g. 1. A t med automaton w th more than one opt mal run from the same locat on.

and 0 < y < 2, and that we want to reach a state in location 2. Possi-
ble minimal-cost runs from s to a state s’ = (2, (2,y')) are of two forms:
ri=(0,(z,y) 2 (L, {z+t,y+t)—% (2,(z+2-y,2)), where y+; <2
and y+t1+ty = 2, and ry = (0, (z,9))—2> (2, (2, y+2—1)), where t3 = (2— 1)
(obviously, staying at location 2 longer might only increase the overall cost).
According to the cost function J, the cost of ry is J(r1)+J4(r1) = 2+3t;+(2—
y—t1) = 4—y+2t; and the cost of ry is J(r2) + J4(r2) = 14+3(2—2z) = 7— 3.
Clearly, J(r1) is minimized when ¢; = 0, that is the transition from 0 to 1 is
taken immediately. Moreover, assuming t; = 0, J(r1) < J(rg) if y > 3(x — 1),
and J(r1) > J(rs), otherwise. Thus, a minimal-cost run from s to a state in
location 2 depends on the clock valuation of the starting state s. O

o o ey

g. 2. A t med automaton w th no opt mal runs from a locat on.

Example 2 Consider the timed automaton shown in Figure 2 such that
J4(0) =1, J4(1) = 2, and the switch costs are all 1. Suppose that we start from
state s = (0, (z)) with 0 < z < 2 and we want to reach a state in location 2.
We observe that due to the constraint on transition ey, location 2 is visited for
the first time with z = 2. Any run reaching (2, (2)) from s can be parameter-

ized over the time spent in location 0, that is, if ¢ is the time spent in location

0, the only run from s to (2, (2)) is 1, = (0, (z))—» (1, {z + ) (2, (2))

with ¢! = 2—xz—t. Thus J(ry) = Js(re) +Ja(re) = 2+t4+2(2—t—2z) = 6—t—21.
Hence the cost of 7; is minimized if ¢ is maximized. Since ¢ < (2—z) must hold,
the optimal cost for a run starting at s is (4 —z), but none of the runs starting
at s has such a cost. In fact, for any actual run r; there exists a & > 0 such
that t = (2 — 2z — &), and J(ry) = (4 — x + &). Vice-versa, for any £ > 0 there
exists a run r such that J(r) = (4 — z + £). Clearly, there is no minimal-cost
run but we can determine a run whose cost is arbitrarily close to the optimal
one. U

Now, we formalize the notion of optimal cost, optimal run, and approxi-
mation of an optimal run. Given a timed automaton A, a state s, and a
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Fig. 3. Possible trajectories for aircrafts approaching a runway.

target zone T, the optimal cost for a run from s to ¢t € T is defined as
J* = inf{J(r)|r is a run from s to T'}. If there exists a run r* such that
J(r*) = J*, then r* is said to be an optimal run. As shown in Example 2,
sometimes an optimal run from a state s to a target zone 7" does not exist.
When this is the case, we are interested in determining a set R of runs such
that all the runs coincide on the sequence of switches and for any £ > 0 there
exists a run 7 € R such that J(r) < J* 4§, where J* is the optimal cost over
all runs from s to 7'. That is, we can determine a sequence of runs in R whose
costs are arbitrarily close to J*. We call such a set of runs R an approzimation
of an optimal run. Given a timed automaton A, a source state s, and a target
zone T, we consider the problem of determining an optimal run from s to a
state in T, if one exists, or an approximation of an optimal run, otherwise.
We call this problem the single-source optimal-reachability problem.

We are also interested in solving the above problem starting from any state
from a source zone S. We call this problem the optimal-reachability problem.
A solution to the optimal-reachability problem is a symbolic representation of
the solutions to the single-source optimal-reachability problem for all states in
S. In Example 1, if we consider as target region all the states in location 2 and
as source state only (0, (0, 0)), then a solution to the corresponding instance of
the single-source optimal-reachability problem is r; with ¢t; = 0. As observed
in Example 1, if we consider as a source zone the set of states (0, (x,y)) such
that 0 < x < 2and 0 < y < 2, then the solution of the corresponding instance
of the optimal-reachability problem is 7y with ¢; = 0 if y > 3(z — 1), and 7,
otherwise.

Optimal-reachability in weighted timed automata is suitable for modeling sev-
eral optimization problems, such as scheduling problems and air-traffic control
problems. We end this section by modeling in our framework an air-traffic
control problem that we also use in the next section to illustrate our graph
construction.

In the current practice, when an aircraft enters a sky region around an airport,
it follows a trajectory chosen from a predetermined set of trajectories, to
approach a runway (see Figure 3). Air-traffic control is responsible for the
coordination of approaching aircrafts in order to guarantee safety and high-
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Fig. 4. An air-traffic control problem.

performance of the global system (i.e., the system composed of the aircrafts
and the airport). It is not rare, that two aircrafts, that are approaching the
same runway, reach the joining point of their trajectories almost at the same
time, or that they share the same trajectory and the aircraft that is following
is faster. Both these cases can lead the two aircrafts to an unsafe distance from
each other, that is, to a collision danger. As soon as such a dangerous situation
is detected, it is important to coordinate the aircrafts to avoid their collision.
Possible decisions are to slow down an aircraft, or to force one of them to
change its current trajectory. Each of the possible actions usually adds to the
cost. Examples of such costs are fuel consumption, customer comfort, travel
times. As shown in the following example, we can model such scenarios by
weighted timed automata and the related control problem as the optimal-
reachability problem on them.

Example 3 (Air-traffic control problem) Consider the scenario in which two
aircrafts are landing at an airport and a collision danger has been detected.
Our goal is to allow both the aircrafts to land safely and at the minimum
cost. The safety requirement forces that only one aircraft at a time must be
acknowledged for landing on the runway. Thus there are two possible choices:
aircraft 1 has the priority over aircraft 2, or vice-versa. We model the related
control problem as the optimal-reachability problem from the source location
to the target location on the weighted timed automaton in Figure 4. We pe-
nalize with discrete costs c; and cy the choice of forcing, respectively, aircraft
1 and aircraft 2 to wait. Moreover, we also consider a cost, given by w;, which
penalizes the time spent on waiting for each aircraft. For the aircraft that
has to wait for clearance, we model two possible maneuvers. A first one is to
reduce the speed and in this case the aircraft stays in location W;. The other
possibility is to take a detour from the original trajectory, which is modeled by
the loop through location W). Taking this detour requires a fixed cost ¢}, and



the cost for the time spent during this maneuver is w; instead of w; per each
time unit. To make our example more realistic, we also assume that a detour
takes at least time 1 and we penalize an unused runway by a cost ¢y per time
unit. Finally, we assume that the landing of each aircraft takes at least time
1 since the related acknowledgment was issued by the control tower. Clearly,
in the modeled collision scenario, the least expensive strategy corresponds to
an optimal-cost run in the weighted timed automaton from Figure 4. O

3 The graph construction

In this section, we give the graph construction that underlies the reduction
of the single-source optimal-reachability problem to the shortest-path prob-
lem and the reduction of the optimal-reachability problem to a parametric
shortest-path problem. The resulting graph is a refinement of the region graph
of a timed automaton (AD94), in the sense that for each region we consider
some sub-regions and the graph preserves the transitions of the region graph.
For each of these sub-regions, only the states that might be visited in some of
the runs of the timed automaton are symbolically represented by the vertices
of the graph. The set of states corresponding to a vertex are parameterized
over the starting (source) states. We start by recalling the concepts of labeled
directed graph and region graph, then we describe our graph construction.

