April 2005

Hierarchical trajectory refinement for a class of nonlinear systems

Paulo Tabuada
University of Notre Dame

George J. Pappas
University of Pennsylvania, pappasg@seas.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/ese_papers

Recommended Citation
Hierarchical trajectory refinement for a class of nonlinear systems

Abstract
Trajectory generation for nonlinear control systems is an important and difficult problem. In this paper, we provide a constructive method for hierarchical trajectory refinement. The approach is based on the recent notion of φ-related control systems. Given a control affine system satisfying certain assumptions, we construct a φ-related control system of smaller dimension. Trajectories designed for the smaller, abstracted system are guaranteed, by construction, to be feasible for the original system. Constructive procedures are provided for refining trajectories from the coarser to the more detailed system.

Keywords
Trajectory refinement, phi-related systems

Comments
Postprint version. Published in Automatica, Volume 41, Issue 4, April 2005, pages 701-708. Publisher URL: http://dx.doi.org/10.1016/j.automatica.2004.11.008

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/ese_papers/173
Hierarchical Trajectory Refinement for a Class of Nonlinear Systems

Paulo Tabuada\textsuperscript{a}George J. Pappas\textsuperscript{b}

\textsuperscript{a}Department of Electrical Engineering
268 Fitzpatrick Hall
University of Notre Dame
Notre Dame, IN 46556

\textsuperscript{b}Department of Electrical and Systems Engineering
200 South 33rd Street,
University of Pennsylvania
Philadelphia, PA 19104

Abstract

Trajectory generation for nonlinear control systems is an important and difficult problem. In this paper, we provide a constructive method for hierarchical trajectory refinement. The approach is based on the recent notion of $\phi$-related control systems. Given a control affine system satisfying certain assumptions, we construct a $\phi$-related control system of smaller dimension. Trajectories designed for the smaller, abstracted system are guaranteed, by construction, to be feasible for the original system. Constructive procedures are provided for refining trajectories from the coarser to the more detailed system.

Key words: Trajectory refinement, $\phi$-related control systems.

1 Introduction

Research in trajectory generation for classes of nonlinear control systems has resulted in various approaches for nonholonomic systems [MS93] as well as real-time trajectory generation methods [vNM98] for differentially flat systems [FLMR95]. The rapidly growing interest in unmanned aerial vehicles (UAVs) has also emphasized the need to generate aggressive trajectories for individual UAVs ([FDF01,HJ00]) as well as large numbers of autonomous UAVs ([BK04]).

One approach to handle the complexity of trajectory generation for nonlinear systems is the adoption of hierarchical design principles. In this paper we present the fundamentals of such hierarchical approach to trajectory generation. The proposed methodology builds upon the notion of $\phi$-related systems, which has been introduced in [PLS00]. Given a control system $\Sigma_M$ with state space $M$, and a map $\phi : M \rightarrow N$, a $\phi$-related system is an abstracted control system $\Sigma_N$ on the smaller state space $N$, that captures the $\phi$-image of all $\Sigma_M$ trajectories. A construction is provided in [PS02] which given nonlinear model $\Sigma_M$ and map $\phi$, generates the abstracted model $\Sigma_N$. Furthermore, given control theoretic properties such as controllability and stabilizability, we can obtain natural conditions on the map $\phi$ in order for $\Sigma_M$ and $\Sigma_N$ to have equivalent properties. These include controllability for linear [PLS00], nonlinear [PS02], and Hamiltonian systems [TP03] and stabilizability of linear systems [PL01].

In this paper we present a constructive solution to following problem: Given a trajectory of the abstracted model $\Sigma_N$, refine this trajectory to a trajectory of the original model $\Sigma_M$. A solution to the above problem provides a hierarchical approach to trajectory generation, since we can transfer trajectory generation problems from $\Sigma_M$ to $\Sigma_N$, solve the trajectory generation problem on the simpler model $\Sigma_N$ using any existing method, and then refine the trajectory back to $\Sigma_M$. The explicit construction of refined trajectories along with conditions guaranteeing its feasibility are the main contributions of this paper.

\textsuperscript{*} This paper was not presented at any IFAC meeting. This research is partially supported by ARO MURI DAAD19-02-01-0383.

Email addresses: ptabuada@nd.edu (Paulo Tabuada), pappasg@seas.upenn.edu (George J. Pappas).

