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SIMULATION RELATIONS FOR DISCRETE-TIME LINEAR
SYSTEMS

Herbert Tanner and George J. Pappas

Department of Electrical Engineering
University of Pennsylvania

Philadelphia, PA 19102
tanner@grasp.cis.upenn.edu,

pappasg@ee.upenn.edu

Abstract: Simulation relations of labeled transition systems are used in theoretical computer
science in order to formally establish notions of modeling abstraction and refinement in
hierarchical systems. In this paper, we establish and characterize simulation relations for
arbitrary discrete-time, linear control systems. More precisely, given two discrete-time
systems, we consider various embeddings into labeled transition systems, that differ in
the amount of timing information that is maintained in the transition relation. For each
embedding, we obtain necessary and sufficient conditions for one discrete-time system
simulating the transitions of the other. Naturally, the simulation characterizations become
weaker as more information is abstracted away in the embedding.

Keywords: Transition systems, discrete-time systems, simulation relations, reachability,
control invariant subspaces.

1. INTRODUCTION

Theoretical computer science, and, in particular, the
areas of concurrency theory (Milner, 1989), and com-
puter aided verification (Manna and Pnueli, 1995)
have established formal notions of abstraction and
model refinement which are used to tackle the ex-
ponential explosion arising in the formal analysis
and design of purely discrete systems. In the control
community, similar notions have been considered in
the hierarchical, supervisory control of discrete event
systems (Caines and Wei, 1995; Wong and Won-
ham, 1995), and hybrid systems (see surveys by Alur
et al. (2000) and Koutsoukoset al. (2000)).

Simulation relations of labeled transition systems is
one such formal notion of abstraction (Milner, 1989).
Roughly, transition systemT2 simulates transition sys-
temT1, if every transition taken byT1 can be matched
by a similar transition taken byT2. SystemT2 may,
however, contain transitions infeasible inT1 and thus
overapproximates the transitions ofT1. Simulation re-

lations are used in order to establish modeling consis-
tency between various levels of hierarchical systems,
as transitions of the coarser (higher level) systemT1
can be matched by the more complicated (lower level)
systemT2. In the case whereT2 is smaller in size than
T1, simulation relations allow reducing the complexity
of T1, as it is sufficent to analyzeT2.

As mentioned in van der Schaft and Schumacher
(2001), simulation relations have escaped the world
of purely continuous systems. More recently, a no-
tion of simulation was introduced for continuous-time
systems in Pappaset al. (2000). Given a continuous
system and quotient map, a formal construction was
provided for extracting quotient systems that simu-
lated the trajectories of the original system. Further-
more, we characterized linear quotient maps that pre-
serve control theoretic properties such as controllabil-
ity (Pappaset al., 2000), and stabilizability (Pappas
and Lafferriere, 2001). Similar results have also been
established for nonlinear systems in Pappas and Simic
(2001).



In this paper, we consider for the first time simulation
relations forany two discrete-time linear systems in
the exact sense that the notion is used in theoreti-
cal computer science. More precisely, given any two
discrete-time linear control systems, we consider a
variety of labeled transition systems that are gener-
ated by the linear systems. In particular, we consider
timedand time-abstracttransition systems generated
by linear systems, depending on whether we wish to
maintain or ignore timing information as labels on the
transitions. In all cases, however, we abstract away
control information, in contrast to model reduction
results which reduce systems while preserving control
input information (Aoki, 1968).

Given two discrete-time systems and the associated
embeddings into transition systems, we obtain neces-
sary and sufficient conditions under which one system
simulates the transitions of the other. The more infor-
mation that is abstracted away in the embedding, the
weaker the conditions become. In the special case of
surjective simulation relations, we obtain as a corol-
lary the discrete-time analogues of the results in Pap-
paset al. (2000).

In Section 2 we briefly review simulation relations for
labeled transition systems. In Section 3, we embedd
discrete-time linear systems into various transition
systems, and in Section 4 we characterize simulation
relations for transition systems generated by linear
systems. Section 5 contains various special cases of
the main results.

2. SIMULATIONS OF LABELED TRANSITION
SYSTEMS

In this section we review the standard definitions of
simulation relations for transition systems (Milner,
1989).

