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The dynamics of two spherical particles in a
confined rotating flow: pedalling motion

K. MUKUNDAKRISHNAN, HOWARD H. HU
AND P. S. AYYASWAMY†

Department of Mechanical Engineering and Applied Mechanics, 229, Towne Building, 220 S.
33rd Street, University of Pennsylvania, Philadelphia, PA 19104, USA

(Received 26 April 2007 and in revised form 13 November 2007)

We have numerically investigated the interaction dynamics between two rigid spherical
particles moving in a fluid-filled cylinder that is rotating at a constant speed. The
cylinder rotation is about a horizontal axis. The particle densities are less than that of
the fluid. The numerical procedure employed to solve the mathematical formulation
is based on a three-dimensional arbitrary Larangian–Eulerian (ALE), moving mesh
finite-element technique, described in a frame of reference rotating with the cylinder.
Results are obtained in the ranges of particle Reynolds number, 1 <Rep � 60, and
shear Reynolds number, 1 � Res < 10. Two identical particles, depending on initial
conditions at release, approach each other (‘drafting’ and ‘kissing’), tumble in the
axial direction, and axially migrate towards opposing transverse planes on which they
‘settle’ (settling planes). Under some other initial conditions, the particles migrate
directly onto their settling planes. For two identical particles, the settling planes
are equidistant from the mid-transverse plane of the cylinder and the locations
of the planes are determined by particle–particle and particle–wall force balances.
Furthermore, for identical particles and given values of Rep and Res , the locations of
such settling planes remain the same, independent of the initial conditions at release.
While located on these settling planes, as viewed in an inertial frame, the particles
may attain three possible distinct states depending on the values of the Reynolds
numbers. In one state (low Rep , high Res), the particles attain and remain at fixed
equilibrium points on their settling planes. In the second (all Rep , low Res), they
execute spiralling motions about fixed points on their respective settling planes. These
fixed points coincide with the locations of the equilibrium point which would occur
on the mid-axial plane in the case of a single particle. In the third state (low Rep ,
moderate Res or high Rep , moderate to high Res), they execute near-circular orbital
motion on their respective settling planes, again about fixed points. These fixed points
also coincide with the locations of the equilibrium points corresponding to single-
particle dynamics. Both the spiral and near-circular motions of the particles occur in
an out-of-phase manner with regard to their radial positions about the fixed point;
the near-circular out-of-phase motion resembles bicycle pedalling. Also, in the second
and third states, the particles simultaneously experience very weak axial oscillations
about their settling planes, the frequency of such oscillations coinciding with the
frequency of rotation of the circular cylinder.

The behaviours of two non-identical particles (same density but different sizes, or
same size but different densities) are different from those of identical particles. For
example, non-identical particles may both end up settling on the mid-axial plane. This
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occurs when the locations of their corresponding single-particle equilibrium points
are far apart. When such points are not far apart, particles may settle on planes that
may not be symmetrical about the mid-axial plane. While located on their settling
planes, their equilibrium states may not be similar. For example, for particles of the
same density but of different sizes, the smaller of the two may execute a spiralling
motion while the larger is in near-circular orbital motion. With particles of the same
size but of different densities, while the lighter of the two approaches its equilibrium
point on the mid-axial plane, the heavier one experiences a circular motion on the
same plane about its equilibrium point. A major reason for the eventual attainment
of these various states is noted to be the interplay between the particle–particle and
particle–wall forces.

1. Introduction
Particulate-laden rotating flows occur in a variety of applications such as in

technology related to colloidal suspensions, biotechnologies employing rotating-wall
bioreactors, and in sedimentation processes. Such flows have also been employed in
diverse applications related to tissue growth engineering and fundamental cell biology
studies. The reactors in such studies generally consist of a thin cylinder rotating
about its horizontal axis, completely filled with the liquid culture medium. Spherical
microcarrier particles constitute the dispersed medium. NASA-designed rotating wall
bioreactors belong to this category. A discussion of rotating-wall bioreactors is
provided in Ayyaswamy & Mukundakrishnan (2007). Studying the effectiveness of
such bioreactors requires an understanding of the mechanics of the flow and the
stresses caused by the flow on microcarriers on whose surfaces cells are grown.
Factors that affect the motions of these microcarriers, such as the viscosity of the
fluid, the size of the microcarriers, the density of the microcarrier material, and
the rotation rate of the bioreactor, are all important parameters in the accurate
determination of strategies for better culturing with increased suspension periods.
Knowledge of the flow field is also necessary to ascertain mass transport between
the culture medium and cells, and the stresses acting on the microcarriers or cells
(Gao, Ayyaswamy & Ducheyne 1997; Mukundakrishnan 2005; Lynch et al. 2006;
Ayyaswamy & Mukundakrishnan 2007).

Many numerical studies of single-particle dynamics in rotating flows have been
concerned with the motion of a particle in a fluid-filled cylinder rotating about a
vertical axis (Minkov, Ungarish & Israeli 2000, 2002; Wang, Lu & Zhuang 2004).
Fewer studies exist on the single-particle dynamics in a fluid-filled cylinder rotating
about a horizontal axis (see figure 1), (see for example, Annamalai & Cole 1986;
Roberts, Kornfeld & Fowlis 1991; Gao et al. 1997; Coimbra & Kobayashi 2002;
Lee & Ladd 2002; Ramirez et al. 2004). Most of the latter studies have employed
a modified form of Maxey-Riley equation (Maxey & Riley 1982; Michaelides 2003)
to track the particle motion. Coimbra & Kobayashi (2002) have examined the role
of lift forces and have provided explicit expressions for various forces. Bagchi &
Balachandar (2002) have investigated the problem of a rigid sphere situated in an
ambient flow of solid-body rotation by employing direct numerical simulations (DNS),
and have shown that the lift coefficient is enhanced compared to that in linear shear
flow. A majority of the numerical studies cited above have considered only single-
particle dynamics in an infinite fluid medium. Our study considers the dynamics of
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Figure 1. Schematic of the rotating wall vessel with 2 particles. z axis is the axis of rotation
and the transverse plane is the x − y axis in a rotating frame. 1 and 2 denote the two spherical
particles, respectively.

two particles in a finite fluid-filled rotating cylinder. This is therefore an obvious and
appropriate extension for understanding particle behaviour in bioreactors.

Recent experiments on rotating flows with multiple particles have shown interesting
flow features. Mullin et al. (2005) have presented experimental results for the motion
of one, two and three solid heavier-than-fluid (HTF) spheres that were free to move
in a fluid-filled cylinder rotating about a horizontal axis. For the two-particle system,
the motion of the particles was noted to be periodic, and for a certain range of
Reynolds numbers, the two particles were equally spaced on either side of the mid-
axial plane and oscillated in an anti-phase manner. Three-particle systems exhibited
persistent low-dimensional chaos. It is stated that the nonlinear behaviours noted
arise because of particle–particle and particle–wall interactions. In experiments with
larger numbers of spherical particles, Lipson (2001) and Matson, Ackerson & Tong
(2003) have observed number density fluctuations along the horizontal axis. Buoyant
particles (negatively, neutrally and positively buoyant) are shown to display axial
banding. Seiden, Lipson & Franklin (2004) have explained the banding phenomenon
as arising from the excitation of inertial standing waves in the rotating fluid.

In the present study, we have numerically investigated the motion of two lighter-
than-fluid (LTF) spherical particles in a fluid-filled cylinder rotating about a horizontal
axis by DNS. DNS techniques have been demonstrated to be powerful tools in
capturing the detailed interparticle and particle–wall interactions in rectilinear flows
(Hu 1996; Hu, Patankar & Zhu 2001; Swaminathan, Mukundakrishnan & Hu 2006).
These studies have employed an arbitrary Lagrangian–Eulerian (ALE) scheme,
coupled with a body-fitted moving finite-element mesh in an inertial frame of reference.
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In the present study, ALE has been formulated in a non-inertial rotating frame of
reference. This choice of the reference frame has been shown to be the most convenient
one for analysing particulate-laden rotating flows (Mukundakrishnan 2005).

Our simulations have revealed several fascinating features with regard to two-
particle motion. New states of equilibrium have been realized. In this paper, we will
concentrate on describing the new phenomena revealed by our numerical studies.

The present paper is organized as follows. Section 2 describes the mathematical
formulation of the governing equations of motion in a rotating frame of reference,
followed by a brief discussion of the numerical methodology in § 3. Section 4 provides
results for validating our numerical procedure. Detailed results of binary particle
interactions in rotating flows are described in § 5 for identical particles and in § 6 for
non-identical particles, followed by conclusions in § 7.