Preprint submitted to Automatica 19 October 2004
The idea of reducing the synthesis of control systems to simpler, lower dimensional systems has appeared in various forms in the literature. For mechanical systems, one such approach is based on the existence of symmetries, which enable the reduction of a given control system to a simpler quotient system [dA89,KM97]. Recently, a different approach has been reported in [BL01,BL04], where kinematic models of mechanical systems (kinematic reductions) generating trajectories refinable to trajectories of the full dynamical model are introduced. In the same spirit, the so-called inclusion principle [SS02] allows us to carry analysis and design of systems to simpler models. Trajectory morphing [HM98] is a homotopy based approach that is, in spirit, hierarchical. The related problem of characterizing regularity of the original system input trajectories from regularity of the map \( \phi \) and the abstracted system input trajectories is discussed in [Gra03].

Backstepping has been a very successful approach for the recursive (or hierarchical) design of stabilizing controllers for nonlinear systems [SJ97] and was a source of inspiration for the results presented in this paper. However, the focus of this paper is trajectory refinement and not controller design. Our results systematically lead to a formal methodology that can be thought of as open-loop backstepping.

A different approach which bears some connections with the proposed approach is flatness [FLMR95]. Flatness can also be used for hierarchical trajectory generation, since curves on the flat output space uniquely define state/input trajectories for the original system. Our approach differs from flatness based approaches in that not every trajectory of the abstraction can be concretized in the original system. In addition, it is also not the case that trajectories of the abstraction uniquely define state/input trajectories of the original system as is the case for flat systems. On the other hand, these relaxations enable the refinement of curves in spaces that do not necessarily correspond to a flat output space. Another important difference lies in the constructive nature of the proposed methodology, providing checkable conditions for its use.

The structure of this paper is the following. In Section 2 we introduce some notation, review the notion of \( \phi \)-related control systems and present a construction of such control systems. Section 3 contains constructive solutions for trajectory refinement which constitute the main contribution of the paper. The presented results are then discussed in Section 4, which finalizes the paper.

2 \( \phi \)-Related Control Systems

We will assume familiarity with basic differential geometric objects used in geometric control theory [NvdS95,Isi96]. In particular, we will say that a given object is smooth when it is infinitely differentiable. In this paper all the objects will be assumed smooth unless explicitly stated. Given a map \( \phi : M \rightarrow N \) between manifolds \( M \) and \( N \), we say that \( \phi \) is a submersion when its associated tangent map \( T_\phi \) is surjective for every \( x \in M \). We will denote by \([X,Y]\) the Lie bracket between vector fields \( X \) and \( Y \) and consider both distributions and affine distributions. While a distribution \( \Delta_M \) on manifold \( M \) is a smooth assignment to each \( x \in M \) of a vector subspace of \( T_xM \), an affine distribution \( \mathcal{A}_M \) is a smooth assignment of an affine subspace of \( T_xM \) at each \( x \in M \). In this paper all distributions will be assumed to locally have constant rank. This assumption guarantees the existence of a local basis of vector fields \( X_M^0, X_M^1, \ldots, X_M^l \) for each \( x \in M \) spanning \( \mathcal{A}_M(x) \) and \( \Delta_M(x) \), that is, \( \mathcal{A}_M(x) = X_M^0(x) + \text{span}\{X_M^1(x), \ldots, X_M^l(x)\} \) and \( \Delta(x) = \text{span}\{X_M^1(x), \ldots, X_M^l(x)\} \). Furthermore, given two distributions \( \Delta_M^1, \Delta_M^2 \), we denote by \( \Delta_M^1 + \Delta_M^2 \) the distribution pointwise defined by the subspace of \( T_xM \) formed all the vectors \( X = X_1 + X_2 \) with \( X_1 \in \Delta_M^1(x) \) and \( X_2 \in \Delta_M^2(x) \). In the same spirit we will denote by \([X_M, \Delta_M]\) the distribution pointwise defined by the subspace of \( T_xM \) formed by all vector fields \( X \) such that \( X(x) = [X_M, Y](x) \) for some \( Y \in \Delta_M \). This notation is extended to \( \Delta_M^1, \Delta_M^2 \) by considering the sum \( \sum_{x \in \Delta_M^1} [X, \Delta_M^2] \). A submersion \( \phi : M \rightarrow N \) defines a distribution on \( M \), denoted by \( \ker(T\phi) \) and defined by \( \ker(T\phi)(x) = \{X \in T_xM \mid T_x\phi \cdot X = 0\} \). We will also use the notation \( \phi^{-1}(y) \) to denote the set of points \( \{x \in M \mid \phi(x) = y\} \).

In this paper, we shall consider control systems which are affine in the control inputs.

**Definition 2.1** A control affine system \( \Sigma_M = (M, \mathbb{R}^r, F_M) \) consists of manifold \( M \) as state space, \( \mathbb{R}^r \) as input space, and system map \( F_M : M \times \mathbb{R}^r \rightarrow TM \) of the form:

\[
F_M(x, \eta) = X_M^0(x) + \sum_{i=1}^r X_M^i(x)\eta_i
\]

where \( X_M^0, X_M^1, \ldots, X_M^r \) are smooth vector fields on \( M \).

