
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

10-8-2002

Predictable Programs in Barcodes
Alwyn Goodloe
University of Pennsylvania

Michael McDougall
University of Pennsylvania

Carl A. Gunter
University of Pennsylvania

Rajeev Alur
University of Pennsylvania, alur@cis.upenn.edu

Postprint version. Copyright ACM, 2002. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for
redistribution. The definitive version was published in Proceedings of the 2002 International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems (CASES 2002), pages 298-303.
Publisher URL: http://doi.acm.org/10.1145/581630.581679

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/200
For more information, please contact repository@pobox.upenn.edu.

http://repository.upenn.edu
http://repository.upenn.edu/cis_papers
http://repository.upenn.edu/cis
http://repository.upenn.edu/cis_papers/200
mailto:repository@pobox.upenn.edu

Predictable Programs in Barcodes

Abstract
We explore the challenges for making the programming interfaces for embedded devices open and safe, and
present a prototype architecture for delivering verified programs using barcodes. In particular, we consider
programs for microwave ovens, which provide a basic open API for controlling cooking times. In our
architecture, recipes are written in Java, and their safety properties are formally verified using the model
checker Spin. We use off-the-shelf utilities for compressing the byte code, and use two-dimensional barcodes
for program delivery. We report on experiments that demonstrate the feasibility of the proposed architecture
for predictability and delivery.

Keywords
programmability of embedded devices, code delivery, active barcodes, formal verification

Comments
Postprint version. Copyright ACM, 2002. This is the author's version of the work. It is posted here by
permission of ACM for your personal use. Not for redistribution. The definitive version was published in
Proceedings of the 2002 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems
(CASES 2002), pages 298-303.
Publisher URL: http://doi.acm.org/10.1145/581630.581679

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/200

http://repository.upenn.edu/cis_papers/200

Predictable Programs in Barcodes

Alwyn Goodloe, Michael McDougall, Carl A. Gunter, and Rajeev Alur
Department of Computer and Information Science

University of Pennsylvania
200 South 33rd Street

Philadelphia, PA 19104-6389

agoodloe@saul.cis.upenn.edu, mmcdouga@saul.cis.upenn.edu,
gunter@cis.upenn.edu, alur@cis.upenn.edu

ABSTRACT
We explore the challenges for making the programming interfaces
for embedded devices open and safe, and present a prototype archi-
tecture for delivering verified programs using barcodes. Inpartic-
ular, we consider programs for microwave ovens, which provide a
basic open API for controlling cooking times. In our architecture,
recipes are written in Java, and their safety properties areformally
verified using the model checker Spin. We use off-the-shelf utilities
for compressing the byte code, and use two-dimensional barcodes
for program delivery. We report on experiments that demonstrate
the feasibility of the proposed architecture for predictability and
delivery.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose and
Application-Based Systems—real-time and embedded systems;
D.2.1 [Software Engineering]: Requirements/Specifications;
D.2.4 [Software Engineering]: Software/Program Verification—
formal methods; model checking; D.2.7 [Software Engineering]:
Distribution, Maintenance, and Enhancement; D.2.11 [Software
Engineering]: Software Architectures—domain-specific architec-
tures; languages (e.g., description, interconnection, definition)

General Terms
Languages, Reliability, Verification

Keywords
Programmability of embedded devices, Code delivery, Active bar-
codes, Formal verification

1. INTRODUCTION
The aim of this paper is to look at some issues related to the

programming of embedded systems throughopen Application Pro-
gramming Interface (API) platforms.Our specific case study is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES 2002,October 8–11, 2002, Grenoble, France.
Copyright 2002 ACM 1-58113-575-0/02/0010 ...$5.00.

programming microwave ovens using two-dimensional (2D) bar-
codes, but the general topic is how embedded systems can be made
to have open programming interfaces that enable users and third
party vendors to customize their functionality. The open platform
idea is really a spectrum that ranges from open source code tomod-
est customization hooks, but it is an important driver in smart de-
vices. For example, Personal Digital Assistants (PDAs) aregen-
erally based on open platforms whereas other devices, like cell
phones, are sometimes open (the Java phone) but usually not.Other
devices, like embedded systems in automobiles, are mainly pro-
grammable only by their manufacturer. Microwave ovens occupy
an interesting place in this spectrum since they are safety-critical
devices that must provide at least a rudimentary open API. Con-
sumers probably would not buy a microwave from Samsung if it
could cook food from Samsung, but not from Stouffer’s or Pills-
bury. The microwave hardware vendors and the third-party soft-
ware vendors (viz. frozen food manufacturers in this case) have a
common interest in improving the interface of the device to accept
better programs.

