then (4:8:a) reads

�xThD
2uh(xh)���ThP = 0:

Postmultiplying by �xh and using (4:8:b); I obtain

�xThD
2uh(xh)�xh = ��

T
h

0B@ �q

Y Dgh(�h)

1CA��h
and using (4:8:c) with �qT = 0; I �nally reach

�xThD
2uh(xh)�xh = ���Th

�X
s>0

�h(s) �D2Ghs
�
�h
��
��h: (4.9)

As
P

s>0 �
h(s) �D2Ghs

�
�h
�
is a negative semide�nite matrix, then the right-hand side

of (4:9) is nonnegative. Meanwhile, from assumption 2, the left-hand side is strictly

negative. The contradiction �nishes the claim.

Claim 4.7 For  =
�!
0 ; then Du�

0 =

0B@ A�

�!
0

1CA where A� has full row rank and

corresponds to the rows for derivatives with respect to
�
xh
�
h2H :

Proof. Consider the space of utility functions
�
uh
�
h2H 2 U ; where u

h satis�es as-

sumption 2. The space U is in�nite-dimensional and is endowed with the C3 uniform
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convergence topology on compact sets. This means that a sequence of functions fu�g

converges uniformly to u i¤ fDu�g; fD2u�g; and fD3u�g uniformly converge to Du;

D2u; and D3u, respectively. Additionally, any subspace of U is endowed with the

subspace topology of the topology of U : I will use the regularity result from lemma

1 to de�ne utility functions as locally belonging to the �nite-dimensional subset A �

U :

Using lemma 4.1, pick a regular value ��: For that ��, there exist �nitely many

equilibria
�
��i; ��

�
i = 1; ::; I: Further, there exist open sets �0 and A0hi s.t. �x

h
i 2 A0hi ;

the sets A0hi are disjoint across i; and 8� 2 �0; 9! equilibrium xhi 2 A0hi : Choose

A0hi such that the closure �A
0h
i is compact and there exist disjoint open sets ~A

0h
i s.t.

A0hi � �A0hi � ~A0hi :

For each household, de�ne a bump function �h : RG+ ! [0; 1] with I bumps as

�h = 1 on A0hi and �
h = 0 on ( ~A0hi )

c: Now, I de�ne uh in terms of a G�G symmetric

matrix Ah as:

uh(xh;Ah) = �u(xh) +
1

2
�h(xh)

X
i

�
(xh � �xhi )TAh(xh � �xhi )

�
: (4.10)

Thus, the space of symmetric matrices Ah 2 A is a �nite dimensional subspace of

U : Since A has the subspace topology of U ; then uh(�;A�) ! uh(�;A) i¤ A� ! A.

This can be seen by taking derivatives and noting that the function �u stays �xed at

the regular value.

Taking derivatives with respect to xh 2 A0hi yields:

Dxu
h(xh;Ah) = D�u(xh) + Ah(xh � �xhi )

D2
xxu

h(xh;Ah) = D2�u(xh) + Ah:
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A is a G(G+ 1)=2 dimensional space, so write Ah as the vector

�
(Ahi;i)i=1;::;G; (A

h
i;j)i<j;i=1;::;G�1

�
:

Postmultiply D2
xx by �xh :

D2
xxu

h(xh;Ah)�xh = D2�u(xh)�xh + Ah�xh:

Taking derivatives with respect to the parameter uh is equivalent to taking deriv-

atives with respect to Ah :

Du

�
D2
xxu

h(xh;Ah)�xh
�
= DA

�
Ah�xh

�

=

0BBBB@
�x1h 0 0

0 ::: 0

0 0 �xGh

�(1) ::: �(G� 1)

1CCCCA 2 RG;G(G+1)=2

where the submatrix �(i) is de�ned as

�(i) =

0BBBBBBBBBB@

0 2 Ri�1;G�i0BBBBBBB@

�xi+1h ::: �xGh

�xih 0 0

0 ::: 0

0 0 �xih

1CCCCCCCA

1CCCCCCCCCCA
2 RG;G�i:

Thus, since �xh 6= 0 (without loss of generality �x1h 6= 0), then

rankDA

�
D2
xxu

h(xh;Ah)�xh
�
= G: (4.11)
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Out of all the rows 	T ; the utility function uh only appears in the row for deriv-

atives with respect to xh: This row in 	T for one household h is given by (as in

(4:8:a)):

U(�; �̂) FOCx BC FOC� MCx MC��
Duh(xh)

�T
D2uh(xh) �P T 0 ��T 0

:

Thus, taking the derivative DAh�
0 = DAh	

T�; the only nonzero element is

DAh

��
Duh(xh)

�T
�uh +D2uh(xh)�xh � P T��h � �T�p

�

= DAh

��
Duh(xh;Ah)

�T
�uh

�
+DAh

�
D2uh(xh;Ah)�xh

�
:

From the construction of Ah; Dxu
h(xh;Ah) = D�u(xh) + Ah(xh � �xhi ) = D�u(xh)

for  =
�!
0 (since xh = �xhi ). Thus DAh(Dxu

h(xh;Ah)�uh) = 0: Using (4:11);

then DAh
�
D2
xxu

h(xh;Ah)�xh
�
is a full rank matrix of size G� (G(G+ 1)=2): Thus

A� =

266664
::: 0 0

0 DAh
�
D2
xxu

h(xh;Ah)�xh
�
0

0 0 :::

377775 has full row rank.
Consider the space of transaction costs mappings for all households

�
F h
�
h2H : By

de�nition, F h
�
�h
�
=
P

j qj � fhj
�
�h
�
depends on the endogenous asset prices. In

equilibrium, q >> 0 and all the results follow by letting the asset prices (qj)8j be

�xed at some strictly positive values.

Claim 4.8 For  =
�!
0 and if ��h 6= 0 8h 2 H; then DF�

0 =

0BBBB@
�!
0

B�

�!
0

1CCCCA where B�

has full row rank and corresponds to the rows for derivatives with respect to
�
�h
�
h2H :

Proof. Consider the space of functions
�
F h
�
h2H 2 F ; where F

h
�
�h
�
=
P

j qj �fhj
�
�h
�

as in section 4.2 and fhj satis�es assumption 4. The space F is in�nite-dimensional
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and is endowed with the C3 uniform convergence topology on compact sets (same

as U). I will use the regularity result from lemma 4.1 to de�ne transaction costs

mappings as locally belonging to the �nite-dimensional subset B � F :

Exactly as with utility functions, I de�ne F h in terms of a J�J symmetric matrix

Bh as:

F h(�h;Bh) = �F (�h) +
1

2
�h(�h)

X
i

h
(�h � ��hi )TBh(�h � ��hi )

i
: (4.12)

Thus, the space of symmetric matrices Bh 2 B is a �nite dimensional subspace of

B:

Taking derivatives with respect to �h yields:

D�F
h(�h;Bh) = D �F (�h) +Bh(�h � ��hi )

D2
�F

h(�h;Bh) = D2 �F (�h) +Bh:

Recall the analysis in the proof of claim 4.5, namely equation (4:7) :

X
s>0

�h(s) �D2Ghs
�
�h
�
= ��h(0)D2F h

�
�h
� h
D ~fh

�
�h
�i�2

: (4.7)

Thus, I replace D2F h
�
�h
�
by D2 �F (�h) +Bh and post-multiply both sides of (4:7) by

��h to yield:

X
s>0

�h(s) �D2Ghs
�
�h
�
��h = ��h(0)

�
D2 �F (�h) +Bh

� h
D ~fh

�
�h
�i�2

��h:

Taking derivatives with respect to the parameter F h is equivalent to taking deriv-

atives with respect to Bh :

DB

�
��h(0)

�
D2 �F (�h) +Bh

� h
D ~fh

�
�h
�i�2

��h

�
=



CHAPTER 4. TRANSACTION COSTS AND PLANNER INTERVENTION 157

= ��h(0)

0BBBB@
h
D ~fh

�
�h
�i�2

0BBBB@
��1h 0 0

0 ::: 0

0 0 ��Jh

�(1) ::: �(J � 1)