2. Mathematical formulation
2.1. Rotating frame formulation

The fluid and particle equations as formulated in a rotating frame of reference will
now be described. In a frame of reference with its origin coinciding with the centre

of the cylinder and rotating with a constant angular velocity ω = ωk̂, where k̂ is the
unit vector along the horizontal rotation axis (z-axis, see figure 1), the fluid motion
satisfies the conservation of mass,

∇ · u = 0, (1)

and the conservation of momentum,

ρf

(
∂u
∂t

+ u · ∇u + 2 ω × u + ω × (ω × x)

)
= ρf g + ∇ · [−P I + µf [∇u + (∇u)T ]]. (2)

Here, u is the fluid velocity vector measured in the rotating frame, ρf is the density,
µf is the viscosity, subscript f denotes fluid, g is the acceleration due to gravity

vector, P is the total pressure and x (= x i + y ĵ + zk̂) is the position vector in the
fluid. The third term on the left-hand side of the momentum equation denotes the
Coriolis force and the fourth term denotes the centrifugal force. The pressure P can
be combined with the gravity and centrifugal force terms to give a reduced dynamic
pressure, p, given by,

p = P − ρf (g · x) + 1
2
ρf (ω × x) · (ω × x), (3)

where the relation ω × ω × x = 1
2
∇[(ω × x) · (ω × x)] has been used. The momentum

equation becomes:

ρf

(
∂u
∂t

+ u · ∇u + 2 ω × u
)

= ∇ · [−pI + µf [∇u + (∇u)T ]]. (4)

Next, consider the equations governing the particle motion. For the ith particle, the
modified Newton’s equation for the translational part of the motion is given by (see
Mukundakrishnan (2005) for details):

mi

(
dU i

dt
+ 2 ω×U i

)
= Fi + Gi , (5)

dX i

dt
= U i , (6)

where mi is the mass of the ith particle, U i is the velocity of the particle, Fi is the
hydrodynamic force exerted by the fluid on the particle, Gi is the body force and X i
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is the position of the centroid of the i th particle. Here, Fi , Gi are given by:

Fi =

∫
∂Γi

[−pI + µf [∇u + (∇u)T ]] · n̂ dS, (7)

Gi = (mi − mf )[g − ω2x], (8)

where n̂ is the outward normal to the surface ∂Γi of the i th particle, dS is an elemental
surface area, and mf is the mass of fluid.

Now consider, the rotational part of the motion for the ith spherical particle, in
a reference frame fixed to its centre of mass (a body-fixed frame) and rotating
with the constant angular velocity, ω, of the fluid. This is described by the
Euler equation. It may be noted that for a spherical particle, a co-rotating frame
coincides with the principal axis. This is a convenient frame to describe the Euler
equation, since the rotational velocity components may now be described in the same
frame as the translational velocity components, therefore involving no additional
coordinate transformations. The Euler equations, in the body-fixed frame, governing
the rotational motion are:

d(IiΩ i)

dt
+ ω × IiΩ i = C i , (9)

dΘ i

dt
= Ω i , (10)

where Ii is the moment of inertia tensor, Ω i is the angular velocity of the ith particle
with respect to the fluid in the rotational frame, C i , is the hydrodynamic moment
vector, and Θ i is the angular position of the particle. C i is given by:

C i =

∫
∂Γi

(x − X i) × [(−pI + µf [∇u + (∇u)T ]) · n̂] dS, (11)

where x is the position vector of a point on the surface of the ith particle from the
origin of the cylinder.

The initial conditions for the problem are:

u(t = 0) = 0, (12)

U i(t = 0) = 0, (13)

Ω i(t = 0) = −ω. (14)

The boundary conditions are:

u = 0 on cylinder walls ∂Γar, (15)

u = U i + Ω i×(x − X i) on particle surface ∂Γi. (16)

We solve the governing equations (1), (4–6), (9) and (10) together with the initial and
boundary conditions given by equations (12)–(16) for the flow field, and the trajectory
of the particles.

For the results reported in this paper, the distance between the sidewalls of the
fluid-filled cylinder is fixed at 16a, while its radius is 100a. Here, a denotes the radius
of the particle where the sizes are the same, and the radius of the smaller particle
where the sizes are different. These dimensions have been selected on the basis of
extensive numerical experimentation and are such that the radial wall has negligible
influence on particle dynamics.
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3. Numerical methodology
In the fluid–particle system, owing to the complex and irregular nature of the

domain occupied by the fluid, finite-element techniques are particularly powerful for
discretizing the governing fluid equations. In order to use the finite-element method, we
first seek a weak formulation that incorporates both the fluid and particle equations,
namely equations (4), (5), (9). The details of the weak formulation for the rotating
frame are given in Mukundakrishnan (2005). The domain movement is handled by
an arbitrary Lagrangian–Eulerian (ALE) scheme. The details of spatial discretization,
mesh generation, mesh movement techniques, and temporal discretization of time
derivatives follow procedures discussed in Hu et al. (2001). These details will not
be repeated here. Briefly, the fluid domain is approximated by quadratic tetrahedral
finite-elements (10 nodes defined per tetrahedron with 10 basis functions that are
second-order polynomials). The discrete solution for the fluid velocity is approximated
by piecewise quadratic functions (P2 elements), and is assumed to be continuous over
the domain. The discrete solution for the pressure is taken to be piecewise linear
and continuous (P1 element) consistent with the Ladyzhenskaya–Babuska–Brezzi
(LBB) or inf-sup condition. This yields convergent solutions. A second-order implicit
time-stepping scheme is used for all the calculations.

For all the results reported in this paper excepting that in figure 4(a), we have
employed the rotating-frame formulation. Some of the major advantages of a rotating-
frame formulation are as follows.

(i) Since the background flow is subtracted out, this scheme offers significant
simplicity for computing particle motion at various Res . For example, for low Rep

and low Res (see § 3.1 for the definitions for Rep and Res) or for high Rep with
moderate to high Res , the rotating-frame computations enable the use of a time
step an order of magnitude higher for achieving the same accuracy as with an
inertial frame. Details of such comparisons, however, are not included here (see
Mukundakrishnan 2005).

(ii) It is also easier to handle the body force term (second term on the right-hand
side of (8)) that arises owing to the manifestation of pressure associated with rigid-
body motion of the background fluid. Furthermore, there is a reduction of the error
in computing the total force acting on the particle. As a consequence, the trajectories
are determined more accurately.

Although the rotating frame formulation has been employed in computations,
we have chosen to present most of the results for particle positions as viewed in
an inertial frame. This inertial frame is denoted by xi, yi, zi coordinate axes for easy
comprehension of the results. The transformation of the rotating frame results (x, y, z)
for the particle position to the inertial frame (xi, yi, zi) has been effected using the
following relationships:

xi = x cos(ωt) − y sin(ωt), (17a)

yi = x sin(ωt) + y cos(ωt), (17b)

zi = z. (17c)

The negative yi-axis coincides with the direction of gravity vector. The variables zi

and z are used interchangeably in the text since they are the same in both reference
frames. It must be emphasized that the feature of expressing the results obtained in a
rotating frame as viewed in an inertial frame is clearly different from generating the
results employing an inertial frame formulation. An inertial frame formulation has
also been used in this study purely for validation purposes (see § 4).
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3.1. Non-dimensionalization aspects

In order to non-dimensionalize the equations, the following scales are chosen. The
particle diameter 2a, where a is the particle radius, is the characteristic length
scale, the gravitational slip velocity of the particle Uslip , is the characteristic velocity
scale, 2a/Uslip is the time scale, the cylinder rotation rate ω is the characteristic
rotational speed of the particle, and ρf U 2

slip is the pressure scale is the pressure
scale. The magnitude of Uslip may be estimated by balancing fluid drag with
the effective (net) weight of the particle, (ρf − ρf )Vpg, where Vp is the volume
of the spherical particle. This yields, Uslip ∼ O(2|�ρ|a2g/9µf ), where |�ρ| is the
magnitude of the density difference between the fluid and the particle. With,

∇ = ∇̂/(2a), u = Uslip û, t = (2a/Uslip)t̂ , p = ρf U 2
slipp̂, equations (1) and (4) (after

omitting superscripts (̂) for the non-dimensional quantities) become:

∇ · u = 0, (18)

Rep

(
∂u
∂t

+ (u · ∇)u
)

+ Res (2k̂ × u) = −Rep∇p + ∇ · [∇u + (∇u)T ], (19)

where

Rep =
2aUslip

νf

=
4

9

a3(1 − ρp/ρf )g

νf
2

is the particle Reynolds number based on a characteristic gravitational slip velocity,
and Res = ω(2a)2/νf is the shear Reynolds number. It can be noted that, for a given
particle size a and fluid viscosity νf , Rep emphasizes the role of the density ratio
ρp/ρf , while Res highlights the role of the cylinder rotation rate ω.

