Libraries . University of Pennsylvania

UNIVERSITY of PENNSYLVANI/ Scholarlycommons
Departmental Papers (CIS) Department of Computer & Information Science
July 2002

Exploiting Behavioral Hierarchy for Efhcient Model
Checking

Rajeev Alur

University of Pennsylvania, alur@cis.upenn.edu

Michael McDougall

University of Pennsylvania

Zijiang Yang

University of Pennsylvania

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Recommended Citation
Rajeev Alur, Michael McDougall, and Zijiang Yang, "Exploiting Behavioral Hierarchy for Efficient Model Checking", Lecture Notes in

Computer Science: Computer Aided Verification 2404, 338-342. July 2002. http://dx.doi.org/10.1007/3-540-45657-0_25
From the 14th International Conference, CAV 2002 Copenhagen, Denmark, July 27-31, 2002.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/201

For more information, please contact libraryrepository@pobox.upenn.edu.

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1007/3-540-45657-0_25
http://repository.upenn.edu/cis_papers/201
mailto:libraryrepository@pobox.upenn.edu

Exploiting Behavioral Hierarchy for Efficient Model Checking

Abstract

Inspired by the success of model checking in hardware and protocol verification, model checking techniques
for software have been the focus of a lot of research in the last few years [5,3,2,6]. Model checking can be
applied only to relatively small models due to its inherently high computational requirements, and there are
two complementary trends to address scalability. The model extraction approach, exemplified by projects such
as Bandera [6] and SLAM [3], involves constructing inputs to model checkers by abstracting programs
written in languages such as C and Java. The model-based design approach, exemplified by modeling notations
such as Statecharts [7], promotes design using high-level models that are compiled into code. Our research
agenda is to develop model checking techniques for model-based design of software.

Modern software design languages promote hierarchy as one of the key constructs for structuring complex
specifications. The input language to our model checker is based on hierarchic reactive modules [1]. This choice
was motivated by the fact that, unlike STATECHARTS and other languages, in hierarchic reactive modules,
the notion of hierarchy is semantic with an observational trace-based semantics and a notion of refinement
with assume-guarantee rules. The first contribution of this paper is the Hermes toolkit that implements
hierarchic reactive modules. Our implementation has a visual front-end and XML-based back-end, consistent
with modern software design tools, and is in Java.

There are two basic techniques for reachability analysis. Enumerative model checkers such as SPIN [8]
perform an on-the-fly exploration of the state-space using a depth-first search, while symbolic model checkers
such as SMV [9] perform a breadth-first search by manipulating sets of states, rather than individual states,
encoded typically by ordered binary (or multi-valued) decision diagrams. Since the two approaches are
incomparable, and have been shown to be successful, Hermes supports both enumerative and symbolic
reachability analysis. In this paper, we report progress on exploiting the structuring information in the
behavioral hierarchy of the input model to speed up the exploration of reachable state-space of the model for
both the approaches. More information about the tool is available at http://www.cis.upenn.edu/sdrl/hermes/

Comments

From the 14th International Conference, CAV 2002 Copenhagen, Denmark, July 27-31, 2002.

This conference paper is available at ScholarlyCommons: http://repositoryupenn.edu/cis_papers/201

http://repository.upenn.edu/cis_papers/201?utm_source=repository.upenn.edu%2Fcis_papers%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages

Exploiting Behavioral Hierarchy for Efficient
Model Checking

Rajeev Alur, Michael McDougall, and Zijiang Yang

Department of Computer and Information Science
University of Pennsylvania

1 Introduction

Inspired by the success of model checking in hardware and protocol verifica-
tion, model checking techniques for software have been the focus of a lot of
research in the last few years [5, 3,2, 6]. Model checking can be applied only to
relatively small models due to its inherently high computational requirements,
and there are two complementary trends to address scalability. The model ex-
traction approach, exemplified by projects such as Bandera [6] and SLAM [3],
involves constructing inputs to model checkers by abstracting programs written
in languages such as C and Java. The model-based design approach, exemplified
by modeling notations such as Statecharts [7], promotes design using high-level
models that are compiled into code. Our research agenda is to develop model
checking techniques for model-based design of software.

Modern software design languages promote hierarchy as one of the key con-
structs for structuring complex specifications. The input language to our model
checker is based on hierarchic reactive modules [1]. This choice was motivated by
the fact that, unlike STATECHARTS and other languages, in hierarchic reactive
modules, the notion of hierarchy is semantic with an observational trace-based
semantics and a notion of refinement with assume-guarantee rules. The first con-
tribution of this paper is the Hermes toolkit that implements hierarchic reactive
modules. Our implementation has a wvisual front-end and XML-based back-end,
consistent with modern software design tools, and is in Java.