1CCCCA
1CCCCA 2 RJ;J(J+1)=2

where the submatrix �(i) is de�ned as

�(i) =

0BBBBBBBBBB@

0 2 Ri�1;J�i0BBBBBBB@

��i+1h ::: ��Jh

��ih 0 0

0 ::: 0

0 0 ��ih

1CCCCCCCA

1CCCCCCCCCCA
2 RJ;J�i:

With �h(0) > 0 and
h
D ~fh

�
�h
�i�2

a full rank matrix, I only need to verify that0BBBB@
��1h 0 0

0 ::: 0

0 0 ��Jh

�(1) ::: �(J � 1)

1CCCCA has full rank. If ��h 6= 0 (without loss

of generality ��1h 6= 0), then

rankDBh

�X
s>0

�h(s) �D2Ghs
�
�h
�
��h

�
= J: (4.13)

As the above development with utilities uh reveals, although the function gh ap-

pears in both rows for derivatives with respect to �h and �h (see equations (4:8:b)

and (4:8:c)), the only nonzero derivatives DBh
�
	T�

�
are those due to the second

derivative
P

s>0 �
h(s) �D2Ghs

�
�h
�
in (4:8:c): Using (4:13) and if ��h 6= 0; then the

J � (J(J + 1)=2) matrix DBh
�P

s>0 �
h(s) �D2Ghs

�
�h
�
��h

�
has full rank. Thus, if
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��h 6= 0 8h 2 H; then B� =

266664
::: 0 0

0 DBh
�P

s>0 �
h(s) �D2Ghs

�
�h
�
��h

�
0

0 0 :::

377775 has full
row rank.

The matrix

0B@
0B@ 	T

�T

1CA DA�
0 DB�

0

1CA is given below (where the rows corre-

spond to the equilibrium variables
�
(xh; �h; �h)h2H; p; q

�
; policy variables (); and

vector vT in that order). To conserve on space, I will employ the following conven-

tions:

c
�
Ah
�
=

0BBBB@
A1

:

AH

1CCCCA ; r
�
Ah
�
=

�
A1 ::: AH

�
; d

�
Ah
�
=

0BBBB@
A1 0 0

0 ::: 0

0 0 AH

1CCCCA
where (c; r; d) stand for column, row, and diagonal, respectively. Further, de�ne 
h =0B@ �q

Y Dgh(�h)

1CA ; �D2gh =
P

s>0 �
h(s) � D2Ghs

�
�h
�
; _Ah = DAh

�
D2uh(xh)�xh

�
; and

_Bh = DBh
�P

s>0 �
h(s) �D2Ghs

�
�h
�
��h

�
: The matrix

0B@
0B@ 	T

�T

1CA DA�
0 DB�

0

1CA
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is given by:

0BBBBBBBBBBBBBBBBB@

r
�
Duh(xh)T

�
d
�
D2uh

�
d(�P T ) 0 c(��T ) 0 0 d

�
_Ah
�

0

0 d (�P ) 0 d(
h) 0 0 0 0 0

0 0 d
�
(
h)T

�
d( �D

2
gh) 0 c(IJ) 0 0 d

�
_Bh
�

0 r(��2) �� 0 0 0 0 0 0

0 0 r(��hj�!0 ) r(��h(0)IJ) 0 0 �2 0 0

0 0 �1 �� 0 0 �3 0 0

r(�uh) r(�xTh ) r(��Th ) r(��Th ) �pT �qT �b 0 0

1CCCCCCCCCCCCCCCCCA
where �2 is the (G� S � 1)�G matrix

�2 =

2666664

�
�h(0)IL�1 0

�
0 0

0 ::: 0

0 0

�
�h(S)IL�1 0

�
3777775

and the submatrices (��) will not be considered in the analysis. The submatrix �1

is the J �H(S + 1) matrix de�ned as the transpose of the derivative of the budget

constraints with respect to : The submatrix �2 is the J � 1 matrix de�ned as the

transpose of the derivative of (BB) with respect to q: The submatrix �3 is the J � 1

matrix de�ned as the transpose of the derivative of the budget balance equation (BB)
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with respect to : The last two submatrices are de�ned as:

�2 =

0BBBB@
:

j
P

h2H
�
�hj � ghj (�

h; )
�

:

1CCCCA

�3 =

0BBBB@
:

qj
P

h2H
�
�hj � ghj (�

h; )
�

:

1CCCCA�
X

h2H
Dg

h
�
�h; 

�
0BBBB@

:

qjj

:

1CCCCA :

The derivatives are evaluated when  =
�!
0 ; so �2 is the zero vector and �3 =0BBBB@

:

qj
P

h2H
�
�hj � ghj (�

h; )
�

:

1CCCCA :

Claim 4.9 The submatrix �1 is given by �1 = r
��!
0 jT h � Y T

�
where T h are full-rank

diagonal matrices 8h 2 H:

Proof. The budget constraints are given by:

:

p(0)(eh(0)� xh(0))� q�h

p(s)(eh(s)� xh(s)) +
P

j rj(s)g
h
j

�
�h; 

�
8s > 0

:

:

The matrix T h is the J � J matrix equal to the transpose of Dg
h
�
�h; 

�
; the

derivative with respect to : From the implicit function theorem, Dg
h
�
�h; 

�
=

h
D
~fh
�
�h; 

�i�1
: The derivative matrix D

~fh
�
�h; 

�
=

0BBBB@
fh1
�
�h
�
0 0

0 ::: 0

0 0 fhJ
�
�h
�
1CCCCA :
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From corollary 4.1, the diagonal terms are all strictly positive. Thus, D
~fh
�
�h; 

�
is invertible and Dg

h
�
�h; 

�
is a full-rank diagonal matrix.

I will consider two subcases:

Subcase A: ��Th 6= 0 8h 2 H

I want to show that the matrix

0B@
0B@ 	T

�T

1CA DA�
0 DB�

0

1CA has full rank. From
claims 4.7 and 4.8 and since

�
�uh;�p

T ;�qT
�
6= 0 8h 2 H (claim 4.6), then the �rst,

second, and last row blocks are linearly independent from the others. Thus, the

matrix

0B@
0B@ 	T

�T

1CA DA�
0 DB�

0

1CA has full row rank i¤ the submatrix

0BBBBBBBBBBBBBB@

�P 0 0

0 :: 0

0 0 �P

0


1 0 0

0 :: 0

0 0 
H

::: ��2 ::: �� 0

0 r(��hj�!0 ) r
�
��h(0)IJ

�
0 �1 ��

1CCCCCCCCCCCCCCA
has full row rank. By the de�nition of �2; the [H(S + 1) +G� (S + 1)] � HG

submatrix

0BBBBBBB@

�P 0 0

0 :: 0

0 0 �P

::: ��2 :::

1CCCCCCCA
is a full rank matrix. I have left to show that the ma-

trix

0B@r(��hj�!0 ) r
�
��h(0)IJ

�
�1 ��

1CA has full rank. Since �1 = r
��!
0 jT h � Y T

�
(claim

4.9) for a full rank matrix T h and Y T has full row rank, then the �nal row is
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linearly independent. The matrix r
�
��h(0)IJ

�
has full rank, so the submatrix0B@r(��hj�!0 ) r

�
��h(0)IJ

�
�1 ��

1CA is a full rank matrix. This concludes the proof under

subcase A.

Subcase B: ��Th = 0 for some h 2 H

Recall the system of equations (a subset of the equations �T	 = 0):

:

�uhDu
h(xh) + �xThD

2uh(xh)���ThP ��pT� = 0:

:

(4:8:a) (4.8)

:

��xThP T +��Th

0B@ �q

Y Dgh(�h)

1CA
T

= 0:

:

(4:8:b)

Suppose 9h0 2 H such that ��Th0 = 0: Postmultiply (4:8:a) by �xh0 and use (4:8:b)

and � to obtain:

�xTh0D
2uh

0
(xh

0
)�xh0 ��pT��xh0 = 0:

The left term is strictly negative (by assumption 2). Thus �pT 6= 0:
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The matrix