For particle translation, the non-dimensional form of (5), after some algebraic
manipulation, becomes:

ρp

ρf

[
Rep

dU i

dt
+ Res(2k̂ × U i)

]

=

(
1 − ρp

ρf

)
Res

2

Rep

r(cos θ êx + sin θ êy) + 18(sin θ êx + cos θ êy)

+
6

π

∫
Γi

[Rep(−pI) + (∇u + (∇u)T )] · n̂ dΓi, (20)

where r is the non-dimensional radial position of the particle (r =
√

x2 + y2 =√
xi

2 + yi
2), and êx , êy are the unit vectors in the transverse plane along the x

and y directions, respectively. Also, θ = tan−1(y/x), is the angular position of the
particle in the transverse plane of the cylinder, and (x, y) denotes the location of

particle on the transverse (axial) plane. For particle rotation, with Ω̂ i = Ω i/ω, the
non-dimensional form of equation (9) (after dropping superscripts) is given by:

ρp

ρf

Res

dΩ i

dt
+

ρp

ρf

Res
2

Rep

(k̂ × Ω i) =
60

π

∫
∂Γi

(x − X i) × [Rep(−pI) + (∇u + (∇u)T )] · n̂ dΓi.

(21)
The non-dimensional initial conditions for the problem are:

u(t = 0) = 0, (22)

U i(t = 0) = 0, (23)

Ω i(t = 0) = −1. (24)



176 K. Mukundakrishnan, H. H. Hu and P. S. Ayyaswamy

The non-dimensional boundary conditions for the rotating flow problem are:

u = 0 on ∂Γw, (25)

u = U i +
Res

Rep

k̂ × (x − X i) on ∂Γi. (26)

However, for all the numerical results presented in this study, time is normalized
by the rotation period of the cylinder. This non-dimensional time is t∗ = t/(2π/ω).

4. Validation of the numerical procedure
The numerical code is validated in two ways. (i) By evaluating the motion of a

single particle in a fluid-filled cylinder rotating about a horizontal axis. The solution
obtained will be examined to verify conformity with trends predicted by other existing
solutions. (ii) By comparison of the solutions to the two particle problem obtained
by employing two different frames of reference in the problem formulation, namely,
the inertial and rotational frames of reference.

With regard to the existing numerical/analytical studies of a single particle motion
(Annamalai & Cole 1986; Roberts et al. 1991; Gao et al. 1997; Coimbra & Kobayashi
2002; Lee & Ladd 2002; Ramirez et al. 2004), most have employed the Maxey–Riley
equation:

ρpVp

dUp

dt
+ Cvρf Vp

(
dUp

dt
− DUf

Dt

)
= −Vp∇p + (ρp − ρf )Vp g + FD + FL, (27)

where D/Dt is the substantial derivative following the motion of fluid and d/dt

is the total derivative following the spherical particle. Here, Up , Uf (= ω × r), Cv,
FD and FL denote the velocities of the particle and of the fluid, the added mass
coefficient (=0.5 for a rigid spherical particle), the drag acting on the particle, and
the hydrodynamic lift and other history forces.

When considered in the context of a single lighter-than-fuid spherical particle
motion in an unbounded rotating flow, the solution to (27) shows that the particle
eventually attains a fixed equilibrium state. This equilibrium state as observed in an
inertial frame is charactertized by an equilibrium point whose location may be denoted
by xi and yi coordinates on the transverse plane. Many studies of this equation have
not considered the lift or the history forces (see, for example Gao et al. 1997), and
have described the coordinates of the fixed equilibrium state. Coimbra & Kobayashi
(2002) analysed the equation with the inclusion of lift and history forces, but for very
low values of Rep and Res . They affirm the existence of a fixed equilibrium point and
conclude that the inclusion of additional forces in the analysis may not significantly
change the value of the xi-coordinate but the value of the yi-coordinate is altered. In
particular, the presence of lift forces has been stated to be important in determining
the final coordinates.

We will validate our numerical procedure by studying the motion of a single particle
employing DNS (see equations (1)–(16)), and finding the final equilibrium state. The
following parameters are considered: ρp/ρf = 0.8, Rep = 56 and Res = 3. These are
representative of particle parameters in bioreactor studies. Our computations show
that the particle eventually attains a stable fixed equilibrium state whose coordinate
locations are given by xi/2a = −7.7, yi/2a = 0.03. We have also solved (27) without the
inclusion of lift and history forces. For FD , we use the Schiller–Naumann correlation
(Schiller & Nauman 1933). The predicted coordinates of the fixed equilibrium point
are xi/2a = −7.86, yi/2a = 0.85. It may be noted that the xi coordinates predicted by
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Figure 2. Comparison of radial position histories between (b) DNS and (a) the solution of
(27) without the inclusion of lift and history forces. The parameters are: ρp/ρf =0.8, Rep = 56
and Res = 3. (a) Final fixed equilibrium point position is given by xi/2a = −7.86, yi/2a = 0.85.
(b) Final fixed equilibrium point position is given by xi/2a = −7.7, yi/2a = 0.03.

Figure 3. A typical epitrochoid trajectory of the particle as viewed in the rotating frame
of reference for the case of single-particle dynamics. The dashed line circle represents the
enclosing cylinder. The straight dashed line is the locus of the instantaneous centre of the
epitrochoidal trajectory.

DNS and by the solution of (27) not including lift or history forces, are essentially the
same. However, the y coordinates are significantly different, the DNS confirming the
trend of lowering the value of yi coordinate if all the forces are properly accounted
for (Coimbra & Kobayashi 2002). In figure 2, we display the radial positions of
the particle in its trajectory as a function of time. Both the results predict similar
decay rate for the radial position culminating in a fixed equilibrium point. Figure 3
shows the trajectory of the particle in a rotating frame of reference. As viewed in this
frame, the particle describes a transient two-dimensional helix or epitrochoidal-like



178 K. Mukundakrishnan, H. H. Hu and P. S. Ayyaswamy

t*

z—
2a

Particle 2

Particle 1
B

D

D′

A

C

B′

C′

O

0 20 40 60 80
–4

–2

0

2

4(a)

Particle 1

Particle 2

B

B′

D

A

C′ D′

C

O

t*
0 20 40 60 80

–4

–2

0

2

4(b)

Figure 4. Validation of the numerical code using solutions obtained in two different
reference frames. (a) Inertial frame; (b) rotating frame. Only the axial migration history
is shown for elucidation purposes. The parameters are: ρf = 1.0 g cm−3, µf = 0.01 g cm−1 s−1,

ρp = 0.99 g cm−3, ω = 15 r.p.m., a = 400 µm. These correspond to ρp/ρf = 0.99, Rep = 2.8 and
Res = 1.0.

trajectory in a clockwise manner eventually culminating in a circle of fixed radius.
Each circular orbit seen in the trajectory represents approximately one rotation cycle
of the particle motion. The locus of the instantaneous centre of the helical trajectory
of a single particle is seen to follow a straight line (dotted lines in Figure 3).

For ρp/ρf = 0.001, Rep = 0.1 and Res = 0.2 (Re based on our definitions),
Coimbra & Kobayashi (2002) give xi/a = −0.98 and yi/a = −0.09. These would
compare with DNS predictions of xi/a = −0.83 and yi/a = −0.03. It must be
remembered that the DNS results are for particle motion in a rotating flow confined
within a cylinder. The predicted trends are noted to be the same.

We now offer another validation of our numerical code by comparing results
obtained using formulations in two separate reference frames – inertial and rotating
frames. This comparison will be made in the context of two particles in motion.
Referring to figure 4, at t∗ = 0, two identical particles are released close to each
other on the mid-transverse plane of the rotating cylinder (on the (x, y) plane at
z = 0), denoted by O. The points of release are located on either side of the negative
x-axis slightly above and below a point that is two particle diameters away from the
origin (see figure 1). The particles approach each other and tumble axially (point A).
Subsequent to this, the particles migrate axially in opposite directions towards the
lateral walls. At B, B′, wall repulsion makes the particles migrate inwards towards the
mid-transverse plane. Eventually, a balance is attained between the particle–particle
repulsive forces and the particle–wall repulsive forces. The particles settle on two
distinct transverse planes that are symmetrically located about the mid-transverse
plane (point C, C′). The predictions as computed from inertial and rotating-frame
formulations are found to be identical and serve to validate the code.