Our objective is to explore two issues of particular interest for
open APIs on embedded devices:deliverabilityandpredictability.
Deliverability concerns the means used to get a program ontoan
embedded device. Such devices are often mobile and may have
very limited interfaces so practical program delivery is often quite
device-specific, as the microwave example shows. Predictability
concerns the means of knowing how an open API will be used,
or mis-used, by a third party vendor. For example, an operator
entering a microwave recipe is likely to see an error in a recipe
that recommends heating for 30 hours rather than 30 minutes,but a
program in a barcode may not receive a similar sanity check bythe
operator.

This paper describes a prototype implementation of our architec-
ture, together with some experiments and alternatives for various
steps. We created a simple microwave oven interface for Javaand
coded several programs using this interface. Our programs were
based on typical recipes we found, but we augmented them with
various enhancements that would not be feasible if the operator
had to key in the recipe. We studied the problem of predictingre-
source usage of these programs by expressing desired properties in
linear temporal logic and checking them with the model checking
tool Spin. We used off-the-shelf compression and barcode encod-
ing techniques to represent the programs, and set up a systemto
read the code and execute it on a laptop simulating a microwave
oven.

Using barcodes printed on food packages to deliver programs
seems natural for microwaves. In fact, there have been many sim-
ilar proposals in recent years to enhance programmability of mi-

crowaves. One proposal envisions using a 10 digit number as a
program, and a recently-marketed product uses a triple of num-
bers for programs. However, such programs must be very simple
and cannot easily be adapted to the evolution of the devices they
program, such as the addition of new sensors and actuators not en-
visioned when the original code was written. Our architecture uses
barcodes to carry programs written in general purpose languages—
Java byte-code in our experiments, and thus, provides flexibility.
Two-dimensional barcodes have a capacity of 1-2 KB, and our ex-
periments indicate that reasonably interesting recipes can be com-
pressed using off-the-shelf utilities likegzip to meet this resource
constraint.

Concerning predictability, our experiments show feasibility of
applying existing formal verification technology to formulate and
verify safety properties such as establishing the the totalcooking
time for a given recipe does not exceed a specified limit. Unlike
typical applications of model checking, our programs are sequential
and non-determinism arises almost exclusively from operator ac-
tions, not from concurrent interleaving. Applying a model checker
like Spin requires significant effort in manually translating the Java
recipes into the modeling language of Spin, as well as in formulat-
ing the assumptions about the environment. However, blow-up in
computational requirements seems to be less critical in ourcontext,
and there is potential for developing domain-specific verification
tools that are applicable directly to the source code.

The remaining paper is organized as follows. The second sec-
tion discusses some of the relevant language issues. The third and
fourth sections discuss methods related to predictabilityand deliv-
ery respectively. We provide more details about our prototype and
experiments in the fifth section. The sixth section summarizes con-
clusions and discusses future work.

2. PROGRAMMING LANGUAGES
Naturally, our recipe programs need to be written in some pro-

gramming language. General purpose programming languageshave
evolved to have high degrees of modularity that help manage soft-
ware complexity. At the same time, domain-specific languages
have been created that adapt modularity to their own particular
needs. We therefore have a rich field of language features to choose
from in selecting an appropriate language for our programs.

Languages with high degrees of modularity like Java [3](seealso
http://java.sun.com/) have evolved to support resource-
rich platforms where the constraints on timing and computational
power are fairly generous. This modularity, along with their pop-
ularity, makes general purpose languages an attractive choice for
taking advantage of open APIs. This explains the excitementthat
is driving the development of theMicro Edition(http://java.
sun.com/j2me/) of Java, known as J2ME. J2ME attempts to
constrain Java in order to allow it to run on devices with limited
resources, while leaving the core features of Java intact.

Another strategy is to choose a language that has been designed
with embedded systems in mind. Programs for embedded systems
typically focus on reacting to the environment instead of trans-
forming data. Consequently, languages that can express interrupt
handling and real-time operations elegantly will be a good match.
We discuss Esterel, a language for reactive systems, below.The
Functional Reactive Programming(FRP) family of languages uses
a declarative syntax to program reactive systems. Variantsof FRP
has been used for animation [11] and real-time embedded systems [18].