3.1 Labeled directed graphs

Let © = {¥1,...,9x} be a set of nonnegative real-valued parameters, we
denote by D the set of linear expressions over ©, that is, the set of first-
degree polynomials over ¥q,...,9; with nonnegative integer coefficients. A
D-labeled directed graph G is a pair (V, E), where V is a set of vertices, and

E CV xDxYV is a set of D-labeled edges. A path 7 from v, to v, in

GG is a sequence v i> V1 £> f"—_1> Up—1 ﬁ) v, such that v; € V for

1=0,....,n,and f; € D and v; N v; € E fori =1,...,n. For a path
7, the cost of 7 is given by the expression )77, f;. Given two expressions
f1 = a0+a1191 ++6Lk19k and f2 = b0+b1’l91 ++bk’19k, we say that
f1 is less than f,, denoted f; < fo, if and only if @; < b; for all 2 =0, ..., k.
Clearly, if f; < fs, for all values of the parameters 94, ..., 9, we have that the
value of f; is smaller than the value of fs. According to the relation <, we
define a shortest path for a D-labeled graph as follows. Given a path 7 from
v to v’ of cost f, 7 is a shortest path if, for any path 7’ from v to v' of cost f/,
f' < f does not hold (i.e., the cost associated with 7’ is not smaller than the
cost associated with 7). Notice that, by this definition, for any pair of vertices



v and v', we may have many shortest paths connecting them. An important
fact is that, when the parameters are assigned, the shortest path from v to
v’ can be found among such paths. Clearly, varying the values of parameters,
the shortest paths of a graph may change, that is, to different valuations of
parameters may correspond different sets of shortest paths in the graph.

3.2 Region graph

Let A be a timed automaton. By definition, its set of states is infinite. However,
the set can be partitioned into a finite number of equivalence classes, called
regions, which are defined by a location and a clock region. Let ¢, be the
largest constant in the guards and the invariants involving the clock variable
x. Then, a clock region is described by:

e a constraint of the form ¢ —1 < z < ¢, > ¢,, or z = ¢ for each clock
variable z and natural number ¢ < ¢,;
e the ordering of the fractional parts of the clock variables x such that x < c,.

Thus a clock region denotes a set of clock valuations. Given a clock valuation
v, [v] denotes the clock region containing v. A state (g, v) belongs to a region
(¢',a) if g = ¢ and v € a. A clock region « is said to be open if for any clock
variable x and ¢ < ¢;, £ = ¢ does not hold in a. Otherwise « is said to be a
boundary clock region. These definitions apply to regions in an obvious way.
Directly from the definition, we have that all the valuations belonging to a
region satisfy the same set of clock constraints from a given timed automaton.
Consequently, we say that a clock region « satisfies a constraint ¢ if v satisfies
0 for any v € a. A clock region o is a time-successor of a clock region «,
denoted o C ¢/, if and only if for any v € « there exists a d > 0 such that
v+ d € o'. Consistently with the notation used for clock valuations, given a
reset function A and a clock region «, with A(«) we denote the clock region of
the clock valuations A\(v) for v € a.

The region graph of A is a transition system defined by:

e a set of vertices R(S) = {{g,) | ¢ € @ and « is a clock region for A};

e a set of edges R(A) such that: ({¢, ), {¢,a')) € R(A) if and only if there
exist a transition (g, d, A, ¢’) of A and a time-successor o’ of « such that «
satisfies Inv(q), o/ satisfies 0 and Inv(q), o' = A(a) satisfies Inv(q’), and
satisfies Inv(q) for each g such that a C 5 C «o”. In the following, we refer
to (g,9, A\, ¢') as the A transition corresponding to ({g, «), {¢’, &)).

We denote by R(A) the region graph corresponding to A. For the sake of
simplicity, in the following when no confusion can arise we refer to the value
of a clock variable x by z itself and with Z we denote the fractional part of
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Fig. 5. A graphical representation of the limit regions contained in «.

a clock value z. We recall that the key property of the regions is that they
define a bisimulation over the states of A and thus reachability in A can be
reduced to reachability in R(A).

3.8  Parametric sub-region graph

In this paper, we consider cost functions that are linear in the time spent in
each location, thus they reach their infimum on the boundaries of regions. As
a consequence, in an optimal run the transitions from open regions are taken
from the states which are visited either upon entering the regions or just before
leaving them. Thus states arbitrarily close to the boundaries, or characterized
by clock values with arbitrarily close fractional parts, may be visited in opti-
mal runs. This motivates in our construction the choice of focusing on some
particular subsets of regions that we call limit regions.

For defining a limit region we use the notation a < b to denote that a < b
and (b — a) is “very small” (i.e., it is very close to 0). For convenience, we
do not give a quantitative definition of “very small”, we only assume that in
any context where we need to add up many (b; — a;)’s such that a; < b;, the
differences (b; — a;)’s are sufficiently small to make their sum also very close
to 0. Let a be a clock region and (0 ~1 Z; ®s ... &, T ~py1 1) be the
ordering of the fractional parts in a. A limit region o' of a is a convex subset
of « defined by the clock constraints of o and the ordering of fractional parts
(0~ 1 & ... &), Ty A,y 1), where & is = if ~; is = and is either < or <,
otherwise. In other words, we specify in the ordering of the fractional parts
of a which <’s corresponds to “small differences” and which to “large” ones.
For example, consider two clocks x and y, and let o be the open clock region
defined by 0 < x < y < 1. All the possible limit regions contained in « are
reported in Figure 5, where (1) corresponds to 0 < < y < 1, (2) corresponds
to 0 < xz £y < 1, (3) corresponds to 0 < =z < y < 1, (4) corresponds
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to0 <z <y <1, (5) corresponds to 0 £ =z < y < 1, (6) corresponds to
0 <z £ y < 1. Clearly, there is no limit region correspondingto 0 < z < y < 1
since this would imply that the difference between 0 and 1 is very small, and
this is not the case.

For our assumptions, the actual value of the small differences is negligible.
Thus, while computing the optimal cost of a run we can assume that it is
actually 0. For this reason, we do not distinguish among states of a limit
region which differ only in the values of the small differences, and thus we
want to keep only the large differences of the states visited in a run. We now
introduce some notation before discussing how we store the large differences.