5. Detailed study of two particle interaction dynamics
In this section, the detailed dynamics of interaction between two identical lighter-

than-fluid particles is presented and discussed. The ranges of Rep and Res investigated
are 1 <Rep � 60 and 1 � Res < 10. For the ranges studied, the following features are
noted.
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Particles released on the same transverse plane of the rotating cylinder

(a) Two particles released on the mid-transverse plane, in close proximity (see fig-
ure 5a), say, the interparticle gap at release is of the order of a few particle diameters,
are noted to approach each other (‘drafting’), stay for a short time as neighbours
(‘kissing’), and this is followed by ‘tumbling’ along the axial direction. Numerical
simulations show that an interparticle separation distance of about three particle
diameters may be regarded as ‘close proximity’ release. On the other hand, if the
two particles were to be released widely separated from each other, each particle
would attempt to move towards the equilibrium point that is characteristic of a single
particle (drafting). They become neighbours in the vicinity of this equilibrium point
(‘kissing’), and this is followed by tumbling (see figure 5b). Subsequent to tumbling, the
particles migrate along axial directions towards lateral walls while continuing motion
on transverse planes. Eventually, they ‘settle’ on transverse planes that are equidistant
apart from the mid-transverse plane of the cylinder. This settling (transverse) plane
denotes the plane at which equilibrium has been attained between particle–particle
and particle–wall forces in the axial direction.

(b) Two particles on the same transverse plane different from the mid-transverse
plane exhibit two different types of behaviour depending on the proximity of particles
at release.

(i) If the particles are initially very close to each other (a gap less than or
equal to one particle diameter) (see figure 5c, d), then they are noted to draft,
kiss, and tumble during a short time and axially migrate. Eventually, they settle
on transverse planes that are equidistant from the mid-transverse plane. The
locations of settling planes are determined by interparticle and particle–wall
force balances in the axial direction.
(ii) If the particles are initially widely separated (see figure 5e), then they first
axially migrate to the mid-transverse plane, and their subsequent history follows
that described earlier in item (a) for figure 5(b).

While located on settling planes, for items (a) and (b), the particles individually
experience three possible ‘stable states’ which will be subsequently discussed.

Particles released on two different transverse planes of the rotating cylinder

(a) If the particles are initially widely separated (see figure 5f ), they first axially
migrate to the mid-transverse plane and their subsequent history follows that described
earlier under item 1 for figure 5(b) of the previous classification (‘Particles released on
the same transverse plane of the rotating cylinder’). For this case, the particle–wall
forces overwhelm particle–particle interaction forces. As a result, they first migrate to
the mid-transverse plane.

(b) When the initial separation distance between the particles, as projected on the
(x, y)-plane, δ, is less than a particle diameter (see figure 5g–i), then the particles do not
undergo the regimes of drafting, kissing and tumbling. Instead, they axially migrate
directly and settle on transverse planes that are equidistant from the mid-plane. This
is because, for such small separation distances (as projected on the transverse plane),
the particle–particle repulsive forces along the axial direction becomes comparable
to that of the particle–wall interaction forces. The particles do not reach the mid-
transverse plane. The locations of the settling planes are determined by interparticle
and particle–wall force balances in the axial direction.
Herein again, while located on settling planes, the particles individually experience
three possible ‘stable states’ which will be subsequently discussed.
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Figure 5. Various locations of release of particles.



Dynamics of two spherical particles in a confined rotating flow 181

t*

z—
2a

A

B

B′

C′ D′

C D

O

0 50 100 150
–4

–2

0

2

4

Figure 6. Axial migration of two particles released from positions shown in figure 5(b).
The parameters of the problem are the same as given in figure 4.

The major mechanism proposed in the present study for the novel features described
above is the wake interaction dynamics of particles coupled with wall effects. The
wake interaction dynamics is described in detail in the following sections.

A typical case for ρp/ρf =0.99, Rep ≈ 2.8 and Res ≈ 1.0 will now be discussed to
elucidate the major mechanisms governing the two-particle interaction dynamics. This
combination of Reynolds numbers brings into prominence the role of all the terms
in the momentum equation.

5.1. Detailed discussion of drafting, kissing, tumbling and axial migration

To highlight these various features of two-particle dynamics, we focus on particles
released on the mid-axial (mid-transverse) plane of the cylinder.

5.1.1. Drafting

Particles released at arbitrary locations far away from each other on the
mid-transverse plane, each start moving in a single-particle fashion towards the
same equilibrium fixed point that is characteristic of single-particle dynamics (see
discussions on single-particle dynamics under validation in § 4). The equilibrium
point is located on this same (mid-axial) plane. Such motion brings the particles
closer to each other in the vicinity of the equilibrium point and the wake interaction
between the particles controls the subsequent dynamics. On the other hand, if two
particles are released on the mid-transverse plane and in close proximity to each other,
but away from the equilibrium location of a single particle, they approach each other
(figure 5a). This approach of one particle towards the other corresponds to drafting
in rotating flows. In figure 4(a), drafting is seen to occur during O–A. If the particles
are not in close proximity to each other when released on the mid-transverse plane,
they approach each other as shown in figure 6 except now, the drafting period is
longer. This is as expected. Now, with regard to Figure 5(b), where the two particles
are released in mid-plane far apart from each other and one on either side of the
equilibrium point, the particles again draft and approach the equilibrium point before
tumbling occurs from that location. In that case, point A in figure 6 would be the same
as the equilibrium point. Drafting results in the reduction of the interparticle gap as
a function of time and this is evident from figure 7. In this figure, the variation in the
normalized interparticle gap (	) is displayed as a function of time when the particles
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Figure 7. Interparticle gap as a function of time for two particles released as shown in
figure 6.

are four diameters apart to start with. As noted in the figure, the particles continue to
approach each other with time, and eventually become neighbours, corresponding to
	 → 0. The two particles move in a leader–follower configuration. The rapid decrease
in 	 is due to the acceleration of the follower particle in the wake of the leader. The
drafting is shown in a rotating frame in Figure 8. The individual particle trajectories
remain helical (similar to the single-particle behaviour, see figure 3), and the centres
of the helical trajectories track each other in a clockwise manner (cylinder rotation
is counterclockwise) as shown in figure 8. In this configuration, the follower which
is in the wake of the leader accelerates towards the leader. This occurs for half of
the cylinder rotation, whereas during the other half the leader–follower configuration
switches. It must be remembered that this interaction is confined to the mid-transverse
plane for this specific case under discussion.

5.1.2. Kissing of particles

At the end of drafting, they remain in close proximity to each other in a long-body
fashion for a short time duration. When two particles are such that the interparticle
gap is less than one particle diameter, the configuration resembles a dumbbell shape.
This configuration is referred to as the long-body arrangement. This would correspond
to the ‘kissing’ part of motion in the context of rotating flows. This occurs in the
vicinity of point A in figure 6.

5.1.3. Tumbling of particles

Immediately following the kissing regime (location A in figure 6), the long-body
arrangement constituted by the two-particle configuration in very close proximity, is
noted to be dynamically unstable. It is well known that a long-body configuration
of two particles aligned with the direction of gravity in a Newtonian fluid flow is
unstable to small-amplitude disturbances. The instability causes the body to turn
such that its broadside is perpendicular to gravity vector (Fortes, Joseph & Lundgren
1987). The cause for the instability is ascribable to small axial perturbations of the
long-body axis giving rise to an asymmetric pressure distribution about the rotation
axis of the cylinder. It is difficult to quantitatively demonstrate the initiation of such
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Figure 8. Discrete time snapshots of centres of the epitrochoidal trajectories of two-particles
as viewed by an observer in a rotating frame (see figure 3). a–b–c and a′–b′–c′ denote the discrete
epitrochoidal centres of particles 1 and 2, respectively. This configuration of the leader–follower
switches, as is evident from the figure. This process repeats until the interparticle gap is reduced
and the particles start tumbling along the axial direction.

an instability, experimentally or numerically. In our numerical computations, the
source of the instability may be attributed to the numerical discretization errors and
small imperfections in the mesh used for such simulations. However, the phenomenon
of axial tumbling is physical. The particles eventually tumble and migrate in opposite
directions from the mid-transverse plane (A–B and A–B′, in figure 6) towards the
lateral walls, while rotating on transverse planes. This phenomenon of the breakdown
of the long-body configuration is referred to as the ‘tumbling mechanism’. As seen in
figure 9, at A, the particles are aligned such that their line of centres is at right angles
to the rotational axis of the cylinder. Owing to the long-body instability, they tumble
from position A and start migrating towards the lateral walls. The line of centres
during this process changes from φ =90◦ to the lowest value of nearly 10◦ at about
midway during traverse from A to B, B′. We recall that B, B′ are the points of closest
approach to the lateral walls.