Our language should have two additional features. It shouldal-
low, or even enhance, the predictability and deliverability of its pro-
grams. These issues are discussed in general terms in Sections 3
and 4, respectively. It is worth noting mentioning here, however,

1. Make 1 inch slit in plastic
2. 50% power for 5 minutes
3. Remove plastic overwrap
4. Rotate tray 1/2 turn
5. 100% for 1:45

Figure 1: A microwave recipe for enchiladas.

public static void run(Microwave inMicro) {
inMicro.display("Make 1 inch slit in plastic");
inMicro.resetCookTime();
while (inMicro.getCookTime() < 300) {

try {
inMicro.cook(50, 300 - inMicro.getCookTime(), true);

} catch (PauseException pe) {
try {

inMicro.decrementCookTime(1);
} catch (StartException se) {

//loop again
}

}
}
inMicro.display("Remove Overwrap");
if (!inMicro.canRotate()) {

inMicro.display("Rotate tray 1/2 turn");
}
inMicro.resetCookTime();
while (inMicro.getCookTime() < 105) {

try {
inMicro.cook(100, 105 - inMicro.getCookTime(), true);

} catch (PauseException pe) {
try {

inMicro.decrementCookTime(1);
} catch (StartException se) {

//loop again
}

}
}

}

Figure 2: The enchilada recipe in Java.

that the choice of the language must take account of the language’s
implications for predictability and deliverability.

What would be an appropriate programming language for high
level programming of embedded processors? The question is hard
to answer in absolute generality, but some range of requirements
can be explored in our ongoing case study of programmable mi-
crowave ovens. Consider the enchilada recipe from Figure 1 and
suppose it was to be delivered as high-level code. One possibility
is to create a recipe scripting language. This has many advantages
for usability, but domain-specific languages have the disadvantage
of being, well, domain specific. We therefore explore a greater level
of generality first.

Java is a possible choice. Java is increasingly popular and the
J2ME variant of Java is explicitly targeted to run on deviceswith
few resources. Figure 2 shows the same enchilada recipe as a pro-
gram in Java based on a small (conjectural) microwave objectcapa-
ble of performing operations like cooking and displaying. The pro-
gram additionally illustrates the potential for enhancements when
the program does not need to be keyed in by the user. In partic-
ular, it has two features not present in the English recipe: if the
microwave has a rotating turntable then step 4 is skipped, and if
the user pauses the cooking (by opening the oven door or press-
ing a ‘pause’ button) the program will increase the total cooking
to account for the food cooling while the oven is paused. Thisex-
tra functionality could certainly be added to the English recipe, but
such a complex recipe would be burdensome for the user.

Another possibility is to choose a language that was designed
for programming reactive systems. For example, Esterel [6,12]
(see alsohttp://www-sop.inria.fr/meije/esterel/
esterel-eng.html) is a language for synchronous program-
ming of reactive systems. The enchilada recipe is given in Esterel
in Figure 3. This recipe also skips step 4 if the oven is capable of ro-
tating the food on its own. In order to make the program concise we

input Pause, Start, CanRotate;
ouput Power:integer, Rotate;
signal CookTime : integer in
display("Make 1 inch slit in plastic wrap");
await Start;
abort

loop
abort

sustain Rotate || sustain Power(50)
|| every Second do

emit CookTime(1 + pre(?CookTime)
end every

when Pause
await Start;

end loop
when CookTime = 300
display("Remove plastic overwrap");
present CanRotate else

display("Turn tray 1/2 turn");
end
emit CookTime(0);
await Start;
abort

loop
abort

sustain Rotate || sustain Power(100)
|| every Second do

emit CookTime(1 + pre(?CookTime)
end every

when Pause
await Start;

end loop
when CookTime = 105

Figure 3: The enchilada recipe in Esterel.

do not account for food cooling while the oven is paused—adding
this functionality is simple.