Definition 2.1. A labeled transition system is a tuple
T = (Q,Σ,−→) that consists of:

• A (possibly infinite) set Q of states,
• A (possibly infinite) setΣ of labels,
• A transition relation−→⊆ Q×Σ×Q,

The transition(q1,σ ,q2) ∈−→ is commonly denoted

asq1
σ−→ q2. The transition system is calledfinite is Q

andΣ are finite, andinfinite otherwise. Aregion is a
subsetP⊆Qof the states. Theσ -successorof a region
P is defined as the set that can be reached fromP with
oneσ -transition. More precisely,

Postσ (P) = {q∈ Q | ∃p∈ P with p
σ−→ q} (1)

Simulation relations between transition systems are
used to formally define when one transition system
implements another.

Definition 2.2. Let T1 = (Q1,Σ,−→1) andT2 = (Q2,
Σ,−→2) be two transition systems over the same label
setΣ . The relationS⊆ Q1×Q2 is called a simulation
relation if for all (q1,q2) ∈ S, the following property
holds:

• if q1
σ−→ q′1, then there existsq′2 ∈ Q2 with

q2
σ−→ q′2 and(q′1,q

′
2) ∈ S

If such a simulation relation exists, thenT2 simulates
(or implements)T1, since every transition taken by
T1 can be matched byT2. Note that the label setΣ
is common to both transition systems. In generalT2
may have many more transitions, and may be a much
more complicated system. Transition systemT1 can
also serve as a more abstract description of transition
systemT2.

In terms of σ -successors, Definition 2.2 can be
rephrased as.

Definition 2.3. Transition systemT2 simulatesT1 iff
for all (q1,q2) ∈ Sand for allσ ∈ Σ we have

∀q′1 ∈ Postσ (q1),∃q′2 ∈ Postσ (q2) : (q′1,q
′
2) ∈ S.

The goal of this paper is to establish simulation rela-
tions for linear systems. In order to achieve this, we
must relate the world of linear systems with the world
of transition systems.

3. EMBEDDING LINEAR SYSTEMS INTO
TRANSITION SYSTEMS

Every discrete-time linear system can be embedded
into various labeled transition systems. We consider
various embeddings that differ in the amount of timing
information retained or abstracted away on the transi-
tions. For each embedding, the semantics (and even-
tually the characterization) of the simulation relation
will be different.

Consider discrete-time, linear control systems:

∆ : xk+1 = Axk +Buk (2)

with time k ∈ N+, statexk ∈ R
n, control uk ∈ R

m,
and matricesA, B of appropriate dimension. From
linear systems theory (Wonham, 1985), we know that
given an initial conditionx0 at time zero, and an input
sequence{ui}k−1

i=0 = {u0,u1, . . . ,uk−1}, then the state
xk at timek is

xk = Akx0 +
k−1

∑
i=0

Ak−i−1Bui (3)

The first embedding of discrete-time systems into
control systems maintains only transitions that happen
in one time step, abstracting away the control that was
used for the transition.

Definition 3.1. The one-step transition systemT1
∆ =

(Q,Σ,−→) generated by∆ consists of:



• State spaceQ = R
n,

• Unique labelΣ = {1},
• Transition relation−→⊆ Q×{1}×Q with

x
1−→ x′ ⇔ ∃u such thatx′ = Ax+Bu

The transitions of the one-step transition system natu-
rally correspond to evolution of the discrete-time sys-
tem in one time step (hence the unique label 1 on the
transitions). Furthermore, the transitions of Definition
3.1 arecontrol abstractin the sense that the transi-
tion system does not care which particular controlu
is responsible for the transition of the discrete-time
system.

There are two natural variations of Definition 3.1. The
first variation maintains not only 1-step transitions, but
also k-step transitions for anyk ∈ N+, whereas the
second variation does not care how many time steps
are needed for a transition.

Definition 3.2. The timed transition systemTN+
∆ =

(Q,Σ,−→) generated by∆ consists of:

• State spaceQ = R
n,

• Label setΣ = N+,
• Transition relation−→⊆ Q×N+×Q with

x
k−→ x′ ⇐⇒ ∃{ui}k−1

i=0 such that

x′ = Akx+
k−1

∑
i=0

Ak−i−1Bui

More intuitively, there exists a transitionx
k−→ x′ if

there is an appropriate sequence of control inputs
{ui}k−1

i=0 that in exactly ktime steps will result in the
discrete-time system∆ reaching statex′ from statex.