A control affine system \( \Sigma_M = (M, \mathbb{R}^r, F_M) \) defines an affine distribution on \( M \) by:

\[
\mathcal{A}_M(x) = X_M^0(x) + \text{span}\{X_M^1(x), \ldots, X_M^r(x)\}
\]

We will usually denote by \( \Delta_M^1(x) \) the distribution \( \text{span}\{X_M^1(x), \ldots, X_M^r(x)\} \) which allows us to write the affine distribution \( \mathcal{A}_M \) in the compact form \( \mathcal{A}_M = X_M^0 + \Delta_M^1 \). Affine distributions are important since many properties of control systems are completely characterized by the induced affine distributions. When working with an affine distribution \( \mathcal{A}_M \) defined by the vector fields \( X_M^0, X_M^1, \ldots, X_M^r \) we will be implicitly...
Given a state trajectory of a control system that is \( \phi \)-related to \( \Sigma_M \), let \( \Sigma_N \) be a control system satisfying \( \Sigma_N \circ \phi = \Sigma_M \). Given a state trajectory \( \eta \) of \( \Sigma_N \), define an input trajectory \( \gamma : I \rightarrow \mathbb{R}^r \) for \( \Sigma_M \) such that the resulting state trajectory \( x \) satisfies \( \phi \circ x = \eta \).

\[
\dot{x}(t) = F_M(x(t), \eta(t))
\]

for almost all \( t \in I \).

With respect to the affine distribution \( A_M \), a trajectory can be defined as a smooth map \( x : I \rightarrow M \) satisfying \( \dot{x}(t) \in A_M(x(t)) \). Trajectories of different models are related by the notion of \( \phi \)-related control systems:

Definition 2.2 Let \( \Sigma_M = (M, \mathbb{R}^r, F_M) \) be a control affine system and \( I \subseteq \mathbb{R} \) an open interval containing the origin. A smooth curve \( x : I \rightarrow M \) is said to be a state trajectory if there exists a (not necessarily smooth) input curve \( \eta : I \rightarrow \mathbb{R}^r \) satisfying the differential equation

\[
\dot{x}(t) = F_M(x(t), \eta(t))
\]

for almost all \( t \in I \).

With respect to the affine distribution \( A_M \), a trajectory can be defined as a smooth map \( x : I \rightarrow M \) satisfying \( \dot{x}(t) \in A_M(x(t)) \). Trajectories of different models are related by the notion of \( \phi \)-related control systems:

Definition 2.3 (\( \phi \)-related control systems [PLS00]) Let \( \Sigma_M = (M, \mathbb{R}^r, F_M) \) and \( \Sigma_N = (N, \mathbb{R}^s, F_N) \) be control affine systems defining affine distributions \( A_M \) and \( A_N \), respectively, and let \( \phi : M \rightarrow N \) be a smooth map. Control system \( \Sigma_N \) is said to be \( \phi \)-related to control system \( \Sigma_M \) if for every \( x \in M \):

\[
T_x\phi(A_M(x)) \subseteq A_N \circ \phi(x)
\]

In the context of hierarchical trajectory generation we are interested in \( \phi \)-related control systems where \( \Sigma_N \) is lower dimensional than \( \Sigma_M \), therefore \( \dim(M) \geq \dim(N) \). The notion of \( \phi \)-related control systems allows us to relate the trajectories of the two control systems.

Theorem 2.4 ([PLS00]) Control system \( \Sigma_N \) is \( \phi \)-related to control system \( \Sigma_M \) if and only if for every trajectory \( x \) of \( \Sigma_M \), \( \phi \circ x \) is a trajectory of \( \Sigma_N \).

Even though \( \Sigma_N \) captures the \( \phi \)-image of every trajectory of \( \Sigma_M \), it may also generate trajectories that are not feasible for the \( \Sigma_M \) model. The goal of this paper is to reverse the direction of the above theorem, and hence refine trajectories of the coarser model \( \Sigma_N \) to trajectories of the more detailed model \( \Sigma_M \). This frequently occurs when, for example, trajectories of kinematic models must be refined to trajectories of dynamic models. In particular, in this paper, we shall address the following two problems.

Problem 2.5 (Trajectory Refinement I) Let \( \Sigma_N \) be a control system that is \( \phi \)-related to a control system \( \Sigma_M \). Given a state trajectory \( y \) of \( \Sigma_N \), construct an input trajectory \( \eta \) for \( \Sigma_M \) such that the resulting state trajectory \( x \) satisfies the relation \( \phi \circ x = y \).