Let s = (¢,v) be a state of A and (0 & T1 &3 ... &y Ty ~yy1 1) be the
ordering of the fractional parts for the region containing the clock valuation
v (notice that for s = 1,..., N the operator ~; is either = or <, and &y 1 is
<). With 9(s) = (¥4, -..,9n+1) we denote the differences between consecutive
values in the above ordering, that is ¥y, = Ty, 9y11 = 1—Zn, and ¥; = T;—%;_1
fori =2,..., N. Notice that our graph construction is parameterized over the
differences between consecutive values in the ordering of the fractional parts
of a starting state s, thus in the following, tuple (91,...,9x541) is used to
denote the differences corresponding to a starting state. Moreover, for 7,7 <
N + 1, we denote by I(i,j) the set of integers {i,...,7 — 1}, if i < j, and
{i,...,N+1}U{l,...,j — 1}, otherwise.

The value of the large differences is given symbolically via a tuple of indices.
These tuples reflect the starting state and the reset history of the computation.
Recall that the values of parameters ¥;,...,9x41 give the differences of the
fractional parts of the clocks in the starting state. Also, notice that for the
runs we consider, if a state (¢', (y1,...,yn)) is reached, we have that ;.1 — ¥;
is either “small” or given by the sum of consecutive such differences in the
starting state. Thus, we augment each limit region and each region with tuple
of indices (i1,...,1) from {1,..., N + 1} such that:

e k is the number of large differences in the ordering of the fractional parts;

e 7; corresponds to the /-th large difference in this ordering, in the sense that
for l =1,...,k — 1, the value of the [-th large difference is } v
and the value of the k-th large difference is 3 ¢, 1) 53

e there exists a d € {1,...,k} such that iqyp < igips1 for h=10,...k —1,
where the sums (d+h+1) and (d+ h) are modulo £ (i.e., shifting circularly
all the indices for d—1 positions to the left we obtain an increasing sequence
of indices).

JEI(i7,041)

We call such tuples distance tuples. We observe that the sum 3¢, ;) U1 gives
also the time that is left for reaching the boundary of the current region from
a state corresponding to a distance tuple (i, ..., ).

12



4 Rl | R |~ | R (J1y- -y dn) c
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Fig. 6. Table 1: (0 & 9} =% ...~ U}, =, 1) denotes the ordering of the fractional
l

parts in 3, and

Given a tuple of parameters ¥ = (¥4, ..., 9n41), we define the parametric sub-
region graph of a timed automaton A relative to ¥, denoted by G 4(19), as the
D-labeled directed graph (V, E) where V and E are defined as follows. The set
of vertices V is the set of tuples (g, a, (i1,...,1)) where ¢ is a location, « is
either a limit region or a clock region, and (i1, ..., i) is a distance tuple from
{1,..., N + 1}. The set of edges E contains three types of edges: time edges,
immediate switches, and delayed switches. Informally, time edges correspond
to letting time elapse until the next boundary region is reached, immediate
switches correspond to transitions taken in the current state, and delayed
switches correspond to transitions taken at the “beginning” or at the “end”
of the closest open region (this region, if it is an open region, and the next,
otherwise). In the following, we formally define all of these three kinds of edges.

Time edges. Consider a vertex v = (q,a, (i1,...,%)) and let (0 ~1 7; =

. Rk Uk ~gs1 1) be the ordering of the fractional parts in «. If for each
v € a, v(yg) + 1 is not larger than the largest constant appearing in the
timing constraints involving the clock variable y; (i.e., when time elapses the
first integer value reached by yy is strictly smaller than this constant), then
we add to E a time edge v — v’ for v' = {(q, 3, (j1,- - -, jw)) where 3 is the
closest time-successor of « such that the conditions expressed by one of the
rows of Table 1 (given Figure 6) are satisfied.

In the other case, time edges are defined in the same way except for the fact
that clock yx does not appear in the ordering of the fractional parts of v’ since
it has reached its highest constant.

In the above table, rows 1 and 2 captures the cases when the time to reach
the following boundary region is not negligible (i.e., the difference between
1 and the largest fractional part is “large”). If the current first difference is
“large” (row 1), then the first difference of the next vertex is the sum of the
first and the last differences of the current vertex. Otherwise, it is just the last
difference of the current vertex (row 2). Rows 3 and 4 capture the cases when
the time to the following boundary region is “small”.

To see an example of a time edge, consider a starting vertex v = (g, 0 < z <

13
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Fig. 7. Table 2: (0 &} 7} =% ... &}, 7}, ®},, 1) denotes the ordering of the fractional
parts in 3, and [

y<z<1,(1,2,3,4)). We have that the first large difference is z;, the second
large difference is (y; — 1), the third large difference is (2; —y1) and the forth
large difference is (1 — z1). By row 1 of Table 1, we add to E a time edge from
vtov ={g 0 <z <y<1lAz=1, (4,2,3)) with cost J4(q) - (1 — z1).
Since I(4,2) = {1,4}, ' corresponds to a state whose first large difference is
Yiepiap Vi = 11+ 1— 2. From I(2,3) = {2} and I(3,4) = {3}, the second and
the third large differences are (y; —x1) and (z; —y1) as for v. Thus the distance
tuple (4,2, 3) correctly captures the fact that time (1 — 2;) has elapsed and
the distance in time from 0 to x is now (1 — z; + x1), the fractional part of z
is 0, and all the other distances stay unchanged.

Immediate switches. Given two vertices v = (¢, a,(i1,...,i;)) and
. . . . . . Js .
v' = (¢, B8, (J1,---,Jk)), there is an immediate switch v 759 o if there ex-

ists an edge of R(A) corresponding to e from (g, ') to (¢, ') such that o
and (' are respectively the regions of R(A) containing « and 3, and the se-
quence (j1, ..., jx) is obtained from (i1, ..., 4,) by deleting, forl =1,..., h—1,
all the indices 4;,1, such that all the clocks between the [-th and the (I + 1)-th
large difference (in the ordering of the fractional parts of ') are reset in e.

Continuing with the above example, consider vertex v' = (¢, 0 < z < y <
1Az=1, (4,2,3)) and suppose that R(A) has an edge from (¢, 0 <z <y <
INz=1to{¢d, 0=y<z<1Az=1). We add to F an immediate switch
from v to v" = (¢/, 0=y <z <1Az=1, (4,2)). Notice that the distance
tuple (4,2, 3) gets updated to (4, 2) since clock y is reset in the transition and
this is the only clock between the second and the third large difference of v'.
Moreover, the cost associated with this immediate switch is the cost of taking
the A transition corresponding to the edge from (¢, 0 <z <y < 1Az =1)
to{d, 0=y<z<1lAz=1).