Contrary toTN+
∆ which maintains all timing infor-

mation, the following transition system does not care
about the exact number of time steps needed to reach
a state. Since it abstracts away timing information, it
is called a time-abstract transition system.

Definition 3.3. The time-abstract transition system
Tτ

∆ = (Q,Σ,−→) generated by∆ consists of:

• State spaceQ = R
n,

• Unique labelΣ = {τ},
• Transition relation−→⊆ Q×{τ}×Q with

x
τ−→ x′ ⇐⇒ ∃k∈ N+ ∃{ui}k−1

i=0 such that

x′ = Akx+
k−1

∑
i=0

Ak−i−1Bui

In other words, a transitionx
τ−→ x′ occurs if x′ is

reachable fromx in any number of steps by an ap-
propriate sequence of control inputs. Therefore,Tτ

∆ is
both time-abstract and control-abstract.

4. SIMULATION CHARACTERIZATIONS

Consider two discrete-time linear systems,∆1 and∆2
of the form,

∆1 xk+1 = Axk +Buk, x∈ R
n,u∈ R

m (4)

∆2 zk+1 = Fzk +Gvk, z∈ R
r ,v∈ R

s (5)

where A,B,F, and G are of appropriate dimension.
Both linear systems,∆1 and∆2 generate the transition
systems described in Section 3. We are now inter-
ested in determining necessary and sufficient condi-
tions on the discrete time systems under whichT1

∆2

simulatesT1
∆1

, TN+
∆2

simulatesTN+
∆1

, andTτ
∆2

simulates

Tτ
∆1

. Clearly, different embeddings will result in differ-
ent characterizations.

The simulation relations that we shall consider in this
paper are of the formS⊆ R

n×R
r where

(x,Hx+y) ∈ S⊆ R
n×R

r , y∈ Y (6)

whereH∈R
r×n is an arbitrary linear map, and Y⊆R

r

is a subspace. The relationS can be regarded as a
set valued map assigning to eachx∈ R

n an affine set
Hx+Y ⊆ R

r .

The structure of the relations (6) considered in this
paper captures at least two important cases. In the
first case, whereY = 0 and the mapHx is surjective,
we are interested in simulating the transitions of∆1
by a system∆2, which should be smaller in size,
thus performing complexity reduction. In the second
case, where the mapHx is injective andY = R(H)⊥,
we are interested in the more complicated system∆2
simulating the transitions of the simpler system∆1,
thus refining the transitions from the simpler to the
more complicated model.

Theorem 4.1.(One-Step Simulation). Consider discrete
time systems∆1 and∆2 given in equations (4, 5), and
a relationSof the form (6). ThenT1

∆2
simulatesT1

∆1
if

and only if

R(HA−FH)+R(HB)⊆R(G)+Y (7)

FY ⊆ Y +R(G) (8)

Proof: By definition, ∆2 one-step simulates∆1 with
respect to the relationS iff ∀(x,z) ∈ S:

∀x′ ∈ Post1(x),∃z′ ∈ Post1(z) : (x′,z′) ∈ S.

Given the structure ofSwe have∀(x,z) ∈ S:

∀x′ ∈ Post1(x),∃y1 ∈ Y: z′ = Hx+y1 ∈ Post1(z).

Substituting the Post1 operators for the one-step tran-
sition systems generated by∆1 and∆2, the above be-
comes:∀(x,z) ∈ S,∀u∈ R

m,∃y1 ∈ Y,∃v∈ R
s:

Fz+Gv = H(Ax+Bu)+y1

and since(x,z) ∈ S⇔ z= Hx+Y, then∀x∈ R
n:

F(H+y2)+Gv = H(Ax+Bu)+y1



Collecting terms and eliminating the quantifiers:

R(HA−FH)+R(HB)+FY =R(G)+Y (9)

which is a necessary and sufficient condition for sim-
ulation, derived from the definition. We proceed to
show that (7)-(8) are equivalent to (10)