Problem 2.6 (Trajectory Refinement II) Let \( \Sigma_N \) be a control system that is \( \phi \)-related to a control system \( \Sigma_M \). Consider desired initial and final states \( x_0, x_F \in M \) for system \( \Sigma_M \). Given a state trajectory \( y \) of \( \Sigma_N \) satisfying \( y(0) = \phi(x_0) \) and \( y(T) = \phi(x_F) \) for given time \( T \in \mathbb{R}^+ \), construct an input trajectory \( \eta \) for \( \Sigma_M \) such that the resulting state trajectory \( x \) satisfies \( \phi \circ x = y \), \( x(0) = x_0 \) and \( x(T) = x_F \).

Even if \( \Sigma_N \) is \( \phi \)-related to \( \Sigma_M \), \( \Sigma_N \) may generate trajectories that are not feasible for \( \Sigma_M \). Hence, in addition to \( \phi \)-relatedness, additional conditions will be required to solve Problems 2.5 and 2.6. In [PS02] a construction is introduced to obtain \( \phi \)-related affine control systems \( \Sigma_N \) from arbitrary affine control systems \( \Sigma_M \) and submersions \( \phi : M \rightarrow N \). In this paper we restrict attention to a special class of control systems characterized by the following assumptions which will hold throughout the paper:

A.I The manifold \( M \) is diffeomorphic to \( N \times \mathbb{R}^k \) via a diffeomorphism \( \psi = (\phi, \phi^\perp) \) with \( \phi : M \rightarrow N \), \( \phi^\perp : M \rightarrow \mathbb{R}^k \) and \( k = \dim(\ker(T\phi)) \);

A.II \( [\ker(T\phi), [\ker(T\phi), A_M]] \subseteq \Delta^1_M + \ker(T\phi) + [\ker(T\phi), A_M] \).

The refinement results proposed in this paper rely on identifying some inputs of \( \Sigma_N \) with states of \( \Sigma_M \). This identification immediately imposes restrictions on manifold \( M \) since we are modeling the input space as \( \mathbb{R}^r \).

Assumption A.I captures precisely these restrictions on the state space structure and is always locally satisfied. Globally, topological properties of \( M \) may prevent the existence of a map \( \phi \) such that A.I holds. Given the identification of \( M \) with \( N \times \mathbb{R}^k \) we will denote a point in \( M \) as \( (x, (y, z)) \) where \( y \in N \) and \( z \in \mathbb{R}^k \). We will also make frequent use of the standard basis for \( \ker(T\phi) \cong \mathbb{R}^k \) defined by the vector fields \( \frac{\partial}{\partial y}, \frac{\partial}{\partial y^2}, \ldots, \frac{\partial}{\partial y^k} \). Assumption A.II greatly simplifies the relation between state/inputs of \( \Sigma_M \) and state/inputs of \( \Sigma_N \). In particular, it reduces the construction of \( \phi \)-related control systems given in [PS02] to the sequence of seven steps described in the following construction:

Construction 2.7

Input: Affine distribution \( A_M \) satisfying Assumptions A.I and A.II with respect to surjective submersion \( \phi : M \rightarrow N \).

Step 1: \( \Delta^2_M(x) := [\ker(T\phi), X^0_M](x) \)

Step 2: \( \Delta^3_M(x) := [\ker(T\phi), \Delta^1_M](x) \)

Step 3: \( X^0_N(y) := T_{(y,0)}\phi \cdot X^0_M(y, 0) \)

Step 4: \( \Delta^1_N(y) := T_{(y,0)}\phi(\Delta^1_M(y, 0)) \)
Step 5: $\Delta_N^2(y) := T(y,0)\phi(\Delta_M^2(y,0))$

Step 6: $\Delta_N^3(y) := T(y,0)\phi(\Delta_M^3(y,0))$

Step 7: $A_N := X_N^0 + \Delta_N + \Delta_N^2 + \Delta_N^3$

Output: Affine distribution $A_N$.

The affine distribution $A_N$ defines control system $\Sigma_N$ which is $\phi$-related to $\Sigma_M$. The system map $F_N$ of $\Sigma_N$ takes the form:

$$F_N(y, (\alpha, \beta, \gamma)) = X_N^0(y) + \sum_{i=1}^a X_N^1(y)\alpha_i + \sum_{j=1}^b Y_N^j(y)\beta_j + \sum_{i=1,j=1}^{a,b} Z_N^{ij}(y)\gamma_{ij} \quad (2.3)$$

with vector fields $X_N^i, Y_N^j$ and $Z_N^{ij}$ defined by:

$$X_N^1(y) = T(y,0)\phi \cdot X_M^1(y,0)$$

$$X_N^0(y) = T(y,0)\phi \cdot [\frac{\partial}{\partial z_j}, X_M^0(y,0)]$$

$$Z_N^{ij}(y) = T(y,0)\phi \cdot [\frac{\partial}{\partial z_j}, X_M^0(y,0)]$$

Note that vector fields $X_N^i, Y_N^j$ and $Z_N^{ij}$ are not necessarily linearly independent, however the above expression will be very convenient from a notational point of view. We now illustrate the above construction through a simple example. Consider the following control system:

$$\dot{x}_1 = x_1 + x_2^2x_3 + x_1u_2$$

$$\dot{x}_2 = x_1x_2 + x_2^2 + x_3u_2$$

$$\dot{x}_3 = x_3x_4 + (x_2^2 + x_1)u_1$$

$$\dot{x}_4 = x_1x_4x_2^2 + x_2u_3 \quad (2.4)$$

and the surjective submersion:

$$(y_1, y_2) = \phi(x_1, x_2, x_3, x_4) = (x_1, x_2) \quad (2.5)$$

Control system (2.4) defines the following vector fields:

$$X_M^0 = (x_1 + x_2^2x_3) \frac{\partial}{\partial x_1} + (x_1x_2 + x_2^2) \frac{\partial}{\partial x_2} + (x_3x_4) \frac{\partial}{\partial x_3}$$

$$+ (x_1x_4x_2^2) \frac{\partial}{\partial x_4}$$

$$X_M^1 = (x_2^2 + x_1) \frac{\partial}{\partial x_1}$$

$$X_M^2 = x_1 \frac{\partial}{\partial x_1} + x_3 \frac{\partial}{\partial x_2}$$

$$X_M^3 = x_2 \frac{\partial}{\partial x_2}$$

and map $\phi$ induces distribution $\ker(T\phi) = \text{span}\{\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}\}$.

It is not difficult to see that system (2.4) and map (2.5) satisfy Assumptions A.I and A.II for every $x \in \mathbb{R}^4$ such that $x_2 \neq 0$. We can thus use Construction 2.7 and compute:

$$\Delta_0^2(x) := \ker(T\phi), X_M^0(y)[x] = \text{span}\{\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \frac{\partial}{\partial x_3}, \frac{\partial}{\partial x_4}\}$$

$$\Delta_0^3(x) := \ker(T\phi), \Delta_0^2(x)[x] = \text{span}\{\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2} y_1 \frac{\partial}{\partial y_1} + (y_1y_2 + y_2^2) \frac{\partial}{\partial y_2} \}$$

$$\Delta_0^3(y) := \ker(T\phi), \Delta_0^3(x)(x) = \text{span}\{\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2} y_1 \frac{\partial}{\partial y_1} + (y_1y_2 + y_2^2) \frac{\partial}{\partial y_2} \}$$

$$\Delta_0^3(y) := \ker(T\phi), \Delta_0^3(x)(x) = \text{span}\{\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2} y_1 \frac{\partial}{\partial y_1} + (y_1y_2 + y_2^2) \frac{\partial}{\partial y_2} \}$$

The resulting control system is then given by:

$$\dot{y}_1 = y_1 + y_1\alpha_1 + y_2^2\beta_1$$

$$\dot{y}_2 = y_1y_2 + y_2^3 + \gamma_{11} \quad (2.6)$$

Comparing the first equation in (2.6) with the first equation in (2.4) we see that we can identify $\alpha_1$ with $u_2$ and $\beta_1$ with $x_3$. This example illustrates that while some inputs of (2.6) correspond to inputs of (2.4), other inputs can be identified with states of (2.4). However, $\gamma_{11}$ cannot be identified neither with an input nor with a state of (2.4). The correct interpretation of term $\gamma_{11}$ is as the product $\beta_1\alpha_1$. This decomposition of inputs as a product of other inputs is in fact critical to enable trajectory refinement as discussed in the next section.

3 Hierarchical trajectory refinement

For general control systems, the relationships between state/inputs of the original and abstracted system can be very complex [TP04b]. As these relations are crucial for hierarchical trajectory generation we will focus on a particular class of nonlinear systems more amenable to analysis. This class of systems is characterized by Assumptions A.I and A.II, that we have already introduced, and also by assumption A.III:

A.III: $\ker(T\phi) \subseteq \Delta_M^1$

Assumption A.III requires states projected out in the abstraction process to be directly controlled. This will ensure the existence of control inputs to generate the desired refinements. Construction 2.7 guarantees that $T\phi(\Delta_M) \subseteq \Delta_N \circ \phi$. However, there are vectors in $A_N$ which are not the image under $T\phi$ of any vector in $A_M$. The first step towards refining trajectories is to identify which vectors in $A_N$ come from vectors in $A_M$. 
Lemma 3.1 Let $\Sigma_M$ be an affine control system on $M$ satisfying Assumptions A.I, A.II and A.III with respect to surjective submersion $\phi : M \to N$ and let $\Sigma_N$ be the $\phi$-related control system obtained by Construction 2.7. Then, for any $x \in M$ the following equality holds:

$$T_x \phi (A_M(x)) = \bigcup_{\alpha \in \mathbb{R}^n} F_N (\phi(x), (\alpha, \phi^x(x), \alpha \phi^x(x)))$$