If we compare the two programs we can see some advantages and
disadvantages of each language. In Java, programs are divided into
objects which are manipulated using methods. The recipe controls
the microwave by invoking thecook() method, for example, and
therefore passing control to the microwave object. The recipe must
then trust the microwave object to rotate the turntable, setthe power
level, and intercept signals from the user interface. The recipe has
no control while thecook method is executing, so all the param-
eters relevant to the cook operation must be grouped as arguments
to the method. The Esterel program allows finer grain controlthat
suits the real-time operation of the microwave. The microwave is
controlled by settingsignalssuch asRotate andPower. Signals
can be manipulated in parallel. For example, a recipe that called
for cooking at 80% power for 20 seconds while only rotating for
the first 10 seconds could be written as Figure 4a. The equivalent
Java code fragment, shown in Figure 4b, would require two calls to
thecookmethod (the third argument ofcook determines whether
the turntable should rotate), requiring the developer to repeat the
power setting even though it has not changed. On the other hand,
the Java code fragment is more concise (though this is partlybe-
cause some of the functionality has been moved inside thecook
method) and more natural for most programmers.

In our current prototype we have chosen to use Java. We feel that
its popularity and the availability of tools outweighs the awkward-
ness of representing real-time programs.

3. PREDICTABILITY
A computer program should do things it is supposed to do, and

only those things. In general, it is notoriously difficult toascertain
that a given program meets a specification. Many embedded de-
vices have actuators that can manipulate the physical environment
so it is especially frustrating, even dangerous, when a program de-
viates from its intended behavior. Unlike general purpose comput-
ers, many embedded devices offer a very limited interface totheir
users, making it difficult to diagnose and work around program er-
rors. Programs that control embedded systems are thereforegood
candidates for analysis techniques that make programs predictable.

In the case of our recipe program, we would like to know that

abort
sustain Power(80)
|| every Second do

emit CookTime(1
+ pre(?CookTime)

end every
|| abort

sustain Rotate
when Cooktime = 10

when CookTime = 20

(a)

inMicro.cook(80, 10, true);
inMicro.cook(80, 10, false);

(b)

Figure 4: (a) Esterel code fragment. (b) Java code fragment

it will behave as intended for all environments and users. Specif-
ically, we would like to know the following: 1. Will the program
terminate? 2. Will the food be cooked for at least 405 seconds? 3.
What is the maximum power that will be applied to the food?

Formal methods[9] techniques model programs as mathemati-
cal structures which can then be reasoned about mathematically.
Model checking[8] is a formal methods technique that explores
all possible configurations of a finite-state system. With the three
questions listed above in mind, we examined Spin [13],an off-the-
shelf model checking tool.

Spin is a formal verification tool that analyzes a system by ex-
ploring all its possible states. Spin is a mature tool so it isrelatively
fast and easy to use. Spin’s input must be in the form of Promela
programs so we had to manually translate our Java program into
Promela.

The Java program of Figure 2 is sequential so we do not need to
worry about race conditions that arise when two or more threads are
interleaved. The nondeterminism comes from the user’s actions—
when and how often the user pauses and restarts the microwave.
Our Promela model includes a simple process that simulates auser.

In a simple sense the answer to our first question is no: a patho-
logical user can always pause the microwave until the food has
cooled so much that it needs to be re-cooked for the full 405 sec-
onds. A more precise statement of the question would be “will
the recipe terminate if the user eventually stops pausing the mi-
crowave?” We augmented our user simulation process so that it
would randomly switch into a dormant state where it would stop
pausing the microwave. We then constructed a linear temporal
logic (LTL) expression, ‘2(user_stop→ 3recipe_finished)’,
which encodes our more precise question. Spin verified that the
Promela program satisfied the LTL expression. The verification re-
quired 35 megabytes of memory and 1.03 million states were vis-
ited.

Answering our second question required further changes to the
Promela model. We added a new variable that counts the numberof
seconds of cooking that have taken place. If this counter is added
naively then state space becomes infinite—a user can always keep
the food cooking for ever, driving the counter arbitrarily high. To
overcome this we had to explicitly limit this counter to an arbitrary
maximum level. This made the state space finite but it was still too
large to search efficiently so we were forced to use an abstraction
of our recipe in which each clock tick corresponds to three seconds
instead of one. Spin was able to verify that in this abstract model
the recipe would always cook the food for at least 405 seconds. The
verification required 192 megabytes and visited 5.92 million states.
We used a Promela assertion to ensure the cooking time was at least

405 seconds.
Our final question dealt with the maximum power used to cook

the food. As was the case for the first question, we need to rephrase
this more precisely as “What is the maximum power that will be
applied to the food once the user stops pausing the microwave?”
In fact, we answered a related question: “will the food be cooked
for no more than 405 seconds once the user stops pressing pause?”
It would be convenient if Spin could find the maximum amount of
time exerted, but we know of no way of finding this maximum short
of guessing a maximum and trying it. We modified the counter used
above so that it would only increment once the user stopped inter-
fering. We then verified that the counter was no greater than 405
for all states. The verification required 36 megabytes and visited
0.94 million states.