0B@
0B@ 	T

�T

1CA DA�
0 DB�

0

1CA is given by:

0BBBBBBBBBBBBBBBBB@

r
�
Duh(xh)T

�
d
�
D2uh

�
d(�P T ) 0 c(��T ) 0 0 d

�
_Ah
�

0

0 d (�P ) 0 d(
h) 0 0 0 0 0

0 0 d
�
(
h)T

�
d( �D

2
gh) 0 c(IJ) 0 0 d

�
_Bh
�

0 r(��2) �� 0 0 0 0 0 0

0 0 r(��hj�!0 ) r(��h(0)IJ) 0 0 0 0 0

0 0 �1 �� 0 0 �3 0 0

r(�uh) r(�xTh ) r(��Th ) r(��Th ) �pT �qT �b 0 0

1CCCCCCCCCCCCCCCCCA
From claim 4.7 and since �pT 6= 0; then the �rst and last row blocks are linearly

independent from the others. As in subcase A, it is known that the submatrix0BBBBBBB@

�P 0 0

0 :: 0

0 0 �P

::: ��2 :::

1CCCCCCCA
is a full rank matrix. Thus, the matrix

0B@
0B@ 	T

�T

1CA DA�
0 DB�

0

1CA
has full rank i¤ the submatrix0BBBBBBBBBBB@

(
1)T 0 0

0 ::: 0

0 0 (
H)T

(��1j�!0 ) ::: (��H j�!0 )��!
0 jT 1 � Y T

�
:::

��!
0 jTH � Y T

�

�D2g1 0 0

0 ::: 0

0 0 �D2gH

��1(0)IJ ::: ��H(0)IJ
�� ::: ��

IJ

:

IJ

0

0

1CCCCCCCCCCCA
(4.14)

has full row rank where �1 has been replaced using claim 4.9. By de�nition, (

h)T =
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0B@ �q

Y Dgh(�h)

1CA
T

: If the submatrix

M =

0BBBBBBB@

(Y Dg1(�1))
T

0 0

0 ::: 0

0 0 (Y DgH(�H))
T

T 1 � Y T ::: TH � Y T

IJ

:

IJ

0

1CCCCCCCA
(4.15)

has full row rank, then since
�
��1(0)IJ ::: ��H(0)IJ

�
has full rank, the sub-

matrix (4:14) would have full row rank.

Claim 4.10 The matrix M as de�ned in (4:15) has full row rank.

Proof. To verify full row rank ofM; I will pre-multiplyM by !T =
��
!T
�h

�
h2H

; !T

�
and verify that !TM = 0 implies !T = 0:

Take any household h 2 H: The equations of !TM = 0 are given by:

:

!T
�h
(Y Dgh(�h))

T
+ !T T

h � Y T = 0:

:

(4:16:a) (4.16)

X
h2H

!T�h = 0: (4:16:b)

Since (Y Dgh(�h))T =
�
Dgh(�h)

�T
Y T ; then equation (4:16:a) becomes:

�
!T�h

�
Dgh(�h)

�T
+ !T T

h
�
Y T = 0:
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With Y T full row rank, then

!T�h
�
Dgh(�h)

�T
+ !T T

h = 0

!�h = �
�
Dgh(�h)

��1
T h! (4.17)

where equation (4:17) follows by taking transposes and noting that Dgh(�h) is invert-

ible and T h is diagonal. This equation (4:17) holds 8h 2 H: From (4:16:b) :

X
h2H

�
Dgh(�h)

��1
T h! = 0: (4.18)

By de�nition,
�
Dgh(�h)

��1
= D ~f

h
(�h) and T h is a diagonal matrix with diagonal

terms that are all nonzero. If fh is given by the canonical representation, then

D ~f
h
(�h) is a diagonal matrix with strictly positive diagonal terms. Thus, D ~f

h
(�h)�T h

is a diagonal matrix and the diagonal terms are all nonzero. This holds 8h 2 H:

Adding up over all households, the matrix
P

h2HD
~f
h
(�h) � T h is diagonal and the

diagonal terms are all nonzero.