There are two basic techniques for reachability analysis. Enumerative model
checkers such as SPIN [8] perform an on-the-fly exploration of the state-space
using a depth-first search, while symbolic model checkers such as SMV [9] per-
form a breadth-first search by manipulating sets of states, rather than individual
states, encoded typically by ordered binary (or multi-valued) decision diagrams.
Since the two approaches are incomparable, and have been shown to be suc-
cessful, Hermes supports both enumerative and symbolic reachability analysis.
In this paper, we report progress on exploiting the structuring information in
the behavioral hierarchy of the input model to speed up the the exploration of
reachable state-space of the model for both the approaches. More information
about the tool is available at http://www.cis.upenn.edu/sdrl/hermes/

2 Hierarchical Modeling in Hermes

Hierarchical Reactive Modules (HRM) is a graphical language for describing and
analyzing systems. Our goal in using HRM is to find verification algorithms that
leverage the modularity that is present in so many modern designs.

Points Transitions M odes

= O

Fig. 1. The building blocks of the HRM language and a simple Mode diagram.

A simple HRM diagram resembles a finite state machine (FSM); it consists of
states, called points in HRM, and transitions between points. HRM extends FSM
by adding variables which can be read and updated as in normal programming
languages. Each transition is enabled when its guard, a boolean expression over
the diagram’s variables, evaluates to true. Transitions can be annotated with
actions which update the values of variables.

A set of points and transitions can be grouped into a mode. A mode’s inter-
action with its surroundings is mediated by two interfaces: a control interface
and a data interface. The control interface is a set of entry and exit points on
the boundary of a mode. A mode can be embedded in other modes.

The data interface determines which data is available to a mode through a
set of global variables. Each global variable is designated as readable, writable or
both. Any external data that is not contained in a global variable will be hidden
from the mode. Modes can also have their own local variables which are visible
only to transitions within that mode or its submodes. A designer can re-use a
mode by creating a reference mode which instantiates a copy of a mode that
is defined elsewhere. Figure 1 shows a mode that contains some border points,
internal points and one submode.

Certain modes are designated as top level modes that behave as separate pro-
cesses or threads. We model concurrency by interleaving so that at any one time
there is only one active top level mode. Top level modes communicate with each
other through shared variables. HRM has a well-defined formal semantics [1].

HRM has two mechanisms for describing the requirements of a system. A
point or mode can be given an assertion condition, which must be true whenever
that point or mode is active. A system can also be given an invariant, which
must be satisfied for all states of the system.

We have implemented a toolkit, called Hermes, which allows users to cre-
ate, edit, type-check and verify HRM diagrams. The toolkit is implemented in
Java and has a graphical user interface (GUI) for editing HRM diagrams. The
GUI also acts a front-end to the model checking algorithms. Hermes also has
command-line and scripting front-ends for environments where a GUI is imprac-
tical. The Hermes toolkit uses an XML file format to store HRM diagrams.

3 Enumerative Checker

The enumerative checker performs a depth first search of all reachable states
of an HRM diagram. The search will check for states that are deadlocked or
that violate the specified assertions or invariants. When the checker finds a bad
state it outputs the sequence of steps that led to the bad state. The enumerative
checker uses the structure and hierarchy of an HRM diagram to save time and
memory while exploring the state space. Some of these techniques were described
in [2]. In this paper we discuss some further optimizations.

Exploiting Hiding. A mode must declare which external variables it can read
and write. The enumerative checker can use this information to create abstract
views of a mode’s context. Two contexts are considered equivalent if all the
readable variables have the same value; unreadable variables may differ but this
will not affect the behavior of the mode. If we have executed a mode in one
context then there is no need to analyze the mode in subsequent equivalent
contexts. Local variables are only visible to transitions within a mode so a top
level mode will not be directly affected by the local variables of other top level
modes. For example, suppose we have two top level modes: mode M with a local
variable z, and mode N. If we have explored N’s behavior in some context c;
where £ = 3, and we see another context ¢y which is the same as ¢; except that
z = 6, then we do not need to compute N’s behavior in context c;. To exploit
this, the enumerative checker keeps track of how each top level mode will behave
in a context. When that context is seen again the old behavior is projected onto
the current context to find the next reachable state.

Ezxploiting Sharing. This optimization exploits the fact that a mode can be
shared by various parent modes. Recall that one mode may be instantiated
in many places in an HRM diagram. Each instantiation will exhibit the same
behavior when its global variables are the same. For example, Figure 2 shows a

M O reads: x O A
O

local: x,a B
99
o—=

Fig. 2. Exploiting Sharing

local: ¢,x,v ’

99
o—=>

mode M that is instantiated in two other modes A and B. Mode M only reads
one variable . The behavior of M will only depend on the value of when its
entry point becomes active. Once we have explored M in A with x = 2, we note
which of the two exit points results from z = 2. When we encounter M in B
with z = 2 we can just jump straight to the appropriate exit point. By suitable
book-keeping, checker avoids recomputing a mode’s behavior if another instance
of that mode has already been searched for an equivalent context.