Spin was able to answer all three questions we posed about our
program, although some of the analysis required us to use a coarser
model of time than we had used initially. The advantages of Spin
are its speed and flexibility—constructing and analyzing the model
involved some careful thought but the task was mostly straightfor-
ward. However, it would be more convenient to use a tool which
could take the original program as input; the translation toPromela
is error prone, and problems found in the Promela model may not
correspond to problems in the original program. An additional
problem with Spin was the need to tune the model in order to reduce
the state space—it is not always clear whether this tuning changes
the fundamental behavior of the model, rendering the analysis ir-
relevant.

4. DELIVERABILITY
There is a class of embedded devices for which network connec-

tivity is currently either optional, sporadic or impractical. The ob-
vious solution may seem to be traditional media such as flash cards,
floppy disks and CDs. Floppy disks, for example, have the advan-
tage of being both familiar and of moderate cost. Yet for somede-
vices, these may not be be feasible. In the case of prepackaged food
for programmable microwave ovens, price constraints limitthe me-
dia cost to a few cents, and the fact that it must be included with the
package means that it has to withstand sub-freezing temperature. It
must also be convenient enough to use by people uncomfortable
with technology such as the elderly. We believe that barcodes pro-
vide a viable solution in such situations as the media is extremely
cheap, reliable and easy to use. In the rest of this section weshall
explore barcodes as means for the delivery of Java bytecode as well
as how compression technology can aid in this task.

4.1 Barcodes
Barcodes are interesting because of their low price and conve-

nience. The most common barcode formats are linear codes. The
information is represented linearly and vertical redundancy is used
to compensate for printing defects and damage while in use. Linear
barcodes based on the Universal Product Code (UPC-A) [10] stan-
dard are widely used in grocery checkout lines. These use nine
to eleven decimal digits and essentially provide an index into a
database connected to the reader and cash register. Other linear
codes such as Code 39 [2] or Code 128 [1] hold about thirty bytes.
The data capacity for linear barcodes is clearly insufficient for de-
livering programs which has led us to investigate a more recent
development in barcode technology—2D barcodes.

As linear barcodes have become almost ubiquitous, there has
been a growing desire to store more information in barcode for-
mat. This is particularly true in situations where databaselookups
are impractical and has led to the development of 2D codes. Asthe
name indicates, 2D barcodes store information in both the vertical

Tool Enchilada (894 Bytes) Collection (2498 Bytes)
None 100% 100 %
gzip 72% 51 %
jar 180 % 96 %
Pack 60 % 27 %
Sequitur 75 % 54 %

Table 1: Comparison of Compression Programs.

and horizontal dimensions much the way the letters in the alpha-
bet or pictures use both dimensions to communicate information.
Since one dimension can no longer be used for redundancy, error
correction coding techniques are usually employed. Thoughthere
are many proposed 2D standards, the following are representative
of those that have gained industrial acceptance: Aztec codeholds
1.9KB [5]; Xerox’s DataGlyph (http://www.dataglyphs.
com/) holds 1KB per sq inch; Data Matrix holds a maximum
of approximately 2KB per symbol [4]; Datastrip (patent number
4,782,221) holds a maximum of 1KB per square inch. While the
storage capacity for these formats may seem modest, with theaid of
compression, a large class of useful programs may be delivered via
this medium. There are also several commercial tools on the mar-
ket that can convert both binary and text files into two dimensional
barcode formats. Figure 5 shows the Java class file for the enchi-
lada recipe program given in Aztec and DataGlyph formats. The
former was generated by B-Coder from TAL Technologies Inc. and
the latter by Xerox’s GlyphServer atwww.dataglyphs.com.

A drawback to the use of 2D barcodes is that they require a
somewhat more sophisticated reading device than the one dimen-
sional case; they are usually Charged Coupled Devices (CCD). The
prices for industrial-strength hand-held CCD 2D bar-code scanners
is currently around $250.00. Less sturdy devices are available at
lower prices. In general prices will probably decline somewhat
with greater adoption and advances in CCD technology.