Delayed switches. Given a vertex v € V as above, we add to E a delayed
switch v — " for any vertex v” € V such that there exists an immediate

switch v’ @ v" and ¢ = ¢ + Js(e), where v' = (q, 5, (j1,--.,Jw)) and 3 is
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Fig. 8. A fragment of G 4(9) for the weighted timed automaton from Example 3.

the closest time-successor of o such that the conditions expressed by one of
the rows of Table 2 (given in Figure 7) are satisfied.

In the above table, rows 1 and 2 capture the situation that we wait up to
the end of the current open region and then take an immediate switch. If the
current region is a boundary region, an immediate switch can be taken right
after entering (row 3) or at the end of the following open region (rows 4 and 5).
We observe also that each immediate switch, and thus each delayed switch,
corresponds to a unique transition of the starting timed automaton. In the
following, to refer to this transition simply as the transition corresponding to
the immediate (resp. delayed) switch that we are considering.

Back to our running example, consider a vertex v" = (¢, 0 =y <z < 1Az =
1, (4,2)) and suppose that R(A) has an edge from (¢, 0 =y <z <1Az=
1) to {(¢", 0 <y < x <1Az=y+1), and let e be the corresponding
transition of A. We add to F two delayed switches from v”: a delayed switch
to(¢", 0 y<z<1lAz=y+1, (4,2)) (by row 3 of Table 2) and a delayed
switch to (¢", 0 <y <z < 1Az=y+1, (2,4)) (by row 4 of Table 2). Notice
that no clock gets reset in the transition. Since the first switch corresponds
to taking the transition as soon as the following open region is entered, the
distance tuple (4,2) stays unchanged, and the associated cost is Js(e). The
second switch instead corresponds to taking the transition before leaving the
following open region, the distance tuple (4, 2) thus gets updated to (2,4) and
the associated cost is J4(q')(z1 — z1) + Js(e).

As an example of the given construction, we discuss a fragment of the graph
G A(9) for the weighted timed automaton modeling the air-traffic control prob-
lem from Example 3 (see Figure 8). For the sake of simplicity, we have marked
with 1,...,5 the vertices of G4(¥) in Figure 8, and we refer to them by these
numbers. Consider vertex 1. Since in the timed automaton from Figure 4 there
is a transition from W to W] which resets clock z1, we have in G 4(¢) an im-
mediate switch from 1 to 2. Edges from 1 to 3 and from 1 to 4 are delayed
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switches obtained by the same transition above and respectively rows 3 and
4 of Table 2. The edge from 1 to 5 is a time edge and is defined by row 2 of
Table 1.

We have the following lemma.

Lemma 3.1 Given a timed automaton A with k; locations and k; transitions,
the size of the parametric sub-region graph G 4(9) is O(|A|n 227 20N “where
|0(A)| denotes the length of the clock constraints of A. Moreover, the number
of vertices of G 4(9) is O(k;n 22" 20N and the number of edges of G 4(¥9) is
O((ky + ky) n 227 2001,

Proof : In (AD94) the authors proved for the region automaton that the size
is O(|A| 21| the number of vertices is O(k; 2°Y))| and the number of edges
is O(k; 21D A simple counting argument gives that the number of ways to
substitute < with < in the ordering of the fractional parts of a clock region is at
most 2”1 and the number of tuples of indices we use to represent the relative
differences between the fractional parts is at most (n+1)2". Thus the number
of vertices of G4 (1) is O(k; n 227 2184, Moreover, from each vertex of G 4(¥9)
there is exactly an outgoing time edge and for each transition of the timed
automaton leaving the corresponding location there are at most three edges
(among delayed and immediate switches). Thus, the total number of time
edges is exactly the number of vertices, while the total number of delayed and
immediate switches is O(k; n 22" 21°Y1). Hence, we have that the number of
edges of G4(0) is O((k; + k) n 227 2% From the above observation we can
also conclude that the total size of G 4(¥9) is O(|A|n 22" 2164, O

We end this section with few observations on the parametric sub-region graph.
The construction of G 4(1) is general in the sense that it does not depend on
the particular source zone S and target zone 7" of the problem, but only on the
timed automaton. Different choices of S and T will only affect the choice of the
starting and the target vertices, while the graph G 4(¢J) will stay unchanged.
This allows us to use it for solving both the single-source optimal-reachability
problem (for a fixed ) and the optimal-reachability problem (¥} belongs to
a convex set). Moreover, for a given state s = (¢,v), we have corresponding
vertices of G 4(9(s)) of the form (g, o, (i1, ..., 7)), where v € a. Each edge is
labeled by the actual cost of the corresponding “activity” in A, that is, for
immediate switches we have just the cost of the A transition, for time edges
the cost of spending time up to the end of the current region in the current A
location, and for delayed switches the cost corresponding to the A transition
plus the cost of spending time in the current location before the transition is
taken.
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4 Single-source optimal-reachability

In this section, we prove that the single-source optimal-reachability problem
for timed automata can be reduced to the shortest-path problem on a weighted
directed graph. We start introducing some notation and then prove the claimed
result.

Let s = (q,v) be a state of a weighted timed automaton A and ¥(s) =
(91, ...,9n541), we denote by g(s) a vertex (¢, a, (1,..., N + 1)) of G(9(s)
such that v € a. We want to define a set of runs of A that corresponds to
a path 7 of G4(¥(s)), in the sense that, if for each of such runs we map the
states to the regions and sub-regions they belong to, then we must obtain
the path 7. For this purpose, we need a measure of a “small” difference, and
thus, of the distance from the border of the region when a delayed switch is
taken. We will define a set of runs parameterized on an upper bound on such
a distance.

Let & be a small positive real number arbitrarily close to 0 and s a state of

A. Let m = {qo, ap, (io1,-- -5 d0.80)) — {qu, 0, (G115 - 5010)) — ... —2

(qn, o, (thas---,in,n,)) be a path of G4(Y(s)) starting at g(s) (i.e., g(s) =

(g0, a0, (ig.1, - - -y G0N, ))- We denote by R, (&) the set of runs of A starting at s,

that are obtained by replacing a step (g;, l/j)t—é} (qx, vx) for the fragment of 7

from (g;, oj, (41, . .., %5 n;)) through (gx, ax, (i1, - .., % n,)) such that:

L] <Qj—1> i1, (Z'j—l,la ceey ij—l,Nj_l» i) (qj, Qy, (ij,la ce ey Z'ijj» is either an im-
mediate or a delayed switch;

e forl = ] ceey k—2, <ql, o, (il,la ceay il,Nl)> m <ql_|_1, a1, (Z'H-l,lﬂ ceey il+1,Nl+1)>
is a time edge;

L] denoting <qk_1, Ak_1, (ik—l,l, ceey ik—LN}c—1)> i) (qk, ., (ik),la ey ik,Nk)> by
e, e is either an immediate or a delayed switch corresponding to e;. Moreover,
if e is an immediate switch then v; +t; € a,_;. If e is instead a delayed
switch, then we have the following cases:

- e is obtained from rows 1 and 2 of Table 2:
t; is such that v; +t; € ay—1 and the largest fractional part of v; + ¢;
according to the ordering of the fractional parts associated with ay_; is
greater than (1 —§).