4 Symbolic Checker
Figure 3 (a) shows a mode M; with two submodes M, and Ms. M; has a local

variable x, M, has local variables y;, ys and M3 has y3,y4. There are 8 transitions
t1..tg and 8 control points ¢;..cg. Given a typical symbolic model checker, the

© @

[¢]
H

DODPDO@

M1 local: x

M2ISRE

t3: g3->yli=x;

slalsz]

|

|

|

|
Q
[

|

|

|

|
Q
[}
o
J

|

|

|

b

ot

&

QOOOCIOLO

|

|

|

|
o
<G

|

|

|

|
Q
[e2]

Fig. 3. (a): A hierarchical design. (b): Hierarchical symbolic representation

transition ¢3 is denoted by an MDD representing 73 = (h = ca Ags AR =
Nyl =xzAz =z Ay, =ys Ays = ys Ayy = ya), where the variable h is
used to encode the control location. The transition relation of My, T = A}_, T},
is represented by a single MDD or in conjunctively partitioned format.

In Hermes, the transition relation is represented as a map from control points
to a list of pairs containing destinations of edges along with MDDs encoding
guarded commands. Figure 3 (b) shows such a map for mode M;. For each
transition ¢; from control point ¢; to control point ¢;, we build the MDD Ty,
that encodes the guarded command of ¢;. Then the pair (¢;, T}) is added to the
list associated with the control point ¢;. Note that each T}, is much smaller than
the counterpart Ty used in a flat representation. For example, t3 = (¢2,c¢4) can
be denoted by a smaller MDD T§ = (g3 A ¢} = = A y5 = y2). This is possible
because local variables of My and M3 are not simultaneously active, therefore, y3
and y, never appear in T4 or other MDDs representing transitions in Ms. Since
x is not writable in My, the term 2z’ = z can be dropped. The variables h is not
needed in T4 because the mapping provides information on control points. In
other words, typing and scoping information of the original model is maintained
during compilation of the transition relation using MDDs.

Like transition relations, the reachable state-sets in Hermes are not repre-
sented by a single MDD. A state region represented by an MDD is associated
with each control point. As shown in figure 3 (b), there is an MDD R; associated
with each control point ¢;. Such a representation allows us to partition the state

space intuitively with each region containing all the states with the same control
point.

The reachability computation in Hermes computes reachable states at each
control point. When a top mode M; gets control for the first time, it starts the
image computation from its entry point by following the transitions until the
control gets stuck. The image computation returns an MDD S; that contains
the information about where and how the control inside M; gets stuck. After
each top mode has been given a chance to do the first image computation, it
starts the next iteration by building a current onion ring for top mode M; based
on the stuck sets U;S;. The current onion ring is a map from the control points
where the control became stuck during last image computation at M; to newly
reached states obtained from image computations at top modes other than M;.
By applying the image computation to the current onion ring of M;, the control
may continue from those stuck control points. The algorithm terminates if all
the onion rings for top modes are empty, i.e., no new states can be reached at
any control point.

In order to make Hermes work on existing sequential circuits designs we
translate sequential circuits in BLIF format to XML that can be parsed by
Hermes. The translation produces a Hermes model consisting of a single top-
level mode. Besides having no concurrency, the model is linear rather than a
tree or a DAG. Thus, the main structural feature that current Hermes exploits
is the scoping of variables allowing for early quantification.

Acknowledgments. We thank Radu Grosu for helpful discussions. This re-
search was supported in part by NSF award CCR99-70925, SRC award 99-TJ-
688, and NSF CAREER award CCR97-34115.

References

1. R. Alur and R. Grosu. Modular refinement of hierarchic reactive machines. In Proc.
27th POPL, pages 390402, 2000.

2. R. Alur, R. Grosu, and M. McDougall. Efficient reachability analysis of hierarchical
reactive machines. In Proc. 12th CAV, LNCS 1855, pages 280295, 2000.

3. T. Ball and S. Rajamani. The SLAM toolkit. In Proc. 13th CAV, 2001.

4. R.Brayton, G. Hachtel, A. Sangiovanni-Vincentell, F. Somenzi, et. al. VIS: A system
for verification and synthesis. In Proc. 8th CAV, LNCS 1102, pages 428-432, 1996.

5. W. Chan, R. Anderson, P. Beame, S. Burns, F. Modugno, D. Notkin, and J. Reese.
Model checking large software specifications. IEEE Trans. on Software Engg.,
24(7):498-519, 1998.

6. J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, C. Pasareanu, Robby, and H. Zheng.
Bandera: Extracting finite-state models from Java source code. In Proc. 22nd ICSE,
pages 439-448. 2000.

7. D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8:231-274, 1987.

8. G. Holzmann. The model checker SPIN. IEEE Trans. on Software Engg., 23(5):279—
295, 1997.

9. K. McMillan. Symbolic model checking: an approach to the state explosion problem.
Kluwer Academic Publishers, 1993.

	University of Pennsylvania
	ScholarlyCommons
	July 2002

	Exploiting Behavioral Hierarchy for Efficient Model Checking
	Rajeev Alur
	Michael McDougall
	Zijiang Yang
	Recommended Citation

	Exploiting Behavioral Hierarchy for Efficient Model Checking
	Abstract
	Comments

	tmp.1118266404.pdf.Ezr4R