Proof: Since $M$ is diffeomorphic to $N \times \mathbb{R}^k$ we shall work on $N \times \mathbb{R}^k$, where $\phi$ takes the form of a projection map $\pi : N \times \mathbb{R}^k \to N$. Denote by $A_M(z)$ the distribution obtained from $A_M$ by fixing $y$, that is $A_M^y(z) = A_M(y, z)$. Expanding $T_{(y,z)} \pi (A_M^y(z))$ in Taylor series around $0 \in \mathbb{R}^k$ we obtain:

$$T_{(y,0)} \pi (A_M^y(0)) + T_{(y,0)} \pi \left( \sum_{i=1}^{k} \left[ \frac{\partial}{\partial z_i} \right] A_M^y(0) z_i \right)$$

$$+ T_{(y,0)} \pi \left( \frac{1}{2} \sum_{i=1}^{k} \sum_{j=1}^{k} \frac{\partial}{\partial z_i} \frac{\partial}{\partial z_j} A_M^y(0) z_i z_j \right) + \ldots$$

We now use the assumption $[\ker(T \phi) \subseteq \Delta_M^y + \ker(T \phi) + [\ker(T \phi), A_M]]$ to simplify the series expansion to:

$$T_{(y,z)} \pi (A_M^y(z)) = T_{(y,0)} \pi (A_M^y(0)) + T_{(y,0)} \pi \left( \sum_{i=1}^{k} \frac{\partial}{\partial z_i} A_M^y(0) z_i \right) (3.1)$$

Expression (3.1) shows that the Taylor series of $T_{(y,z)} \pi (A_M^y(z))$ is finite which implies that (3.1) is in fact valid not only on a neighborhood of $0 \in \mathbb{R}^k$, but for all $z \in \mathbb{R}^k$. Consider now a vector $X_N = F_N(y, (\alpha, z, \alpha z))$ with $\alpha \in \mathbb{R}^n$. Then, by Construction 2.7, $X_N$ can be written as:

$$X_N = T_{(y,0)} \pi \cdot X_M^y(y,0) + T_{(y,0)} \pi \cdot \sum_{i=1}^{r} X_M^i(y,0) \alpha_i$$

$$+ T_{(y,0)} \pi \left( \sum_{j=1}^{k} \left[ \frac{\partial}{\partial z_j} X_M^0(y,0) \right] z_j \right) + T_{(y,0)} \pi \left( \sum_{i=1}^{k} \sum_{j=1}^{k} \left[ \frac{\partial}{\partial z_i} X_M^0(z) z_i \right] (y,0) \alpha_i z_j \right)$$

$$= T_{(y,z)} \pi \left( X_M^0(y,0) + \sum_{i=1}^{r} X_M^i(y,0) \alpha_i \right)$$

By noting that $T_{(y,0)} \pi \left( X_M^0(y,0) + \sum_{i=1}^{r} X_M^i(y,0) \alpha_i \right) \in T_{(y,0)} \pi (A_M^y(0))$ we immediately see from (3.1) that $X_N \in T_{(y,z)} \pi (A_M^y(z))$. Consider now a vector $X_M \in A_M(y, z)$. Then $X_M = X_M^0 + \sum_{i=1}^{r} X_M^i \alpha_i$. From (3.1) we conclude that $T_{(y,z)} \pi \cdot X_M$ equals:

$$T_{(y,0)} \pi \left( X_M^0(y,0) + \sum_{i=1}^{r} X_M^i(y,0) \alpha_i \right)$$

$$+ T_{(y,0)} \pi \left( \sum_{i=1}^{k} \frac{\partial}{\partial z_i} X_M^0(y,0) z_i \right)$$

which is also given by $F_M(y, (\alpha, z, \alpha z))$. □

The previous Lemma asserts that by imposing the restriction $\alpha = 0 \beta$ we can lift vectors in $A_N$ to vectors in $A_M$. This restriction is in fact sufficient to lift not only vectors but also trajectories as described in the following result.