- e is obtained from rows 3, 4 and 5 of Table 2:
denoting by o' the time-successor of ay_1 which is first entered by letting
time elapse, then v; +¢; € o. Moreover, the largest fractional part in the
ordering of the fractional parts associated with o is greater than (1 — &),
if e is obtained by rows 4 and 5 of Table 2, and the smallest fractional
part is less than &, if e is obtained by rows 3 and 5 of Table 2.

Let s be a state of a weighted timed automaton A and g(s) be (¢, 0 < z <
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y<1lAz=1, (4,2,3)). As an example of the above definition, consider the
following path of G 4(¥9) from g(s):

= (¢, 0<z<y<z<l1,(1,2,34)
i)(q O<z<y<lAz=1, (4,2,3))
2, 0=y<z<lAz=1, (4,2)
=5 {¢", 0=zsy <z <1, (4,2)).

The first edge is a time edge, the second is an immediate switch corresponding
to a transition e of A where clock y gets reset, and the third is a delayed switch
corresponding to a transition e’ of A where clock z gets reset. According to the
above definition, the set R, () contains all the runs (¢, v)—>(q', V' )—t;» (", V")
such that:

o (= 194 (recall that t = Ej61(4,1) 19] and 1(4, ].) = {4}),

e 0 <t <&,

e /' = A(v) + t where A is the reset function that resets clock y,

o V' = XN(V') +t where X is the reset function that resets clock z.

In the following, we assume that £ is a small positive real number arbitrarily
close to 0. Directly from the definition of G4(¥) and R.(£), we have the
following property of R;(§).

Proposition 4.1 Given a timed automaton A and a state s = (q,v) of A, if
7 is a path of G 4(9(s)) from g(s) of cost ¢, then R:(£) is a set of runs of A
such that for any ¢ > 0 there exists an r € R;(€) such that |c, — J(r)| < e.

To complete our reduction we need the following lemma.

Lemma 4.2 Given a run r of A from a state s to a target zone T, there exists
a path © of G(9(s)) from g(s) to a vertex corresponding to a state in T such
that the cost of 7 is not larger than J(r).

Proof : Let r be a run (qo,l/o)t—ell> (ql,l/l)t—3> t—fj) (qk,l/k)ﬂ(qk,l/k+1).

Deﬁne R as the set of all A runs r(dy,...,dg+1) = (qo, 1/0) (ql,fyl)
(Qk,%) > (@, Yo+1), where vo+d; € [vo+1t1], and %'+dz'+1 € [Vi+ti+1]

for 1= 1 , k. That is, any ' € R differs from r only for the clock valuations

at which transitions happen, but each of these valuations is in the same clock
region as the corresponding valuation in r. Clearly, r € R.

We recall that for a run 7/, J(r') = Js(r'") + Ja(r"). Thus, for 7' € R, J(r') =
Js(r), while J4(r') may vary according to the values of di,...,dx, 1. From
the definition of R, we have that di,...,dgs1 vary in a convex polyhedron P
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(from clock constraints, regions, and resets of run r(dy,...,dg+1) we obtain

a system of linear inequalities over dy, ..., dg,; which is satisfied if and only
if r(dy,...,dky1) € R). Since Jy4(r(dy,...,dky1)) is a linear combination over
dy,...,dgs1, its minimum value over a convex polyhedron is reached at one of

its corner points.

Let s be a state (go,v9). To complete the proof, it is sufficient to show that
for each tuple (dy, ..., dgs1) corresponding to a corner point of P, there exists
a path m of G4(¥(s)) from g(s) such that the cost of 7 is exactly the limit of
J(r(dy,...,dy,)) for (di,...,d, ) converging to (di,...,dg1).

Let (di,...,drs1) be a corner point of P, and for a small positive number &,
let P; be the set of points (d},...,d}, ;) € P such that d; €]d; — £, d; + & for
i=1,...,k+1. Consider arun r(d},...,d, ) for (d},...,d; ;) € Pr. Observe
that for d; > 0, if d} = d; then the edge e; is taken from a boundary region,
otherwise e; is taken from an open region within time ¢ from an adjacent
boundary region. In this second case, we abstract away the actual difference
|d; — d}| assuming that e; is taken from a limit region. Using this abstraction
and from the definition of G 4(9(s)), it is possible to construct a path 7 such
that ' € R.(£) if and only if v’ = r(d}, ..., d},,) for (d},...,d,,,) € Pe. From
Proposition 4.1, we have that for any ¢ > 0 there exists an r € R,(§) such
that |c, — J(r)| < &, where ¢, is the cost of 7. Since this holds for any small
positive &, letting & converge to 0 we obtain that the cost of 7 is the limit of
J(r(dy, ..., dyy,)) for (d,...,dy, ) converging to (dy,...,dgy1). O

We use Proposition 4.1 and Lemma 4.2 to prove the following two theorems.

Theorem 4.3 Given a timed automaton A, a state s of A, a target zone T,
7 is a shortest path of Ga(9(s)) from g(s) to a vertex corresponding to a state
in T if and only if R;(£) is an approzimation of an optimal run of A from s
toT.

Proof : First we consider the forward direction. Let 7 be a shortest path of
GA(Y(s)) from g(s) to a vertex corresponding to a state in 7', and denote with
¢ the cost of 7, by Lemma 4.2 we have that ¢, < J(r) for any run r of A. By
Proposition 4.1, we have that for all € > 0, there exists an r € R, () such that
¢r < J(r) < ¢ + € holds, and thus R,(§) is an approximation of an optimal
run of A from s to 7. Vice-versa, suppose R,(£) is an approximation of an
optimal run of A from s to T'. Denoting by 7' a shortest path of G 4(¥(s)) from
g(s) to a vertex corresponding to a state in 7', then by Lemma 4.2, the cost of
7', say cqr, is not larger than J(r) for any r € R,(§). By Proposition 4.1, we
have that for all € > 0, there exists an 7’ € R/ (§) such that |c — J(1')| < e,
and thus ¢ < J(r') < ¢ + €. Since for any 7 € Rp(€) there exists an
r € R,;(&) such that J(r) < J(r') (costs of runs in R,(£) converge to the
optimal cost), we have also that for all € > 0, there exists an r € R () such
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that ¢,y < J(r) < ¢ +¢€, and thus |e — J(r)| < €. Since from Proposition 4.1
for all € > 0 there exists an r € R, (&) such that |c, — J(r)| < €, we have that
¢r = ¢ and 7 is a shortest path from g¢(s) to a vertex corresponding to a
statein 7. O

As observed in Section 2, while an approximation of an optimal run always
exists, an optimal run may not exist. In the following theorem, we give a
necessary and sufficient condition for the existence of an optimal run, and a
way to compute the optimal run when it exists.