4.2 Compression
In order to decrease the burden imposed by the size constraints

associated with using barcodes, we have been investigatingcom-
pression of small Java programs. The desire to compress Javapro-
grams has been around almost as long as the language and was
usually driven by limited network bandwidth. Unfortunately, many
of the ideas that have emerged for compressing Java programsare
not applicable to the embedded environment. Since embeddedde-
vices have limited resources, delivery of source code entailing Just-
in-Time (JIT) compilation on the device is probably impractical in
most causes because of the large memory footprint required.Hence
we do not consider compressing source code or proposals suchas
delivering source code as compact abstract syntax trees [17]. We
also ruled out schemes (such as [15], which is targeted for com-
pressing code for embedded systems, or [14]) that alter the KVM
or JVM or involve new representations, since these are not likely to
gain wide acceptance in the near term. Most such proposals donot
have available implementations anyway.

We can report results for the following compression tools: (1)
GNU gzip, (2) jar, which uses zip, (3) Pack [16], which is cus-
tomized for Java bytecode, and (3) SEQUITUR [7], which uses
hierarchical grammars. These were applied to the Java program
given in Figure 2. We calculated the effect of each program ona
collection of small class files. The results are reported in Table 1.
Based on this small experiment, Pack seems to be the most effec-
tive, probably because it is optimized for Java bytecode.

One aspect of our architecture that we suspect will occur in many

(a)
(b)

Figure 5: Enchilada Program as (a) Aztec Barcode and (b) Xerox DataGlyph. The DataGlyph format allows images to be embedded
in the barcode—we embedded the University of Pennsylvania logo.

other application domains is that programs for a particularem-
bedded device will have similar structure. For example, allthe
programs for Microwave ovens are recipes. We believe that this
fact can be exploited to gain an improvement over most dictionary
schemes. The idea is to build a dictionary from a corpus of sam-
ple programs. This dictionary is stored at both the compression
and decompression locations and used by both algorithms. Aspart
of a simple experiment we created such a dictionary using a basic
implementation of the LZ78 algorithm [19]. This algorithm was
then modified to use the new dictionary. A 15% improvement was
achieved over the original algorithm. We believe that this indicates
that the idea has promise.

5. PROTOTYPE ARCHITECTURE
We have implemented a prototype of our proposed architecture.

The prototype includes a set of Java classes that form an API to the
microwave oven. A recipe developer’s program uses these classes
to access and respond to the microwave. Different microwaveovens
manufacturers will support this API, though manufacturerscan cus-
tomize the implementation details according to the capabilities of
the oven.

Once the recipe program is written in Java it is manually trans-
lated into Promela, Spin’s input language. The recipe developer
verifies that the recipe behaves as intended by constructingap-
propriate linear temporal logic properties and assertionsfor the
Promela recipe, annotating the recipe with extra variablesas nec-
essary. Spin’s exhaustive search will find any anomalies in the
recipe and display an execution sequence that demonstratesthe
anomaly. If the anomaly is due to a bug in the original Java recipe
that recipe and its Promela model must be updated to fix the bug.
If the anomaly is due to a discrepancy between the Java recipeand
the Promela model the model must be updated to bring the model
in line with the original Java recipe.

When Spin shows that a recipe satisfies the necessary properties
the Java version of the recipe is compiled to a class file. The class
file is compressed using gzip (our system also supports Pack)and
converted to an Encapsulated PostScript (EPS) containing Aztec
barcode. The EPS file is then printed using a normal laser printer.

We used a Linux workstation with an attached barcode scannerto
simulate a microwave oven. The workstation runs a Perl script that
takes input from the barcode scanner, decompresses it, and links
it to a Java program that displays a mock-up microwave. A user
can interfere with the mock-up by opening and closing doors,and

pausing and restarting the cooking.
We exercised our prototype system with three microwave recipes,

chosen from actual frozen food packages. All three recipes were
encoded as barcodes and run on our microwave simulator, though
only one recipe was analyzed using Spin.

We used the compiler and virtual machine from Sun’s JDK1.3.1
for all the steps where we used Java. The recipe analysis was per-
formed using Spin 3.4.13 and Xspin 3.4.7 on a workstation run-
ning RedHat Linux 7.2. The workstation had 512 megabytes of
RAM and a 1.5 GHz Pentium 4 processor. A discussion of the
analysis can be found in Section 3. The class file of the recipe
was compressed using gzip 1.3 and then converted to an Aztec
barcode using B-Coder from TAL Technologies version 4.0. The
microwave simulator ran on a workstation with 80 megabytes of
RAM, a 166MHz Pentium MMX processor and an Imageteam 4410
barcode scanner, running RedHat 6.2.