5.1.4. Axial migration – ‘settling’ planes

Referring to figure 6, subsequent to tumbling, the motion of the particles in the
axial direction is dominated by forces exerted both by interparticle and particle–wall
interactions. Initially, the separation distance between the particles is small so that
particle–particle interaction is dominant. This interaction results in a repulsive force
that tends to push the particles away from each other (A–B and A–B′). The particles
continue to migrate axially up to locations B and B′ and the repulsive force due to
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Figure 9. The angle φ made by the line of centres with the horizontal axis (as shown in
the inset schematic). φ = 90◦ implies the particles are in the same transverse planes and φ = 0
implies the lines of centres is aligned parallel to the axis of rotation. See figure 6 for the
location of the points.

particle–wall interaction has increasing influence, reaching a maximum value at B and
B′. Beyond B and B′, the particles move towards each other owing to the dominant
particle–wall influence (B–C and B′–C′). During this motion, the competition between
the particle–wall and particle–particle interactions become increasingly significant. At
C and C′, a near force balance is achieved. Subsequent to this, an eventual force
equilibrium is achieved when the particles ‘settle’ on transverse planes denoted by D
and D′.

Figure 10 shows the key stages in the interaction dynamics of two particles as
observed in an inertial frame of reference. Figure 10(a) shows the initial position of
particle release, and figures 10(b)–10(d) show the particle positions at A, B–B′ and
D–D′, respectively.

5.2. Uniqueness of the settling planes

For two identical particles, for any given Rep and Res , independent of initial conditions
at release (locations and planes), the locations of the settling planes (D and D′) are
unique and equidistant from the midplane (see, figure 11). This is ascribable to the
fact that the settling planes represent planes on which force equilibrium has been
attained (particle–particle and particle–wall).

5.3. Particle motion on settling planes

When particles are on settling planes (D and D′) (see figure 11), several fascinating
particle motions are noted to occur in the transverse direction ((xi, yi)-plane) and
these will now be discussed in detail. The motions on these planes consist of three
different types. The following descriptions depict these motions as viewed by an
observer in the laboratory (inertial) frame of reference.

1. Particles in stationary states or fixed equilibrium points.
2. Particles in out-of-phase spiralling motions.
3. Particles in out-of-phase almost-circular orbits (‘pedalling’ motion). This state

will hereinafter be referred to as circular orbit.
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(a) (b)

(c) (d)

Figure 10. Snapshots of two-particle interaction dynamics at different times as viewed by an
inertial observer in the (yi, zi)-plane. The cylindrical wall is not shown to scale here for clarity.
(a) Initial position. (b) Kissing and tumbling at A. (c) Axial migration to B–B′. (d) Settling
planes D–D′.

For the state of spiralling motion or circular orbit, the particles execute weak axial
oscillations about their settling planes, as can be seen in figure 11.

An approximate topology map of the above-mentioned transverse plane states in
the Res − Rep space is given in figure 12 for reference.
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Figure 11. Axial positions of the two particles for arbitrarily selected cases in figure 5. Here,
(a) corresponds to figure 5(a), (b) corresponds to figure 5(d), (c) corresponds to figure 5(f )
with δ = 0, and (d) corresponds to figure 5(h). Also, the inset shows the enlarged view of
(b) during the initial transient for clarity.
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Figure 12. An approximate topology map of various stable state configurations (with
reference to an inertial frame) as a function of Res and Rep .

5.3.1. Stationary states

For low Rep and high Res , for example, Rep ∼ 5.6 and Res ∼ 8, the particles after
reaching their settling planes, eventually attain stationary or fixed equilibrium points
on their corresponding settling planes. These equilibrium points correspond to that
which characterizes single-particle equilibrium (see figure 18). However, it may be
recalled that fixed equilibrium for a single particle is attained on the mid-transverse
plane. The line of centres of the two particles in stationary states is parallel to the
rotation axis of the cylinder. The axial and radial positions of the two particles at
the stationary state are given in figures 13(a) and 13(b). The particles settle at fixed
points in their respective plane and do not move as viewed by an inertial observer.
The particles are not only in force equilibrium with regard to particle–particle and
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Figure 13. Numerical solutions of (b) radial position and (a) axial migration of two
particles at stationary states for ρp/ρf = 0.98, Rep ∼ 5.6 and Res ∼ 8.

particle–wall interaction forces, but also with regard to centrifugal force, centrifugal
buoyancy, gravitational force, gravitational buoyancy, added mass, pressure, drag, lift
and history forces. It may be recalled that the latter forces are typical of a single
particle in an equilibrium state. With increasing Rep , Res has to be correspondingly
higher to attain these equilibrium states. This has been revealed in our numerical
calculations.

5.3.2. Particles in out-of-phase spiralling motions

After reaching the settling transverse planes, for all values of Rep and low values
of Res , for example Rep ∼ 5.6, Res ∼ 1, the particles do not attain equilibrium states
on their settling planes; instead, they each execute an out-of-phase spiralling motion
(figure 14) about a point on their respective planes (see figure 18). The location of the
point about which this motion is executed on each plane corresponds to that which
characterizes single-particle equilibrium on the mid-transverse plane. The remarkable
feature of these spiralling motions is that, when one particle undergoes an inward
spiralling, the other executes an outward spiralling motion (figures 14 and 15). Thus,
the spiralling motion is a ‘pedalling’ motion with the length of the pedal varying with
time, the variation being out-of-phase for the two particles. The composite dynamic
may therefore be thought of as spiralling motion with the length of the spiral chord
increasing on one settling plane while decreasing on the other (out-of-phase manner).

5.4. Particles in out-of-phase almost-circular orbits: ‘pedalling’ motion

For low Rep and moderate Res , and for high Rep and moderate to high Res

investigated, for example, consider Rep ∼ 60, Res ∼ 6, the particles ultimately move on
their respective settling planes in near-circular orbits (figure 16) about fixed points in
the planes (see figure 18). The location of the point about which this motion is executed
on each plane corresponds to that which characterizes single-particle equilibrium on
the mid-transverse plane. Again, the circular motions are out-of-phase. Thus, these
circular motions are similar to the spiralling motions, except that the lengths of the
spiral chords remain constant and equal (radius of orbit). The small departures from
perfect circular orbits as noted in figures 16(b) and 16(c) are ascribable to the small
axial oscillations of the particles about their settling planes.

The projected trajectory on the transverse plane of one particle as noted by an
observer attached to the particle on the other plane is circular (figure 17). The perfect
out-of-phase motion of the two particles results in the relative trajectory to be circular.



188 K. Mukundakrishnan, H. H. Hu and P. S. Ayyaswamy

1–start

1–end

Cylinder axis

Particle 2–start

2–end+

+

(a)

(b)

Figure 14. The trajectory as observed by an observer in an inertial frame on the transverse
(xi, yi)-plane for Rep ∼ 5.6 and Res ∼ 1 is shown for half the pedalling cycle (the period for
which particle 1 spirals out while particle 2 spirals in).

5.5. Parametric study

The above studies are extended to include various rotation rates (1 � Res � 8), and Rep

values of 5.6, 14.0, 28.0 and 56, corresponding to the values of ρp/ρf = 0.98, 0.95, 0.9
and 0.8. These are representative of particle parameters in bioreactor studies. As
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Figure 15. Radial positions of the particles as measured from the centre of their corresponding
settling planes during the out-of-phase spiralling state. Here, Rep ∼ 5.6 and Res ∼ 1. Dotted
lines indicate the fixed points on each settling plane about which the spiral orbital motions of
the particles take place. (a) Particle 1; (b) particle 2.

described earlier, the particles may draft, kiss, tumble and migrate or just directly
migrate to the eventual settling planes depending on conditions at release.

Upon reaching the settling planes, the particles are noted either to settle at fixed
points or to experience spiral or nearly circular orbital motions about such fixed
points. As noted from figure 18, it turns out that the coordinates of such fixed
points on the transverse planes ((xi, yi)-position) coincide with those for single-
particle dynamics under identical conditions (recall, however, that single-particle
equilibrium points are always located on the mid-transverse plane at z = 0). This is
a novel feature revealed by this numerical study. For completeness, in figure 18, we
display the distances of such equilibrium points from the centre of the settling plane
((xi, yi)-plane) for either of the two particles and compare those with the results for
single-particle dynamics for various Rep and Res . The comparisons are in absolute
accord.