The matrix
P

h2HD
~f
h
(�h) � T h has full rank under the canonical representation

for
�
fh
�
h2H : The transaction costs mappings that are used in the statement of the

theorem are those de�ned in lemma 4.2 as belonging to an open set around the

canonical representation. In this open set,
P

h2HD
~f
h
(�h) � T h has full rank.

Therefore,
P

h2H
�
Dgh(�h)

��1 �T h has full rank and so (4:18) implies that ! = 0:
From (4:17); !�h = 0 8h 2 H: As !T = 0; the matrix M has full row rank.

This concludes the proof under case I (both subcases).

Case II: �xTh = 0 for some h 2 H

I will show that over a generic subset of E = f(eh)h2 H : e
h >> 0g; the system

of equations (�;�0) has no solution. Recall the system of equations (a subset of the
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equations �T	 = 0):

:

�uhDu
h(xh) + �xThD

2uh(xh)���ThP ��pT� = 0:

:

(4:8:a) (4.8)

:

��xThP T +��Th

0B@ �q

Y Dgh(�h)

1CA
T

= 0:

:

(4:8:b)

:

��Th

0B@ �q

Y Dgh(�h)

1CA+��ThPs>0 �
h(s) �D2Ghs

�
�h
�
+�qT = 0:

:

(4:8:c)

Suppose 9h0 2 H such that �xTh0 = 0: From (4:8:a) and �; I obtain

�uh0Du
h0(xh0)���Th0P ��pT� = 0

Duh
0
(xh

0
)� �h0P = 0

which together imply that �pT = 0 and ��Th0 = �uh0�
h0: From (4:8:b); since

Y Dgh(�h) has full column rank, then ��Th0 = 0: From (4:8:c) and �; after plug-

ging in ��Th0 = �uh0�
h0 and ��Th0 = 0 to (4:8:c); then �q

T = 0:

For all other h 6= h0; postmultiply �uhDuh(xh) by �xh and use both �rst order

conditions in � and (4:8:b) to get �uhDuh(xh)�xh = 0: Next, postmultiply (4:8:a)
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by �xh and use (4:8:b) and (4:8:c) (as in the proof of claim 4.6) to arrive at

�xThD
2uh(xh)�xh = ���Th

�X
s>0

�h(s) �D2Ghs
�
�h
��
��h: (4.9)

In (4:9); the left hand side is strictly negative if �xh 6= 0 and the right hand side is

nonnegative. Thus �xTh = 0 8h 2 H: From (4:8:b); since Y Dgh(�h) has full column

rank, then ��Th = 0 8h 2 H:

Thus 8h 2 H; ��Th = �uh�
h and

��
�uh;��

T
h

�
h2H ;�b

�
are the only nonzero

elements of �: As such, the following is the equation from �T	 = 0 corresponding

to derivatives with respect to p :

P
h2H��

s
h

�
ehnL(s)� xhnL(s)

�T
= 0 8s � 0 (4.19)

where
�
ehnL(s)� xhnL(s)

�
is the (L � 1)�dimensional vector of household negative

excess demand with the numeraire commodity excluded. For the analysis to hold at

this point, I must use the assumption that L � 2: Plugging in ��Th = �uh�
h into

equation (4:19) and only considering the �rst physical commodity l = 1 and the �nal

s > 0 states, I have

P
h2H�uh�

h(s)
�
eh1(s)� xh1(s)

�T
= 0 8s > 0

or in matrix notation0BBBB@
�1(1)(e11(1)� x11(1)) :::: �H(1)(eH1 (1)� xH1 (1))

: :

�1(S)(e11(S)� x11(S)) :::: �H(S)(eH1 (S)� xH1 (S))

1CCCCA
0BBBB@
�u1

:

�uH

1CCCCA = 0:
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From lemma 4.3, generically on E = f(eh)h2 H : e
h >> 0g; �uh = 0 8h 2 H: Thus

��Th = 0 8h 2 H:

The following is the equation from �T	 = 0 corresponding to derivatives with

respect to  : X
h2H

��Th (�1)
T +�b (�3)

T = 0:

Since ��Th = 0 8h 2 H and (�3)
T =

�
::; qj

P
h2H

�
�hj � ghj (�

h; )
�
; ::
�
has generic full

row rank by corollary 4.1, then �b = 0: The entire vector �T = 0; which cannot

be since �0 guarantees that �T�=2 = 1: I conclude that generically case II is not

possible. This completes the proof of the theorem. �

4.4 Proofs of Lemmas

Proof of Lemma 4.2

Proof. From lemma 4.1, take any endowment
�
eh
�
h2H from the generic subset of

E = f(eh)h2 H : eh >> 0g: Then, given the canonical representation for fh; the

resulting equilibrium variables will be regular values of �: De�ne the parameters as

�� =
�
�eh; �uh; �fh

�
h2H where

�fh has the canonical representation. For that ��, there exist

�nitely many equilibria
�
��i; ��

�
i = 1; ::; I where ��i =

��
�xhi ; ��

h
i

�
h2H ; �pi; �qi

�
: Implicit

in lemma 1 is the result that there exists an open set �0 for all regular values �� and

open sets �0i such that ��i 2 �0i 8i = 1; ::; I: Further, the sets �0i are disjoint across i

and 8� 2 �0; 9! equilibrium �i 2 �0i:

The parameters � =
�
eh; uh; fh

�
h2H in the open set �0 will be composed of

transaction costs mappings
�
fh
�
h2H in an open set around the canonical represen-

tation. At ��; then ~fh(��
h
) =

�
��
h
1 ; :::;

��
h
J

�
+
�
�fh1 (
��
h
); :::; �fhJ (

��
h
)
�
and equilibrium

conditions imply that the mapping ~fh is invertible (claim 4.3). The set of invert-
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ible matrices is open. Thus, for any parameters � 2 �0; the mapping ~fh de�ned as
~fh(�h) =

�
�h1 ; :::; �

h
J

�
+
�
fh1 (�

h); :::; fhJ (�
h)
�
will also be invertible.

Proof of Lemma 4.3

Proof To prove this, �rst de�ne

Z =

0BBBB@
�1(1)(e11(1)� x11(1)) :::: �H(1)(eH1 (1)� xH1 (1))

: :

�1(S)(e11(S)� x11(S)) :::: �H(S)(eH1 (S)� xH1 (S))

1CCCCA :

I will show that generically on E ; the matrix

M 0 = D�;!

0BBBB@
�

Z!

!T!=2� 1

1CCCCA =

0BBBB@
D��j�(�;�)=0

D�;!Z!�
0 j !

�
1CCCCA

has full row rank. Since M 0 has more rows than columns, if M 0 has full row rank,

then the equations

0BBBB@
�

Z!

!T!=2� 1

1CCCCA = 0 will generically not hold. Thus, Z will

generically have full column rank. To show that generically on E , the matrix M 0 has

full row rank, I have to show that the extended matrix

M =

0BBBB@M 0 j

0BBBB@
De�j�(�;�)=0

DeZ!

0

1CCCCA
1CCCCA

has full row rank.

Since this proof is independent from the proof in the body, notation will be re-
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peated. To show that M has full row rank, premultiply by the row vector uT =�
�xT ;��T ;��T ;�pT ;�qT ;�zT ;�!

�
: The lemma is proved upon showing that

uT = 0: For convenience, the vector uT is divided into the indicated subvectors

which correspond sensibly with the following equations of

0BBBB@
�

Z!

!T!=2� 1

1CCCCA :

�xT () FOCx

��T () BC

��T () FOC�

�pT () MCx

�qT () MC�

�zT () Z!

�! () !T!=2� 1:

I shall list the equations of uTM = 0 in the order that is most convenient to obtain

uT = 0: At my disposal are �(�; �) = 0 and ! 6= 0.