Theorem 3.2 (Hierarchical Trajectory Refinement)

Let $\Sigma_M$ be a control affine system satisfying Assumptions A.I, A.II and A.III with respect to a surjective submersion $\phi : M \to N$ and let $\Sigma_N$ be the $\phi$-related control system obtained by Construction 2.7. Any smooth state trajectory $y$ of $\Sigma_N$ corresponding to a smooth input trajectory $(\alpha, \beta, \gamma)$ satisfying $\gamma_0 = \alpha \beta$ is refifiable to a smooth trajectory $x$ of $\Sigma_M$ satisfying $\phi \circ x = y$. Furthermore, $x$ is given by $\psi^{-1} \circ (y, \beta)$. □

Proof: We will show that $A_M$ is isomorphic to the dynamic extension of $A_N$ defined on $N \times \mathbb{R}^k$ by the affine distribution $A_N^\psi(y, z) := \{ X \in T_{(y,z)}(N \times \mathbb{R}^k) \mid T_{(y,z)} \pi \cdot X = F_N(y, (\alpha, z, \alpha z)) \}$ for some $\alpha \in \mathbb{R}^n$ where $\pi : N \times \mathbb{R}^k \to N$ is the natural projection on $N$. This will be done by proving that $\psi$ is an isomorphism between $A_M$ and $A_N^\psi$, that is $T \psi (A_M) \subseteq A_N^\psi \circ \psi$. We start with the inclusion $T \psi (A_M) \subseteq A_N^\psi \circ \psi$. Let $X_M \in A_M(x)$, then from Lemma 3.1 we conclude $T_x \phi \cdot X_M = F_N(\phi(x), (\alpha, \phi^x(x), \alpha \phi^x(x)))$. Since $\phi(x) = \psi \circ x$ we also have $T_x \psi (\pi (T_x \phi \cdot X_M^0 \circ \psi))$. Now we prove the reverse inclusion $A_N^\psi \circ \psi \subseteq A_M$. We need to show that for any $X = (X_1, X_2) \in A_N^\psi(y, z)$ there exists a $X_M \in A_M(x)$ such that $T_x \psi \cdot X_M = X \circ \psi$.

By construction of $A_N^\psi$, $X \in A_N^\psi(y, z)$ implies $T_{(y,z)} \pi \cdot X = X_1 = F_N(y, (\alpha, z, \alpha z))$ for some $\alpha \in \mathbb{R}^n$. Furthermore, from Lemma 3.1 we know that there is a vector $X_M \in A_M \circ \psi^{-1}(y, z)$ such that $T_x \phi \cdot X = X_1$. We now modify $X_M$ to ensure $T_x \phi \cdot X_M = X_2$. Consider the vector $X_M + K$ with $K \in \ker(T \phi)(x)$. Since $X_M$ belongs to $A_M(x)$, then so does $X_M + K$ given the inclusion $\ker(T \phi)(x) \subseteq A_M(x)$. Furthermore, $T_x \phi \cdot (X_M + K) = T_x \phi \cdot X_M$ for any $K \in \ker(T \phi)$. We thus conclude that $K$ can always be chosen so as
To satisfy $T_\alpha \phi^{-1}(X_M + K) = X_2$, since $\psi$ being a diffeomorphism implies that $T_\psi$ is a linear isomorphism. Hence, the inclusion $A_N \circ \psi \subseteq T\psi(A_M)$ follows and we conclude that $\psi$ renders $A_N$ isomorphic to $A_N'$.

To finish the proof, it suffices to show that any trajectory of $A_N$ can be lifted to a trajectory of $A_N'$ since $A_N'$ is isomorphic to $A_M$. Diffeomorphism $\psi^{-1}$ can then be used to transform a trajectory $y^c$ of $A_N'$ into a trajectory $y^s \circ \psi^{-1}$ of $A_M$ since $\frac{d}{dt} \psi^{-1}(y^c(t)) = T_{y^s(t)} \psi^{-1}$.

Let now $y$ be a trajectory of $A_N$ with corresponding smooth input trajectory $(\alpha, \beta, \alpha\beta)$. We claim that $(y, \beta)$ is a trajectory of $A_N'$. To prove the claim we need to show that $(y(t), \beta(t)) \in A_N'(y(t), \beta(t))$. By definition of $A_N'$, $(y(t), \beta(t)) \in A_N'(y(t), \beta(t))$ holds iff $T_{y(t), \beta(t)} \pi \circ (y(t), \beta(t)) = F_N(y(t), (\alpha(t), \beta(t), \alpha(t)\beta(t)))$ which is obviously satisfied. □