(⇒): from condition (8) we get that∀y ∈ Y,∃v1 ∈
R

s,∃y1 ∈ Y: Fy = Gv1 +y1. Similarly, from (7),∀x∈
R

n,∀u∈R
m,∃v2 ∈R

s,∃y2 ∈Y: (HA−FH)x+HBu=
Gv2+y2. Adding these equalities yields∀x∈ R

n,∀u∈
R

m,∀y∈ Y,∃v1,v2 ∈ R
s,∃y1,y2 ∈ Y:

(HA−FH)x+HBu+Fy= G(v1 +v2)+ (y1 +y2)

and since Y is a subspace we can write that∀x ∈
R

n,∀u∈ R
m,∀y1 ∈ Y,∃v∈ R

s,∃y2 ∈ Y:

(HA−FH)x+HBu+Fy1 = Gv+y2

which by eliminating the quantifiers becomes:

R(HA−FH)+R(HB)+FY ⊆R(G)+Y

(⇐): From (10), sincex, u andy2 belong to subspaces
we can have:

(1) for y1 = 0 ⇒ ∀x,∀u,∃v,∃y2 : (HA − FH)x +
HBu = Gv + y2 ⇒ R(HA − FH) +R(HB) ⊆
R(G)+Y,

(2) for x= 0,u= 0⇒∀y1,∃v,∃y2 : Fy1 = Gv+y2 ⇒
FY ⊆R(G)+Y.
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Notice that condition ( 7) relates the system dynamics
and control of the two systems in question, whereas
condition ( 8) is a condition only on system∆2 and the
simulation relationS. This is because the dynamics on
theY subspace have meaning only in the the∆2 system
which may contain more states that∆1.

Since the transitions ofT1
∆1

generate the transitions of

TN+
∆1

, it should come as no suprise that simulating 1-

step transitions is necessary and sufficient to simulate
k-step transitions.

Theorem 4.2.(Timed Simulation). Consider the dis-
crete time systems∆1 and∆2 given in equations (4, 5),
and a relationS of the form (6). ThenTN+

∆2
simulates

TN+
∆1

iff conditions (7)-(8) are satisfied:

R(HA−FH)+R(HB)⊆R(G)+Y

FY ⊆ Y +R(G)

Proof: By definition, the necessary and sufficient con-
dition for ∆2 to k-step simulate∆1 with respect to the
relationS is∀(x,z) ∈S, ∀x′ ∈ Postk(x),∃z′ ∈Postk(z) :
(x′,z′) ∈ S. After some manipulation and substitution
of the Postk operators, this condition expands to:

R(HAk−FkH)+
k−1

∑
i=0
R(HAiB)+FkY =

k−1

∑
i=0
R(FkG)+Y (10)

We show that (7)-(8) are equivalent to (10):

(⇒) : The fact that (7)-(8) imply (10) can be shown by
induction: if it holds forp = k then

Fp+1S⊆ F(
p−1

∑
i=0
R(FiG)+Y) ⊆

p

∑
i=0
R(FiG)+Y (11)

On the other hand, rewrite∑p
i=0R(HAiB) as ∑p−1

i=0
R(HAiB)+R(HApB−FpHB+FpHB) andR(HAp+1

−Fp+1H) asR(HAp+1 − Fp+1H + FpHA − FpHA).
Then, by applying the conditions assumed true for
k = p and (11), one arrives at:

R(HAp+1−Fp+1H)+
p

∑
i=0
R(HAiB)⊆

p

∑
i=0
R(FiG)+Y

(12)
By induction, (11)-(12) hold for everyk and therefore
imply (10).

(⇐): From (10) if follows :∀x∈R
n,∀y2 ∈Y,∀{ui}k−1

i=0 ∈
R

m, ∃y1 ∈ Y,∃{vi}k−1
i=0 ∈ R

s: (HAk − FkH)x+ ∑k−1
i=0

HAiBui +Fky2 = ∑k−1
i=0 FiGvi + y1. Sincex, ui andy2

belong to subspaces we can have:

(1) y2 = 0 ⇒ ∀x,∀{ui}k−1
i=0 , ∃{vi}k−1

i=0 ,∃y1: (HAk −
FkH)x+∑k−1

i=0 HAiBui = ∑k−1
i=0 FiGvi +y1 ⇒∑k−1

i=0
R(HAk−FkH)+∑k−1

i=0 R(HAiB)⊆∑k−1
i=0R(FiG)