First, for the columns corresponding to derivatives with respect to xh and eh for

any h 2 H :

�xThD
2uh(xh)���ThP ��pT���zT�h3 = 0

��ThP +�p
T� +�zT�h3 = 0
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where the matrices P and � are as de�ned previously and �h3 is the S �G matrix

�h3 =

26666640 j

0BBBBB@

�
�h(1)!h

�!
0

�
0 0

0 ::: 0

0 0

�
�h(S)!h

�!
0

�
1CCCCCA

3777775 :

By assumption 2,
�
�xTh ;��

T
h

�
= 0 8h 2 H; �pl(s) = 0 8(l; s) =2 f(1; 1); ::; (1; S)g;

and

�p1(s) + �zs�
h(s)!h = 0 8s > 0 and 8h 2 H: (4.20)

Second, for the columns corresponding to derivatives with respect to �h for any

h 2 H and q :

��Th
X

s>0
�h(s) �D2Ghs

�
�h
�
+�qT = 0 (4.21)P

h2H��
T
h (��h(0)) = 0:

From corollary 4.1, for a generic subset of E ; �hj 6= 0 8j; 8h: By the de�nition

of �hj = ~fhj
�
�h
�
; this implies that �hj 6= 0 8j; 8h: For any h 2 H; from claim 4.5,

the matrix
P

s>0 �
h(s) �D2Ghs

�
�h
�
is negative semide�nite. Moreover, from equation

(4:7) (recall the equation is given by

X
s>0

�h(s) �D2Ghs
�
�h
�
= ��h(0)D2F h

�
�h
� h
D ~fh

�
�h
�i�2

), (4.7)

if D2F h
�
�h
� h
D ~fh

�
�h
�i�2

is positive de�nite, then
P

s>0 �
h(s) � D2Ghs

�
�h
�
is neg-

ative de�nite. By de�nition, D2F h
�
�h
�
is positive de�nite so long as �hj 6= 0

8j: Multiplication by
h
D ~fh

�
�h
�i�2

preserves the positive de�niteness (for open

sets of transaction costs mappings ~fh around the canonical representation). Thus,
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P
s>0 �

h(s) �D2Ghs
�
�h
�
is negative de�nite.

Postmultiply the �rst equation of (4:21) by ��h�
h(0): The �rst term

�h(0)��Th

�X
s>0

�h(s) �D2Ghs
�
�h
��
��h � 0 ( < 0 if ��h 6= 0) 8h 2 H:

This is because the matrix
P

s>0 �
h(s) �D2Ghs

�
�h
�
is negative de�nite and �h(0) > 0.

The second term �qT��h�
h(0) will be equal to 0 when summed over all households.

The only way that

P
h2H �

h(0)��Th

�X
s>0

�h(s) �D2Ghs
�
�h
��
��h +

P
h2H�q

T��h�
h(0) = 0

is if ��Th = 0 8h 2 H .9 From (4:21); �qT = 0:

Finally, for the columns corresponding to derivatives with respect to �h for any

h 2 H and ! :

�zT�h4 = 0 (4.22)

�zTZ +�! (!) = 0

where �h4 is the S � (S + 1) matrix

�h4 =

0BBBB@0 j

(eh1(1)� xh1(1))!
h 0 0

0 ::: 0

0 0 (eh1(S)� xh1(S))!
h

1CCCCA :

9The key realization with this model is that the nonlinearity in the asset payouts (in this case,

the inclusion of the negative de�nite second derivative matrix
�P

s>0 �
h(s) �D2Ghs

�
�h
��
in (4:21))

leads to the ine¢ ciency in equilibrium allocation, whereas the ine¢ ciency is absent with linear asset
payouts.



CHAPTER 4. TRANSACTION COSTS AND PLANNER INTERVENTION 173

From (4:22); I obtain that

�zs(e
h
1(s)� xh1(s))!

h = 0 8h 2 H and 8s > 0:

Generically (corollary 4.1), (eh1(s)�xh1(s)) 6= 0 8s; 8h and since ! 6= 0; then for some

h; (eh1(s)�xh1(s))!h 6= 0 8s > 0: Thus �zs = 0 8s > 0: From (4:20); the remaining

terms of �pT are equal to 0; namely �p1(s) = 0 for s > 0: With ! 6= 0; the scalar

�! = 0 (from (4:22)). Thus uT = 0 and the proof of lemma 4.3 is complete.�
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