Theorem 3.2 can be used to provide a constructive solution to Problem 2.5 as we now illustrate with control system (2.4) and its abstraction (2.6). We first note that (2.4) satisfies Assumptions A.I, A.II and A.III with respect to the map (2.5). Assume now that we have designed a trajectory $y$ of system (2.6) corresponding to a smooth input trajectory $(\alpha, \beta, \alpha\beta)$. Theorem 3.2 asserts that $(y, \beta)$ is now the desired refinement of $y$. However, while $(y, \beta) \in (\mathbb{R}^3)^t$, trajectories of $\Sigma_N'$ live in $(\mathbb{R}^4)^t$ for some open interval $I \subseteq \mathbb{R}$ containing the origin. This apparent mismatch is resolved by rewriting the equations (2.6) so as to include all $\beta$ terms as prescribed in (2.3):

\begin{align*}
\dot{y}_1 &= y_1 + y_1 \alpha_1 + y_2^2 \beta_1 + 0 \beta_2 \\
\dot{y}_2 &= y_1 y_2 + y_2 + 0 \beta_1 + 0 \beta_2 + \gamma_{11} 
\end{align*}

(3.2) (3.3)

Equations (2.3) and (3.3) show that $\beta_2$ can be arbitrarily chosen as it appears multiplied by zero and this fact implies non-uniqueness of the refinement of $y$. To obtain the input trajectory associated with the refinement $(y, \beta)$, it suffices to solve (2.6) for the inputs upon substitution of $(y, \beta)$. To make our discussion concrete, consider the following trajectory:

$$(y_1(t), y_2(t)) = (t, t), \quad t \in [1, 2]$$

Corollary 3.3 Let $\Sigma_N$ be a control affine system satisfying Assumptions A.I, A.II and A.III with respect to a surjective submersion $\phi : M \rightarrow N$ and let $\Sigma_N'$ be the $\phi$-related control system obtained by Construction 2.7. If the following inclusion holds:

$$[\ker(T\phi), \Delta_N^1] \subseteq \ker(T\phi) + \Delta_N^1 + [\ker(T\phi), X_M^0]$$

(3.4)

then any smooth state trajectory $y$ of $\Sigma_N$ corresponding to a smooth input trajectory $x$ is refinable to a smooth trajectory $x$ of $\Sigma_N'$ satisfying $\phi \circ x = y$. Furthermore, $x$ is given by $\psi^{-1} \circ (y, \beta)$.

Proof: From Construction 2.7 we see that when (3.4) is satisfied, then $\Delta_N^1$ can be taken to be $\{0\}$, in which case the condition $\gamma = \alpha\beta$ is vacuously satisfied. □

The second direction consists in providing a constructive solution to Problem 2.6 by exploiting the equality $x = \psi^{-1} \circ (y, \beta)$ provided by Theorem 3.2:

Corollary 3.4 Let $\Sigma_M$ be a control affine system satisfying Assumptions A.I, A.II and A.III with respect to a surjective submersion $\phi : M \rightarrow N$ and let $\Sigma_N$ be the $\phi$-related control system obtained by Construction 2.7. Consider any two states $x_0$ and $x_F$ in $M$ and let $y$ be any smooth state trajectory of $\Sigma_N$ corresponding to a smooth input trajectory $(\alpha, \gamma, \beta)$ satisfying $\gamma_{ij} = \alpha_i \beta_j$, $\psi^{-1}(y(0), \beta(0)) = x_0$ and $\psi^{-1}(y(T), \beta(T)) = x_F$ for some $T \in \mathbb{R}^+$. Then, there exists a trajectory $x$ of $\Sigma_M$ satisfying $\phi \circ x = y$, $x(0) = x_0$ and $x(T) = x_F$.

4 Discussion

In this paper we have presented a constructive hierarchical approach for trajectory refinement. The main contribution of this paper bridges a gap between the results reported in [PS02,TP04a,TP04b]. The results reported in [PS02] are restricted to control affine systems. However, projecting affine distribution $A_M$ through $T\phi$ does not necessarily result in an affine distribution. This
problem was addressed in [PS02] by constructing the smallest affine distribution on $N$ containing $T\phi(A_M)$. The resulting distribution adds new directions of motion to control system $\Sigma_N$ allowing for trajectories that are not refinable. In a purely nonlinear context [TP04b] such problems do not appear and the relation between state/input trajectories of $\Sigma_M$ and $\Sigma_N$ can be clearly stated. The present paper thus provide the missing link or which non-affine subsystem, describe refinable trajectories. The results presented in this paper can also be seen as complementary to [TP04a]. In this reference a very strong type of trajectory refinement is considered through the notion of bisimulation which requires a trajectory $y$ of $\Sigma_N$ be refinable not to one, but to a family of trajectories $\{x_r\}_{r \in \mathcal{F}}$. Clearly this strong requirement leads to a very special class of systems characterized by the existence of certain controlled invariant distributions. These results can now be obtained from Theorem 3.2 in the case where assumption $A.II$ degenerates to $[\ker(T\phi), A_M] \subseteq A_M$.

The presented results also suggest interesting relations with other design approaches described in the literature such as backstepping [SJK97], flatness [FLMR95], and kinematic reductions [BL01]. Such relationships are the subject of current investigations.

References