Once the particles come to the settling planes, the forces that come into play are
essentially similar to those governing single-particle dynamics on the mid-axial plane.
However, they are not identical except for the case where the two particles settle at
fixed points on their respective planes. In that particular case, the line of centres of
the particles is parallel to the rotation axis of the cylinder. This is seen in figure 19
where we plot the angle φ made by the line of centres of the two particles with the
rotation axis of the cylinder for various values of Rep and Res after the particles have
attained their final state on their settling planes. For Rep = 5.6 and Res = 8, it is clear
that the particles have attained fixed-point equilibrium states (φ = 0) where a perfect
symmetry exists about the mid-transverse plane. Depending upon the values of Rep

and Res , the line of centres of the two particles may not be horizontal (φ �= 0). This
feature may be explained by examining the states in the immediate neighbourhood
of Res = 8 and Rep = 5.6. By examining the effects in the immediate neighbourhood
we are minimizing the role of the change of settling planes themselves. At a fixed
Res , an increase in Rep results in φ > 0. Similarly, for a fixed Rep , a decrease in Res

results in φ > 0. Changes in Rep are directly related to changes in density difference
and hence to buoyancy forces, whereas changes in Res are directly related to rotation
rate and hence to centrifugal and Coriolis forces. Thus, non-zero φ values are largely
ascribable to the combined roles of buoyancy, Coriolis and centrifugal forces on the
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Figure 16. (a) Radial positions and (b, c) trajectories of particles as seen by an inertial
observer corresponding to the case of ρp/ρf =0.8, Rep ∼ 60 and Res ∼ 6. The positions of
particles 1(�) and 2(�) observed at the same instant showing the out-of-phase behaviour. The
particles are seen to undergo near-circular bicycle pedalling motion.

settling planes. Furthermore, a non-zero value of φ gives rise to a net outward radial
lift to the particles in their respective settling planes causing orbital motions as shown
in the Appendix. In figure 19, for the range 5.5 <Res < 6.5 and for Rep = 28, there
is characteristically a large increase in φ followed by a decrease. In this case, the
locations of the settling planes have moved closer to the mid-axial plane resulting in
φ changing from ∼32◦ to ∼42◦. We note that the locations of the settling planes are
very much controlled by the particle–wall and particle–particle repulsive interactions
which in turn depend in a complicated manner on Rep and Res . This will be discussed
subsequently with reference to figure 20.

The axial locations of the settling planes for the particles are shown in figure 20.
These locations are perfectly symmetric about the mid-axial plane (z/2a = 0), and
hence only one representative settling plane position is displayed. We note that
z/2a = 4 indicates the location of a lateral wall. In general, for a given Rep and
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Figure 17. Projected trajectory on the transverse plane of one particle as noted by an
observer attached to the particle on the other plane.
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Figure 18. The distances of fixed points on the settling plane for each particle as a
function of Rep and Res . �, ρp/ρf = 0.98, Rep =5.6; 	, ρp/ρf = 0.95, Rep = 14.0; ∗,
ρp/ρf = 0.9, Rep = 28.0; �, ρp/ρf = 0.8, Rep = 56; and solid lines denote single-particle
dynamics result (see Appendix). Note the coincidence with fixed equilibrium points for
single-particle dynamics at the same Rep and Res .

increasing values of Res , the settling plane distances as measured from the mid-
axial plane increase. As discussed earlier, under these circumstances, φ decreases,
increasingly causing the line of centres of the particles to be parallel to the horizontal
axis of rotation. As a consequence, the interactive particle–particle repulsive force
strength increases, with the result that the distance between the settling planes
increases. The final locations of the settling planes, however, are determined by a
balance between the particle–particle and particle–wall repulsive forces. For the case
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Figure 19. The angle φ made by the line of centres of the two particles with the rotation
(horizontal) axis (see inset) as a function Res . �, ρp/ρf = 0.98, Rep = 5.6; 	, ρp/ρf =
0.95, Rep = 14.0; ∗, ρp/ρf = 0.9, Rep = 28.0; �, ρp/ρf = 0.8, Rep = 56.
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Figure 20. The axial positions of the settling planes of the particles as a function of
Res . �, ρp/ρf = 0.98, Rep = 5.6; 	, ρp/ρf = 0.95, Rep = 14.0; ∗, ρp/ρf = 0.9, Rep = 28.0; �,
ρp/ρf = 0.8, Rep =56.

of Rep = 28 and 5.5 <Res < 6.5, a limiting condition is reached where the particle–
wall repulsion overwhelms the weakened particle–particle interaction (owing to an
increased φ) in this narrow range, and the settling planes end up moving closer to
each other. Beyond this limiting condition, φ decreases and the general trend referred
to in the earlier discussion is recovered. A definitive explanation of this feature would
require further study.

In figures 21 and 22, the amplitudes of oscillation about the mean radial position
and of spiralling motion of each individual particle on their settling planes are shown
as a function of Res for various Rep . In figure 21, a value of zero amplitude indicates
a state of fixed equilibrium point, while in figure 22 this would correspond to the state
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particle as a function of Res . A value of zero implies an equilibrium fixed-point
state. �, ρp/ρf = 0.98, Rep = 5.6; 	, ρp/ρf = 0.95, Rep = 14.0; ∗, ρp/ρf = 0.9, Rep = 28.0; �,
ρp/ρf = 0.8, Rep = 56.
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Figure 22. The amplitude of spiralling motion of each individual particle as a function of
Res . A value of zero indicates a perfect circular pedaling motion. �, ρp/ρf = 0.98, Rep = 5.6;
	, ρp/ρf =0.95, Rep = 14.0; ∗, ρp/ρf = 0.9, Rep =28.0; �, ρp/ρf = 0.8, Rep = 56.

of circular pedalling motion. Generally, for a given Rep , with increasing Res , both
the oscillation about the mean radial position and the spiralling amplitude decrease.
This is a consequence of a reduction in the radial lift force experienced by each
particle. The radial lift forces that arise with two particles on their settling planes are
directly related to the particle–particle repulsion (see Appendix for details). At very
high values of Res , fixed equilibrium points are the stable states. Thus, increasing Res

(the speed of rotation), has a stabilizing influence.
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Figure 23. Different diameter and same density particles were released close to each other.
In the above figures asmall refers to the radius of the small particle. Here, asmall denotes the
radius of the smaller particle.

6. Spherical particles with different densities and diameters
We now examine the cases of two spherical particles with similar densities but

different sizes, and two particles of the same size but different densities. By comparison
of the results with those for identical particles we are able to investigate the roles of
densities and sizes of particle pairs in rotating fluid motion.

6.1. Case 1. Two particles with same densities but different diameters

Two particles with the same densities but different sizes are released very close to
each other, as given in figure 5(a) in a cylinder rotating at a constant rate. The larger
particle is twice the size of the smaller and the value of ρp/ρf = 0.99. The Rep and
Res for the smaller particle are set to be 2.8 and 1, respectively, while for the larger
particle, the corresponding Rep and Res values are ∼22.4 and 4, respectively.

Figure 23 shows the time history of the axial positions of the two particles. The
two particles are released on the mid-axial plane (z = 0), close to each other. They
draft, kiss and tumble in axial directions (denoted by O–A). The smaller particle
experiences a very large particle–particle repulsive force. This causes it to move away
rapidly towards the lateral wall. However, the opposing particle–wall repulsion pushes
the smaller particle back towards the mid-axial plane. Over a period of time, this
motion is damped and the smaller particle essentially attains a settling plane. On
the other hand, the larger particle is very slightly perturbed from its initial axial
location and essentially remains on the mid-axial plane. As always, the particles on
the settling planes experience small axial oscillations. In this case, owing to the large
difference in the sizes of the particles, the smaller one oscillates significantly more,
by as much as its diameter. Thus, the settling planes are no longer symmetrically
situated with reference to the mid-axial plane, bringing into prominence the roles of
particle–particle and particle–wall interactions.

After the attainment of particle–particle and particle–wall force equilibrium, the
particles are located on the settling planes (denoted D–D′), and figure 24 displays
the characteristics of their subsequent behaviour as a function of time. The smaller
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Figure 24. Radial positions of the particles as measured from the centres of their
corresponding settling planes (xi = yi = 0) after the attainment of equilibrium states. (a) Smaller
particle; (b) larger particle. Dotted lines indicate the fixed radial points on each settling plane
about which the orbital motions of the particles take place. Here, asmall denotes the radius of
the smaller particle.

particle executes a spiralling motion about its own fixed point while the larger
particle is in near-circular orbital motion. These motions, however, do not correspond
to pedalling. As would be expected, φ �= 0. The amplitudes of the orbital motions
are significantly different, with the spiralling motion amplitude of the smaller particle
being ∼5 times larger than that of the other particle. For the particle sizes considered,
the larger particle is most dominant in determining final equilibrium states. The
fixed points for the two states are (xi1, yi1) = (−2.0, −0.1) for the smaller particle and
(xi2, yi2) = (−5.5, 0.1) for the larger, as observed in an inertial frame of reference.