Theorem 4.4 Given a timed automaton A, a state s of A, a target zone T,
there exists an optimal run of A from s to T if and only if for a shortest path
7 of Ga(¥(s)) from g(s) to a vertex corresponding to a state in T, there exists
a run r € R (&) such that the cost of ™ is equal to J(r). Moreover, r is an
optimal Tun of A from s to T.

Proof : Let r be an optimal run of A from s to 7. We observe that by
Lemma 4.2 we have that there exists a path 7 from g¢(s) to a vertex corre-
sponding to a state in 7', such that, denoted by c, the cost associated with
7, ¢z < J(r). Moreover by Proposition 4.1, we have that for any ¢ > 0 there
exists a run 7’ from s to T such that ¢, < J(r') < ¢; +¢. Since r is an optimal
run from s to 7', we have that J(r) < J(r") for any r” from s to 7', and thus
by the above observations, that ¢, = J(r). Consider now the vice-versa. Let
7 be a shortest path of G4(9(s)) from g(s) to a vertex corresponding to a
state in T and let r € R, () be such that ¢, = J(r). By Lemma 4.2, since
7 is optimal we get that J(r) < J(r') for any ' from s to T, and thus, r is
optimal. O

We recall that the parametric sub-region graph is parameterized over the
differences of the fractional parts of the starting state. Clearly, if we fix a
starting state, we obtain a weighted directed graph. By the results shown in
this section, we can thus solve the single-source optimal-reachability problem
for weighted timed automata.

Theorem 4.5 Given a weighted timed automaton A with n clock variables,
a source state s and a target zone T, the single-source optimal-reachability
problem can be solved in O(|6(A)||A|n 22" 20 time, where |§(A)| denotes
the length of the clock constraints of A.

Proof : An algorithm to solve the single-source optimal-reachability problem
can be obtained by solving the shortest-path problem on G 4(¥(s)). By The-
orems 4.3 and 4.4, such an algorithm is correct. We recall that given a graph
G = (V, E) with nonnegative weights, it is possible to solve the single-source
shortest-path problem in O(|E| + |V| log|V|) by using the Dijkstra’s algo-
rithm with Fibonacci heaps (FT87). From Lemma 3.1 we have that the num-
ber of vertices and the number of edges of G4(9(s)) are bounded respectively
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by O(k;n22" 201 and O((k; + k;) n 22" 2161 where k; and &, are respec-
tively the number of locations and the number of locations is A. Thus, from
log(k; n 22741 21641 = O(|6(A)| + log k;), we can thus solve the single-source
optimal-reachability problem in O((k;logk; + ki|8(A)| + k; + k;) - n 227 216(A))
time. Since k; + k; + k; log k; = O(|A]) we have that the single-source optimal-
reachability problem can be solved in O(|6(A)||A|n 22" 20 time. O

5 Parametric shortest-path and optimal-reachability problems

In this section, we first define and solve a parametric shortest-path prob-
lem on weighted graphs, then we apply the resulting solution to the optimal-
reachability problem in weighted timed automata. The algorithm for the first
problem takes exponential time, and we provide a lower bound on the size
of a solution to such a problem, that is exponential in the number of pa-
rameters. Combining this algorithm with the parametric sub-region graph
construction given in Section 3, we obtain also an exponential-time algorithm
for the optimal-reachability problem in weighted timed automata. As we will
see, the time required by this algorithm is significantly larger than the time
required by the algorithm given in Section 4 for the case of a single source
state. In fact, the algorithm we propose here takes time exponential in the
product of the number of clocks multiplied for the sum of the sizes of the
clock constraints and of the largest weight. Finally, we show that if we restrict
to weighted timed automata with only a single clock variable, we can improve
the algorithm given for the general case. The running time of this algorithm
does not depend on the size of the weights of the automaton.

5.1 Parametric shortest-path problem

Let {¢1,...,9%} be a set of nonnegative real-valued parameters, and D be the
set of linear expressions over {%, ..., ¥} with nonnegative integer coefficients.
Given a D-labeled directed graph G = (V, E), the parametric shortest path
problem from a vertex u € V' to a target set V; C V is defined as the problem
of determining a minimal set P of paths starting at u such that for each
valuation of parameters ¥4, . .., J, there exists a path in P which is a shortest
path to a vertex in Vp from u. We recall that, in a D-labeled directed graph
once the parameters are assigned with actual values, we obtain a directed
graph with nonnegative real weights on the edges.

To solve the parametric shortest path problem, we give an algorithm that
labels each vertex v of G (except for the vertices from V7) with a set of
pairs each consisting of a linear expression f over 91,...,9; and a vertex v'.

21



Algorithm 1.

{(0,...,0, )} ifveVy
1. QO()(’U) =
1] otherwise

2. @j11 =SIMPLIFY(UPDATE(p;))

Fig. 9. Algorithm for solving the parametric shortest path problem.

The expression f gives the cost of a path to a target vertex and the coupled
vertex v' is the next vertex on this path. In the labeling computed by our
algorithm, given a valuation of the parameters and a vertex v, the minimum
over the values corresponding to the expressions labeling v gives the cost of an
optimal path from v to a vertex in V. We denote an expression f(¥1,...,0) =
ap + a1 91 + . .. + ax Y, by the tuple of coefficients (ay, ..., ax). We extend to
pairs having as first component an expression and as second component a
vertex, the ordering over expressions we introduced in Section 3. That is, let
f, f' be two expressions, and v, v' be two vertices of G, we write (f,v) < (f’,v)
if and only if f < f'. A set X of tuples of the form (f,v), where f is an
expression and v is a vertex, is minimized (with respect to <) if for any
(f,v), (f',v") € X, (f,v) and (f’,v") are not comparable with respect to <. In

the following, we will lose the inner parenthesis in the tuples ((ag, ..., ax),v),
and thus we will simply write (ay,...,ax,v) to denote the pair given by the
expression (ay,...,ax) and the vertex v.

Our algorithm to solve the parametric shortest-path problem is shown in Fig-
ure 9. In the initialization step (definition of ¢y), each vertex from the target
set Vr is labeled with the null expression (all coefficients are 0) and a special
symbol 1 ¢ V', while the other vertices are labeled with the empty set. Notice
that the labeling of a v € V7 is consistent with the fact that v is a target vertex
thus the cost of a minimal path reaching the target is clearly 0 and we do not
need to visit other vertices. In each iteration, we use procedures UPDATE and
SIMPLIFY. For a labeling ¢;, we denote by UPDATE(y;) the labeling computed
adding to ¢;(v), for any vertex v’ € V, the tuples (ag, ..., aj, v") such that:

o vt € E;

e fori = 1,...,]€, a; = ai-l—bi where f(191,,19k) = b0+b1191+...+bk19k

and (ao, ..., ax, V") € @;(v').