+Y,
(2) x= ui = 0⇒∀y2, ∃{vi}k−1

i=0 ,∃y1: Fky2 = ∑k−1
i=0 FiGv

+y1 ⇒ FkY ⊆ ∑k−1
i=0R(FiG)+Y.

and since this is true for allk, it should also hold for
k = 1 in which case we have:

R(HA−FH)+R(HB)⊆R(G)+Y

FY ⊆R(G)+Y

2

In order to obtain the simulation characterizations for
the time abstract transition systems, we shall need
the following lemmas. ByR(A,B), we denote the
reachable subspace from the origin, that isR(A,B) =
Im[ B AB . . . An−1B].

Lemma 4.3.Let A ∈ R
n×n, H ∈ R

s×n, F ∈ R
r×r , G ∈

R
r×s be matrices andG full rank with s ≤ r. If,
R(HA − FH) ⊆ R(F,G), then for everyk, it holds
R(HAk−FkH) ⊆ R(F,G)

Proof: It is shown by induction: clearly it holds fork=
1. Assume it holds fork = p: ∃p,R(HAp − FpH) ⊆
R(F,G). Then sinceHAp+1 − Fp+1H = HAp+1 −
Fp+1H+FpHA−FpHA = (HAp−FpH)A+Fp(HA−
FH), it will be thatR(HAp+1−Fp+1H)⊆R((HAp−
FpH)A) +R(Fp(HA− FH)) ⊆ R(F,G) + FpR(F,G).



However, R(F,G) is F− invariant and therefore,
FpR(F,G) ∈ R(F,G). Thus,R(HAp+1 − Fp+1H) ⊆
R(F,G) and therefore by induction,∀k,R(HAk −
FkH) ⊆ R(F,G)

2

Lemma 4.4.Let Y be a subspace andF ∈ R
r×r , G ∈

R
r×s be matrices andG full rank with s≤ r. If FY ⊆

R(F,G), then for everyk, it holdsFkY ⊆ R(F,G)

Proof: It is shown by induction: obviously, it is
true for k = 1. Suppose there exists ap for which:
FpY ⊆ R(F,G). Then fork = p+1,Fp+1Y = FFpY ⊆
FR(F,G), and sinceR(F,G) is F− invariant,Fp+1Y ⊆
R(F,G). By induction we conclude that∀k∈N+,FkY ⊆
R(F,G).

2

Theorem 4.5.(Time-Abstract Simulation). Consider the
discrete time systems∆1 and∆2 given in equations (4,
5), and consider a relationSof the form (6). ThenTτ

∆2
simulatesTτ

∆1
if and only if

R(HA−FH)+HR(A,B)⊆ R(F,G)+Y (13)

FY ⊆ Y +R(F,G). (14)

Proof: By definition, for∆2 to simulate∆1 in abstract
time, with respect toS it should hold that for every
(x,z) ∈ S⇒ ∀x′ ∈ Post(x),∃z′ ∈ Post(z) : (x′,z′) ∈ S
Taking to account the structure ofS and the expres-
sion for the Post operators:∀x ∈ R

n, H
⋃

k≥0Akx+
HR(A,B)+

⋃
k≥0Fk(Hx+Y) ⊆ R(F,G)+Y. Collect-

ing terms and eliminating the quantifiers,
⋃

k≥0R(HAk−
FkH)+HR(A,B)+

⋃
k≥0FkY ⊆ R(F,G)+Y. By lem-

mas 4.3 and 4.4 this reduces to:

R(HA−FH)+HR(A,B)+FY ⊆ R(F,G)+Y (15)

Equation (15) is necessary and sufficient for∆2 to
simulate∆1 in abstract time. It remains to establish
the equivalence of (13)-(14) to (15):

(⇒): from condition (14) we get that∀y ∈ Y,∃v1 ∈
R

s,∃y1 ∈Y: Fy= Gv1+y1. Similarly, from (13),∀x∈
R

n,∀w ∈ R(A,B),∃v2 ∈ R
s,∃y2 ∈ Y : (HA− FH)x+

HBw = Gv2 +y2. Adding these equalities yields∀x∈
R

n,∀w∈ R(A,B),∀y∈ Y,∃v1,v2 ∈ R
s,∃y1,y2 ∈ Y:

(HA−FH)x+Hw+Fy= G(v1 +v2)+ (y1+y2)

and since Y is a subspace we have∀x ∈ R
n,∀w ∈

R(A,B),∀y1 ∈ Y,∃v∈ R
s,∃y2 ∈ Y:

(HA−FH)x+Hw+Fy1 = Gv+y2

which by eliminating the quantifiers becomes:

R(HA−FH)+HR(A,B)+FY ⊆R(G)+Y

(⇐): From (15), sincex∈ R
n, w∈R(A,B) andy2 ∈Y

belong to subspaces we have:

(1) for y1 = 0 ⇒ ∀x,∀w ∈ R(A,B),∃v,∃y2 : (HA−
FH)x+Hw= Gv+y2⇒R(HA−FH)+HR(A,B)
⊆R(G)+Y,

(2) forx= 0,w= 0⇒∀y1,∃v,∃y2 : Fy1 = Gv+y2 ⇒
FY ⊆R(G)+Y.

2

It is straightfoward that the simulation conditions
(13,14) in the time-abstract case are clearly weaker
that their counterparts (7, 8) in the timed-simulation
case. Therefore, as timing information is abstracted
away from the semantics of the transition systems, the
simulation conditions become weaker.

5. SPECIAL CASES

Simulation relations induce partial order relations
among transition systems. In the case where transition
systemT2 simulates transition systemT1 with simula-
tion relationS and, in addition,T1 simulatesT2 with
relationS−1, thenT1 andT2 are called bisimilar.

Consider now two discrete-time systems and a relation
Sof the form

(x,Hx) ∈ S⊆ R
n×R

r

where Hx is a surjective map (that isr < n). The
map z = Hx is therefore grouping states inRn to a
single state inRr , thus inducing a partition ofRn.
This partition aims at complexity reduction from the
original system∆1 to the quotient system∆2.

The results of the former section can be restated for
this special case in the following corollaries.

Corollary 5.1. Transition systemT1
∆2

(TN+
∆2

) simulates

T1
∆1

(respectivelyTN+
∆1

) with simulation relationS=

{(x,z) ∈ R
n×R

r |z= Hx} if and only if

R(HA−FH)+R(HB)⊆R(G) (16)

Condition (16) is the discrete-time analogue of the
notion of H-related control systems, first introduced
in Pappaset al.(2000). Given system∆1 with matrices
A, B, and surjective mapz= Hx, we can always con-
struct system∆2 and matricesF , G, so that condition
(16) is satisfied. SinceH is full-row rank, one such
choice is

F = HAH+ (17)

G= [HB HAKer(H)] (18)

With the above choice of matrices, transition system
T1

∆2
simulatesT1

∆1
. In order for T1

∆2
to be bisimilar

to T1
∆2

, T1
∆2

must also simulateT1
∆1

with relationS−1,
which has the form

(z,H+z+Ker(H)) ∈ S−1 ⊆ R
r ×R

n

Therefore, in this case, if we apply conditions (7, 8)
with Y = Ker(H) (and the roles ofA,B,H interchanged



with those ofF,G,H+) we obtain that in order forT1
∆2

to be bisimilar toT1
∆1

it is necessary that

AKer(H) ⊆ Ker(H)+R(B) (19)

In straightforward to show that for the choice of ma-
trices (17,18) this condition is the only relevant nec-
essary and sufficient condition, as (7) is automatically
satisfied.

In the time abstract case the relation naturally loosens
up since timing information is irrelavant and simula-
tion actually involves aligning the reachable sets of the
systems in question.

Corollary 5.2. Transition systemTτ
∆2

simulatesTτ
∆1

with simulation relationS= {(x,z)∈R
n×R

r |z= Hx}
if and only if

R(HA−FH)+HR(A,B)⊆ R(F,G).

6. CONCLUSIONS

In this paper we characterized simulation relations for
various transition systems generated by discrete-time
linear systems. The characterizations can be extended
to continuous-time systems, as well as to nonlinear
and hybrid systems for various transition system se-
mantics.

Of particular interest is to consider such questions for
discrete-time systems with state and input constraints.
This will allow the not only establishing consistency
between different models, but also between their re-
spective constraint sets.
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