6.2. Case 2. Particles with same size diameters but different densities

Here, two particles of the same size but of different densities (higher to lower density
ratio = ρ1/ρ2 ≈ 1.24 ) are released on the mid-axial plane (z = 0) of the rotating
cylinder. The Rep and Res corresponding to the higher-density particle (ρp/ρf = 0.99)
are ∼2.8 and 1, and that for the lesser density (ρp/ρf = 0.8) are ∼56 and 1, respectively.
Note that both the particles are lighter than the fluid in which they are released. Hence,
the lighter of the two particles has a higher slip velocity and hence higher Rep than
the other. In other words, the heavier particle is closer to neutral buoyancy than is the
lighter one. The non-dimensional particle locations at release are close to each other
((x, y)t=0 = (−25, −0.7)) for the lighter, and ((x, y)t=0 = (−25, 0.65)) for the heavier.
The particle draft at O–A, kiss and tumble (figure 25). At A, the heavier particle
migrates away in the axial direction towards the lateral wall while the lighter one
stays on the mid-axial plane. Thus, for the lighter particle, the mid-axial plane is the
settling plane. On the mid-axial plane, the lighter particle executes a spiral trajectory
as a function of time approaching a fixed-point equilibrium location and this is
evident from figure 26(b). Note the damping of the amplitude with time. On the other
hand, the heavier particle continues to migrate axially, experiencing particle–particle
and particle–wall repulsive forces. However, as can be seen from the dotted lines
in figure 26(a), the particle also drifts away in the radial direction. Hence, the two
particles become farther apart with time. Beyond a certain time indicated by B′ (see
figure 25), the particle–particle interaction is so weak that the particle–wall forces
exceed the former. Hence, the particle starts migrating towards the mid-axial plane.
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Figure 25. Axial migration of two particles with different densities but the same size released
close to each other. The heavier of the two is released far away from its equilibrium point.
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Figure 26. Normalized radial position histories of the particles released close to each other.
(a) Heavier of the two particles. (b) Lighter of the two particles.

The heavier particle eventually migrates towards the mid-axial plane, at a location
far from the equilibrium point of the lighter particle.

To confirm this speculation, we have carried out another study with the same
particles, where we have chosen the release locations to coincide with the fixed
equilibrium points that each of the individual particles would have attained had
they been released individually on the mid-axial plane. We calculated these locations
by solving the single-particle dynamics formulation (see (27) with lift and history
forces set to zero). These happen to be far apart with the lighter-particle equilibrium
location being ((xi, yi) = (−23.1, 0.9)) and the heavier ((xi, yi) = (−2.0, −0.1)). For
these conditions, the two particles do not migrate in the transverse direction, as seen
in figure 27, owing to the wide separation of equilibrium points. The lighter of the two
particles has a larger wake intensity because of a higher slip velocity. It significantly
affects only the radial motion of the relatively heavier particle whose wake intensity
is smaller owing to smaller slip velocity. Thus, while the lighter particle approaches
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Figure 27. Axial migration of two particles with different densities but the same size
released closer to their respective equilibrium points that are far away from each other.

the fixed point, the heavier one is greatly perturbed by the other particle’s wake
and goes into a circular motion about a mean radial position (see figure 28). Note
that the amplitude of circular motion as noted from figure 28(b) does not decay
for the heavier of the two particles. This case demonstrates two-dimensional wake
interaction effects owing to the wide separation of the mean radial positions of the
particles.

7. Conclusion
The main conclusions of the present study are as follows.
1. For all cases of particle and shear Reynolds numbers investigated, two identical

spherical lighter-than-fluid particles, independent of the location of their release,
eventually axially migrate towards and settle on transverse planes that are symmetric
about the mid-transverse plane of the cylinder. Upon settling, the particles may attain
three distinctly different possible states, as noted by an observer in an inertial frame
of reference. These states are: (i) fixed equilibrium points; (ii) out-of-phase spiralling
motion about such equilibrium points on their settling planes; and (iii) out-of-phase
circular orbital motion about such equilibrium points on their settling planes. The
out-of-phase circular orbital motion resembles bicycle pedalling.

2. The three states describes in item 1 are due to particle–particle and particle–wall
interaction force equilibrium.

3. The behaviours of two non-identical particles (same density but different sizes,
or same size but different densities) are different from those of identical particles. For
example, non-identical particles may both end up settling on the mid-transverse plane.
This occurs when the locations of their corresponding single-particle equilibrium
points are far apart. When such points are not far apart, particles may settle on
planes that may not be symmetrical about the mid-transverse plane. While located
on their settling planes, their equilibrium states may not be similar. For example, for
particles of the same density but of different sizes, the smaller of the two may execute
a spiralling motion whereas the larger is in near-circular orbital motion. With particles
of the same size but of different densities, while the lighter of the two approaches
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Figure 28. Normalized radial position histories of the particles released far away but closer
to their respective equilibrium points. (a) Normalized radial position of the lighter of the two
particles. (b) Normalized radial position of the heavier of the two particles.

its equilibrium point on the mid-axial plane, the heavier one experiences a circular
motion on the same plane about its equilibrium point.

4. The roles of particle–particle and particle and particle–wall interactions are
dominant in deciding the final states of the particles.

5. In order to numerically simulate two-particle motion at various ρp/ρf , Rep and
Res in a fluid-filled cylinder rotating about a horizontal axis, the rotating frame is
preferred for computational purposes.

The authors would like to gratefully acknowledge NASA Grant NAG 9-1400 for
supporting this work. H. H. H. would also like to acknowledge the partial support
by the Nano/Bio interface center through NSF NSEC DMR-045780.
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Appendix
A.1. A simplified analysis for the state of near-circular motion

of each particle in its settling plane

We now present a simplified analysis for describing the dynamical stability of the two-
particle system which corresponds to the particles undergoing near-circular motion
about equilibrium points on their respective planes. The system will be analysed in the
vicinity of the equilibrium point that is characteristic of single-particle dynamics. At
the equilibrium point, the major forces acting on the particle, such as the gravitational
weight and buoyancy, centrifugal force and centrifugal buoyancy, drag, lift and other
history forces are almost in balance with each other.

Consider equation (27) in xi −yi inertial Cartesian coordinates with FL set equal to
0. For simplicity, the subscript i will be dropped. Here, the absence of the subscript i

does not imply the use of rotating frame coordinates.

ρpVp

dUp

dt
+ Cvρf Vp

(
dUp

dt
− DUf

Dt

)
= −Vp∇p + (ρp − ρf )Vpg + FD. (A 1)

With Uf = −ωy î + ωx ĵ , where î, ĵ are the unit vectors along the x and y directions,

and DUf /Dt = −ω2x î − ω2y ĵ , (A 1) may be written in component form as follows:

Vp

(
ρp + 1

2
ρf

)du

dt
= − 3

2
Vpρf ω2x − CD(u + ωy), (A 2)

Vp

(
ρp + 1

2
ρf

)dv

dt
= − 3

2
Vpρf ω2y − CD(v − ωx) + Vp(ρf − ρp)g. (A 3)

In (A 2) and (A 3), u, v denote the x, y velocity components of the particle, and CD is
the drag coefficient. With CD =6πµf a, (A 2) and (A 3) can be written as the following
coupled first-order equations:

dx

dt
= u, (A 4a)

dy

dt
= v, (A 4b)

du

dt
= −3α(ω)2x

2
− u + ωy

τ
, (A 4c)

dv

dt
= −3α(ω)2y

2
− v − ωx

τ
+

ρf − ρp

ρf /2 + ρp

g. (A 4d)

In (A 4), α = ρf /(ρf /2+ρp) and τ =2a2(ρf /2+ρp)/9µf . The linear system represented
by (A 4) can be compactly written as:

d

dt

⎛
⎜⎝

x

y

u

v

⎞
⎟⎠ = A

⎛
⎜⎝

x

y

u

v

⎞
⎟⎠ +

⎛
⎜⎜⎜⎝

0
0
0

ρf − ρp

ρf /2 + ρp

g

⎞
⎟⎟⎟⎠ , (A 5)
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where

A =

⎛
⎜⎜⎜⎝

0 0 1 0

0 0 0 1

−3αω2/2 −ω/τ −1/τ 0

ω/τ −3αω2/2 0 −1/τ

⎞
⎟⎟⎟⎠ . (A 6)

The eigenvalues of A will determine the stability of the system. The characteristic
equation for the eigenvalues is given by

det(A − λI) = 0. (A 7)

By letting ε = ωτ and λ̄= λ/ω, (A 7) can be shown to be

λ̄2(1 + ελ̄)2 + 3α(ελ̄)2 + 3αελ̄ + 9α2ε2/4 + 1 = 0. (A 8)

Here, ε may be interpreted as the ratio of the particle time scale, τ , to that of the vortex
time scale, 1/ω (Ferry & Balachandar 2001). With the velocity scale used in the present
study, namely, Uslip = (2|�ρ|a2g/9µf ), it can be shown that ε ≈ 0.06Res((ρp/ρf )+0.5).
In our analysis, ρp/ρf ∼ O(1) and for Res ∼ O(1) (moderate rotation rates), ε 
 1.