The function SIMPLIFY deletes from UPDATE(¢p;) all the tuples (f,v) such
that f’ < f holds for at least a tuple (f’,v") €UPDATE(y;). Our algorithm
halts when no more tuples are added to the labeling of G vertices.

It is easy to verify by induction the following property.

Lemma 5.1 Given a D-labeled directed graph G and a vertex v, for any nat-
ural number j the labeling function ; is such that if (f,v") € ¢;(v) then there
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exrists a path w from v to a vertex in Vp such that:

e the first edge of ™ connects v to v', and
e the cost of T is given by f.

The computational complexity of the algorithm in Figure 9 is addressed in
the following lemma.

Lemma 5.2 Given a D-labeled graph G = (V, E) and a target set Vi C V,
Algorithm 1 from Figure 9 runs in O(lmax - |V| - £2) time, where lna.y is the
length of the longest simple path? of G, and ¢ is the size of the mazimum
number of incomparable tuples computed by Algorithm 1 for a vertex. More-
over, £ = O(IEFL - TIE_ a"@) | where a™ is the largest i-th coefficient used in

the expressions labeling the edges of G.

Proof : Since the coeflicients of the expressions we consider are nonnegative,
any path 7 in G which is not simple has a cost that is not less than the cost of
a path 7’ obtained deleting the cycles from 7. Thus it is easy to show that for
each vertex v € V, ¢;(v) = ¢}, holds for any j > h, where h is the length of the
longest simple path from v to a vertex in V. As a consequence, our algorithm
will reach a fix-point after [, iterations. Since UPDATE and SIMPLIFY can
be implemented in quadratic time in the size of the vertex labels and in each
iteration we need to call them on each vertex, we have that the total time
taken by our algorithm is O(lpay - |[V| - £2). To complete the proof, we only
need to show the upper bound on /. As a consequence of the fact that we
can disregard cycles in the computation of the shortest paths, by Lemma 5.1
and the definition of SIMPLIFY, if (ay, ..., ax,v") € ¢;(v) for some j > 0, then
0 < a; < lax - @ holds for i = 0,..., k. Thus we get an O(IFt1 . TI¥_ qmax)
upper bound on the number of tuples that can appear in a labeling computed
by our algorithm. 0O

The following theorem holds.

Theorem 5.3 Given a D-labeled graph G = (V, E) and a target set Vi CV,
the parametric shortest-path problem from any vertexu € V to Vr can be solved
in O(I2E53 - |V| - (TIE_, a")?) time, where a™ is the largest i-th coefficient

used in the expressions labeling the edges of G, and ly.x s the length of the
longest simple path of G.

Proof : By Lemma 5.2, we only need to prove correctness for the algorithm
in Figure 9.

Let ¢ be the labeling computed by the algorithm in Figure 9. By Lemma 5.1,
to show the correctness of our algorithm it is sufficient to prove the following

2 For length of a path we mean the number of edges of the path.
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claim: given a vertex v, for each path 7 of G from v to a vertex in Vr, there
exists a tuple (f,v") € ¢(v) such that f is smaller than or equal to the cost of
m. We observe that in our algorithm, tuples can be added only by UPDATE and
deleted only by SIMPLIFY. Moreover, coefficients in the expressions labeling
edges of G are nonnegative. Therefore, since (0,...,0, L) € ¢g(v), we have
that (0,...,0, 1) € ¢(v), and the above claim trivially holds for any v € V.
Now let v &€ Vr. Suppose, by contradiction, that the above claim is violated.
Thus, there exists a vertex v; such that there exist:

e a path 7 = Uli)’l)g...’l)mflfm—_;’l)m, with v,, € Vr and m > 1, with the
property that for all (f,v") € ¢(vy1), the cost of 7 is either smaller than or
not comparable to f;

e a tuple (f',v") € p(vy) with the property that f’ is either smaller than or

equal to the cost of the path ’l)2£>’l)3 .. .Um_lfm—_ivm.

Since (f',v") € ¢p(ve), we have that (f',v") € ¢;(ve) for some index j and let
h be the smallest such index. By definition, the set UPDATE(¢p(v;)) contains
(f",ve), where f” = f'+ fi, and thus f” is either smaller than or equal to the
cost of 7. By our hypothesis, (f”,vs) & ©(v1) must hold. Thus, (f”,ve) must
have been deleted at the j-th iteration, for 7 > h. By definition of SIMPLIFY,
there exists a tuple (f"”,v") €UPDATE(p,_1(v1)) such that f” < f". As a
consequence, f"” is smaller than or equal to the cost of 7, and this proves that
there must exist a tuple in ¢(v;) such that the corresponding expression is
smaller than or equal to the cost of m. Therefore, we have a contradiction and
the above claim is proved. O

We observe that the path corresponding to a tuple (f,v), computed by the
algorithm in Figure 9, can be constructed by using the information contained
in the last component of the tuples. We end this section giving an example
of an instance of the parametric shortest-path problem where the size of the
solution is exponential in the number of parameters.

Example 4 Consider the graph in Figure 10, where ¢; = a; - 9;, and assume
that a; > b; for ¢+ = 1,...,k. We want to compute the shortest paths from
vertex 0 to vertex k. Let I C {1,...,k}, we define f;(¥1,...,0%) as Yicra; U;+
> igr bi- Clearly, for any path 7 from 0 to k, there exists a set I such that
fr gives the cost of m, and vice-versa. We observe that for the parameter
assignment 9 defined by ¥; = 0, for 2 € I, and 9J; = 1, otherwise, the unique
shortest path from 0 to £ is the one corresponding to f;. To see this, consider a
set I' # I. We have that, according to ¥, fr—fr is Xy (—0i) +Xie s (bi—ai)-
Since a; > b;, fr— fr < 0 and thus f; < fr. Thus we have that each path from
0 to k is a shortest path for some parameter valuation, and thus the solution
to the considered instance of the parametric shortest-path problem has size
exponential in the number of parameters. O
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Fig. 10. A D-labeled directed graph.

5.2 Optimal-reachability problem

In this section, we deal with the optimal-reachability problem. We first give
the result for the general case, then we discuss how to obtain a faster algorithm
for the case of weighted timed automata with only one clock.

Combining the construction of the parametric sub-region graph and the solu-
tion to the parametric shortest path problem we have the following result.

Theorem 5.4 Given a weighted timed automaton A, a source zone S and

a target zone T, the optimal-reachability problem can be solved in O(K?"6 .
w2 4) time, where K = O(|A|n 22721040 |§(A)| denotes the length of the

max
clock constraints of A, n is the number of clocks, and wmax @S the largest weight

i A.