The recipes, Java classes and Promela models are available at
http://www.cis.upenn.edu/sdrl/mirl.

6. CONCLUSION
The main contribution of this paper is our experimental proto-

type which demonstrates feasibility of delivering verifiedprograms
in barcodes. Such a set up can be used for open API for controlling
myriad of devices from home appliances to medical devices.

We have shown that existing off-the-shelf model checkers like
Spin are capable of analyzing the kind of small programs we envi-
sion running on top of embedded systems. Unfortunately, Spin re-
quires translating a program into an input language like Promela—
an error-prone process that may lead to a model that does not cor-
respond to the original program, and we would like to develop
domain-specific tools that can analyze source code.

Finally, while we have not assumed any network connectivityfor
our prototype, there are interesting architectural possibilities com-
bining barcodes with network access. We plan to explore suchal-
ternative architectures in the future.

7. ACKNOWLEDGMENTS
This research was supported in part by NSF award CCR 0208990,

NSF award ITR/SY 0121431, and ARO URI award DAAD19-01-
1-0473.

8. REFERENCES

[1] I. 15417:2000. Automatic identification and data capture
techniques - bar code symbology specification - code 128.
Technical report, International Standards Organizatiopn,
2000.

[2] I. 16388:1999. Automatic identification and data capture
techniques -bar code symbology specifications – code 39.
Technical report, International Standards Organization,1999.

[3] K. Arnold, J. Gosling, and D. Holmes.The Java
Programming Language. Addison-Wesley, Reading, MA,
USA, third edition, 2000.

[4] A. BC11-ISS. Data matrix. Technical report, AIM, 1996.
[5] A. BC13-ISS. Aztec code. Technical report, AIM, 1997.
[6] G. Berry and G. Gonthier. The synchronous programming

languageESTEREL: design, semantics, implementation.
Technical Report 842, INRIA, 1988.

[7] D. M. C. Nevill-Manning, I.H. Witten. Compression by
induction of hierarchial grammars. In J. A. Storer and
M. Cohen, editors,Proceeding Data Compression
Conference, pages 244–253. IEEE Press, 1994.

[8] E. Clarke and R. Kurshan. Computer-aided verification.
IEEE Spectrum, 33(6):61–67, 1996.

[9] E. Clarke and J. Wing. Formal methods: State of the art and
future directions.ACM Computing Surveys, 28(4):626–643,
1996.

[10] U. C. Council. Ansi/ucc1-2000:u.p.c. symbol specification
manual. Technical report, American National Standards
Institute, 2000.

[11] C. Elliott and P. Hudak. Functional reactive animation. In
Proceedings of the ACM SIGPLAN International Conference
on Functional Programming (ICFP ’97), volume 32(8),
pages 263–273, 1997.

[12] N. Halbwachs.Synchronous Programming of Reactive
Systems. Kluwer Academic Publishers, 1993.

[13] G. Holzmann.Design and Validation of Computer Protocols.
Prentice-Hall, Englewood Cliffs, New Jersey, 1991.

[14] T. Kistler and M. Franz. A tree-based alternative to java
byte-codes.International Journal of Parallel Programming,
27(1):21–34, January 1999.

[15] C. C. L. Clausen, U. Oagh-Schultz and G. Muller. Java
bytecode compression for low-end embedded systems.ACM
Transactions on Programming Languages, 22(3):1–19, May
2000.

[16] W. Pugh. Compressing java clas files. InACM Sigplan
Conference on Programming Language Design and
Implementation, pages 247–258. ACM Press, 1999.

[17] C. Stork and V. Haldar. Compressed abstact syntax treesfor
mobile code. InProceeding of Workshop on Intermediate
Representation Engineering, 2001.

[18] Z. Wan, W. Taha, and P. Hudak. Real-time FRP. In
International Conference on Functional Programming
(ICFP ’01), Florence, Italy, September 2001.

[19] J. Ziv and A. Lempel. Compression of individual sequences
via variable-rate coding. IEEE Transactions Information
Theory, 24(5):530–536, 1978.

	University of Pennsylvania
	ScholarlyCommons
	10-8-2002

	Predictable Programs in Barcodes
	Alwyn Goodloe
	Michael McDougall
	Carl A. Gunter
	Rajeev Alur
	Predictable Programs in Barcodes
	Abstract
	Keywords
	Comments