For such small values of ε, we seek solutions of the form λ̄= i + εη1 + ε2η2 + O(ε3),
where η1, η2 are, in general, complex numbers. Solutions for η1, η2 may then be
obtained by using (A 8), and by equating like powers in ε. After simplification, we
obtain

λ = −ω2τ�ρ̄ + iω[1 + 2(ωτ )2�ρ̄(ρp − ρf /2)/ρf /2 + ρp], (A 9)

where, �ρ̄ = (ρf − ρp)/(ρf /2 + ρp). For ρp <ρf , the real part of (A 9) is negative, and
therefore the system is stable.

A.2. Equilibrium point on the settling plane

The stable equilibrium-state solution can be obtained from (A 2) and (A 3), by setting
the first and second derivatives of x, y to be zero. After simplification, this yields
the following solution for the radial position, req (=

√
xeq

2 + yeq
2), and the angular

position, θeq (= tan−1(yeq/xeq)) (Gao et al. 1997):

req =
(ρf − ρp)Vpg

ω

√
[mf (Cv + 1)ω]2 + CD

2
, (A 10)

θeq = tan−1

(
mf (Cv + 1)ω

−CD

)
. (A 11)

For CD =6πµf a, mf (Cv + 1)ω/CD ≈ 0.06Res(Cv + 1). With Cv =0.5 for a sphere and
for Res ∼ O(1), CD � mf (Cv + 1)ω, and the (A 10) simplifies to:

req =
(ρf − ρp)Vpg

ωCD

(A 12)

A.3. Dynamical stability about the equilibrium point on the settling plane

Next, we consider the dynamical stability of the system represented by (A 5) by
perturbation in the vicinity of the equilibrium point given by (A 12) and (A 11).
The perturbation is by a small but constant force, Fperturb = mpγ̄ , acting in the
outward radial direction about the equilibrium point. This force has components,
[mpγ̄ x/req, mpγ̄ y/req], along the Cartesian (x, y) directions about the equilibrium



Dynamics of two spherical particles in a confined rotating flow 201

point. The dynamical system may now be expressed as follows:

dx

dt
= u, (A 13a)

dy

dt
= v, (A 13b)

du

dt
= −3α(ω)2x

2
− u + ωy

τ
+ γ x, (A 13c)

dv

dt
= −3α(ω)2y

2
− v − ωx

τ
+

ρf − ρp

ρf /2 + ρp

g + γy, (A 13d)

where γ = γ̄ /req may be assumed to be a constant in the neighbourhood of req . With
a dynamic stability analysis similar to the previous one, the following eigenvalues
govern stability:

λ = τ (−ω2�ρ̄ + γ ) + iω + O(ε2). (A 14)

In (A 14), the real part of λ vanishes for γ = ω2�ρ̄, thus implying neutral stability in
that case. With γ =ω2�ρ̄, the magnitude of Fperturb, is given by:

Fperturb = �ρ̄ω2reqmp. (A 15)

The net gravitational weight (weight of the particle minus buoyancy) acting on the
particle is:

Fg = (mf − mp)g. (A 16)

Therefore, the ratio of the forces becomes:,

Fperturb

Fg

≈ 0.06 Res

(
1 − ρp

ρf

) (
1

1 + 1
2
(ρp/ρf )

)
. (A 17)

For ρp/ρf ∼ O(1) and for moderate rotation rates (Res ∼ O(1)), Fperturb/Fg 
 1.
For higher Rep , we may write CD = 6πµf aβ , where, β =β(Rep) � 1, is a drag

modification factor, which, in general is a function of Rep . Then,

Fperturb

Fg

≈ 0.06

β
Res

(
1 − ρp

ρf

)(
1

1 + 1
2
(ρp/ρf )

)
. (A 18)

Under appropriate conditions, we note that a force of small magnitude is all that is
necessary to make the system neutrally stable. The assumed functional dependence
of this radial force (locally linear about the equilibrium point) causes the fixed-
point solution to be unstable which may correspond to the solution of limit cycles
(circular orbits). In the context of two-particle dynamics, Fperturb arises owing to
particle–particle repulsive force, as will be demonstrated in the subsequent section.

A.4. Particle–particle interaction forces

In § 5.4, we demonstrated that when a particle (of the two-particle system) is eventually
located on its settling plane, the particle may execute a circular orbital motion about
the equilibrium point (in its own plane) corresponding to single-particle dynamics.

Hence, we will consider two identical particles located on their settling planes and
executing circular orbital motions. In particular, we will investigate by a simplified
analysis the various forces at play which result in the particles executing out-of-phase
motion corresponding to pedalling. Since the axial force balances between particle–
particle and particle–wall (z-directional forces) are only required in ascertaining the
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locations of settling planes, they will not be considered to play any further role in the
following development.

At the outset, it may be conjectured that pedalling motions on their respective
settling planes must arise as a consequence of particle–particle interaction forces along
(x, y)-directions. On this basis, consider the in-plane force balance (x, y-directions)
on each particle in an inertial Cartesian frame of reference. With simplification, the
equations governing particle motion in its own settling plane may be shown to be
governed as follows.
Particle 1

du1

dt
= −3α(ω)2x1

2
− (u1 + ωy1)

τ
+

F̄x

Vp(ρp + ρf /2)
, (A 19)

dv1

dt
= −3α(ω)2y1

2
− (v1 − ωx1)

τ
+

ρf − ρp

ρf /2 + ρp

g +
F̄y

Vp(ρp + ρf /2)
. (A 20)

Particle 2

du2

dt
= −3α(ω)2x2

2
− (u2 + ωy2)

τ
− F̄x

Vp(ρp + ρf /2)
, (A 21)

dv2

dt
= −3α(ω)2y2

2
− (v2 − ωx2)

τ
+

ρf − ρp

ρf /2 + ρp

g − F̄y

Vp(ρp + ρf /2)
. (A 22)

In contrast to the single-particle dynamics, here, F̄x, F̄y are the additional forces acting
on the (x, y)-settling planes of each particle owing to particle–particle interactions. Let
(xi, yi) and Uf =(ui, vi) denote the instantaneous position and velocity of the particle
i, (i =1, 2), respectively. Also, let xr = x1 − x2, yr = y1 − y2, ur = u1 − u2, vr = v1 −
v2, denote the relative positions and coordinates, respectively, and let
Fx = F̄x/Vp(ρp + ρf /2) and Fy = F̄y/Vp(ρp + ρf /2) be the forces. The equations
governing the relative trajectory may be derived from the above equations by
subtraction of one from the other to yield:

dur

dt
= −3α(ω)2xr

2
− (ur + ωyr )

τ
+ 2Fx, (A 23)

dvr

dt
= −3α(ω)2yr

2
− (vr − ωxr )

τ
+ 2Fy. (A 24)

If we considered the trajectory of the two particles in their own planes to be circu-
lar and out-of-phase, it is possible to describe the nature of the interaction forces
which cause such trajectories. Towards this, let xr = ψ cosωt, yr = ψ sinωt where ψ

is the distance between the particles projected on a transverse plane. With, ur = dxr/

dt, vr = dyr/dt , we may solve for Fx and Fy from which F̄x and F̄y can be produced.
This yields,

F̄x = Vp

(
ρf

2 + ρp

)
ω2

2

(
3α

2
− 1

)
xr, (A 25)

F̄y = Vp

(
ρf

2 + ρp

)
ω2

2

(
3α

2
− 1

)
yr . (A 26)

We may now compare the orders of magnitudes of these interaction forces with the
net weight acting on the particle (Fg = Vp(ρf −ρp)g). Assuming xr, yr ∼ O(2a), it may
be shown that,

F̄x,y

Fg

≈ 0.03

(
1 − ρp

ρf

)
Res

2

Rep

, (A 27)

and for ρp/ρf ∼ O(1), Res ∼ O(1), from (A 27), F̄x,y/Fg 
 1.
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A feature of (A 25) and (A 26) is that, with reference to the centre of each particle,
these force representations are repulsive in nature (pointing towards the centre of
each particle). Particle–particle repulsive forces have also been observed in the studies
of interaction of two spherical particles placed side by side whose line of centres
is perpendicular to the direction of uniform stream (Kim, Elghobashi & Sirignano
1993; Folkersma, Stein & van der Vosse 2000). The small repulsive force acting on
each particle, when projected onto their respective settling planes, would result in a
radially outward pointing force (if the line of centres is not aligned parallel to the
cylinder axis, i.e. φ �= 0 in figure 19). This observation corroborates the functional
form of the perturbation force assumed in the stability analysis given in the previous
section.
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