Proof : By constructing the parametric sub-region graph, we can reduce the
optimal-reachability problem to the parametric shortest-path problem. Since
S may contain many regions, an instance of the optimal-reachability problem
reduces to m instances of the parametric shortest-path problem. However, the
iterative algorithm in Figure 9 needs to be executed only once since it will
compute the shortest paths from each vertex to the target. By Theorems 4.3,
4.4, and 5.3, we have that the algorithm obtained as described above is correct,
in the sense that solves the optimal-reachability problem. Since the length of
the longest simple path is bounded above by the size of the graph, the result
on the upper bound on the time required by this algorithm follows directly
from Lemma 3.1 and Theorem 5.3. O

For timed automata with just one clock variable, the above result gives an
O(K® - w8 ,,) time upper bound to the optimal-reachability problem, for K
denoting the size of the corresponding parametric sub-region graph. As shown

in the next theorem, for such automata we can design a more efficient solution.

Theorem 5.5 Given a weighted timed automaton A with a single clock vari-
able x, a source zone S, and a target zone T, the optimal-reachability problem
can be solved in O(K® 4+ m - lpay - |A|?) time, where K = O(|A| 2101, |6(A)|
denotes the length of the clock constraints of A, m is the number of regions in
S, and lmay is the length of the longest simple path in A.

Proof : Since we want to solve the problem of determining the optimal runs
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Fig. 11. Simplification of the parametric sub-region graph for a 1-clock weighted
timed automaton.

from any state of the source zone S to a state of a target zone T, in G (1)
we consider as tuple of parameters 9 only tuples of values given by ¥(s) for
a state s € S. Thus it holds that ¥; + ...+ ¥dx41 = 1 and we can eliminate
a parameter by the substitution dy,; = 1 — SN, 9;. For a weighted timed
automaton A with only one clock, we can thus consider only the parameter 1,
in the parametric sub-region graph corresponding to A. Furthermore, we can
simplify this graph to have the structure shown in Figure 11, with two disjoint
subgraphs GG; and G,, and the following properties. Graph G, contains all the
vertices whose distance tuple is (1,2) and that are reachable from g(s) for
some s € S. All the other vertices with distance tuple either (1,2) or (2,1),
can be deleted along with the related edges. This is possible since they are
not reachable from any source state. The remaining vertices are in GG,. Notice
that there might be edges connecting a vertex in GGy to a vertex in G, but
not vice-versa. Denote these edges by ey,...,e,. In Figure 11, we label them
respectively by ¢y, ..., ¢, where for s = 1,..., h we have the following cases:

(1) ¢; =a (1 —1,) and the related edge is a time edge,

(2) ¢; =a(1—1Y,)+ b and the related edge is a delayed switch, and

(3) ¢; is a weight of an A transition e on which z is reset and the related edge
is an immediate switch corresponding to e.

Denote by S’ the set of vertices of G5 that are linked to a vertex of G simply
by an edge. We can solve the optimal-reachability problem in two steps:

e we first solve the shortest-path problem from any vertex in S’;

e denote by s; the vertex in S’ which is an endpoint of e; for i = 1,..., h; we
apply the algorithm in Figure 9 to a graph G’ obtained adding to G the
edges e; with costs ¢, = ¢; + ¢ for i = 1,..., h, where ¢ is the cost of the
shortest path from s; computed in the first part of the algorithm. While
solving the problem on G’ the vertices from S’ are also considered targets.

It is easy to verify that parameter ©; does not appear in any of the edges of the

graphs GG1 and G5. Thus, the first step of the above algorithm can compute a
shortest path from any of the vertices in S’ in O(|G3|?) time (all-pairs shortest
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paths). Since the size of G is O(|A4]2°))), this phase takes O(K?®).

Now, let k; and k; be respectively the number of locations and the number of
transitions of A. The cost of any of the shortest paths computed above is a
precise value and not an expression over ;. As a consequence, the second step
needs only to consider linear expressions over (1 — ;) where the coefficient of
(1—1,) is either 0 or the value of one of the weights associated to an A location.
This reduces the number of incomparable pairs, that can be in a set labeling
a vertex of G', to the number of different weights of A locations augmented
by 1, and thus it is O(k;). Moreover, the number of vertices in G’ is h plus
the number of vertices in GG;. By definition, in G; we have only immediate
switches and delayed switches which are not time consuming. These switches
do not correspond to transitions of A that reset x. Thus, by a simple counting
argument, we have that the number of vertices of Gy is O(m - k;) (recall that
m is the number of regions in S). Since h is O(m - k;), the number of vertices
in G’ is O(m - (ki + kt)). Furthermore, the length of the longest simple path
in G' is O(ljax) (recall that in G’ there are no time edges and switches do not
reset ). Thus, applying to G’ the algorithm in Figure 9, by Lemma 5.2 we get
that the total time for this phase is O(m - Lyax - (ki + k¢) - k7). Hence, the total
algorithm takes O(K® 4+ m - lmay - (ki + k) - k7) time. From k; + k, = O(|A)),
we obtain the desired bound. O

6 Conclusions

In this paper we have dealt with the optimal-reachability problem for weighted
timed automata. We have presented an approach consisting of reducing this
problem to the parametric shortest-path problem on directed graphs. This
translation takes exponential time in the size of the clock constraints. To
solve the parametric shortest-path problem, we have given an algorithm that
takes time exponential in the product of the size of the largest coefficient used
in the expressions and the number of parameters. We have also shown that a
solution to this second problem may have size exponential in the number of
parameters. Our reduction combined with this algorithm gives an algorithm
for solving the optimal-reachability problem on weighted timed automata that
takes time exponential in O(n (|0(A)| + |Wmax|)), where n is the number of
clocks, [6(A)| is the size of the clock constraints and |wp,x| is the size of the
largest weight.

When we restrict to a single source state, the same reduction translates an
instance of the optimal-reachability problem to an instance of the standard
shortest-path problem. Using an efficient algorithm to solve the back-end prob-
lem, we thus obtain an algorithm for the single-source optimal reachability
problem on weighted timed automata that takes time exponential only in the
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size of the clock constraints.

We have also given a different algorithm (still based on the parametric sub-
region graph) to solve the general problem for weighted timed automata with
only one clock. The running time of this algorithm improves that of the algo-
rithm given for the general case by a constant factor in the exponent, and is
independent of the size of the weights of the automaton.

The best known lower bound for the considered problems is PSPACE-hard,
which is directly obtained from the complexity of reachability in timed au-
tomata (AD94). It would be interesting to close this complexity gap.

A generalized version of the optimal-reachability problem is the problem of
synthesizing an optimal controller. The optimal-control synthesis problem can
be informally stated as the problem of designing a control which is able to
drive, at a minimum cost, a system (usually called plant) into a given target
zone. In the literature, control synthesis problems have been considered in
the context of discrete automata (Chu62; Tho95), timed automata (AMP95;
MPS95; AM99), linear hybrid automata (WT97), and general hybrid sys-
tems (LTS99; SPS00). The design of an optimal control for hybrid systems is,
in general, undecidable. The approach presented in this paper, does not gen-
eralize to solving the optimal-control synthesis problem for weighted timed
automata. This problem is solved for acyclic weighted timed automata in
(LMMO02). To the best of our knowledge, a solution for the general case is still
an open problem.
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