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SIMULATION RELATIONS FOR DISCRETE-TIME LINEAR
SYSTEMS

Herbert Tanner and George J. Pappas

Department of Electrical Engineering
University of Pennsylvania
Philadelphia, PA 19102
tanner@grasp.cis.upenn.edu,

pappasg@ee.upenn.edu

Abstract: Simulation relations of labeled transition systems are used in theoretical computer
science in order to formally establish notions of modeling abstraction and refinement in
hierarchical systems. In this paper, we establish and characterize simulation relations for
arbitrary discrete-time, linear control systems. More precisely, given two discrete-time
systems, we consider various embeddings into labeled transition systems, that differ in
the amount of timing information that is maintained in the transition relation. For each
embedding, we obtain necessary and sufficient conditions for one discrete-time system
simulating the transitions of the other. Naturally, the simulation characterizations become
weaker as more information is abstracted away in the embedding.

Keywords: Transition systems, discrete-time systems, simulation relations, reachability,
control invariant subspaces.

1. INTRODUCTION lations are used in order to establish modeling consis-
tency between various levels of hierarchical systems,
as transitions of the coarser (higher level) sysigm
can be matched by the more complicated (lower level)
systemT,. In the case wherg, is smaller in size than
T,, simulation relations allow reducing the complexity
of T,, as it is sufficent to analyZg,.

Theoretical computer science, and, in particular, the
areas of concurrency theory (Milner, 1989), and com-
puter aided verification (Manna and Pnueli, 1995)
have established formal notions of abstraction and
model refinement which are used to tackle the ex-
ponential explosion arising in the formal analysis As mentioned in van der Schaft and Schumacher
and design of purely discrete systems. In the control (2001), simulation relations have escaped the world
community, similar notions have been considered in of purely continuous systems. More recently, a no-
the hierarchical, supervisory control of discrete event tion of simulation was introduced for continuous-time
systems (Caines and Wei, 1995; Wong and Won- systems in Pappast al. (2000). Given a continuous
ham, 1995), and hybrid systems (see surveys by Alursystem and quotient map, a formal construction was
et al. (2000) and Koutsoukoat al. (2000)). provided for extracting quotient systems that simu-
lated the trajectories of the original system. Further-
more, we characterized linear quotient maps that pre-
serve control theoretic properties such as controllabil-
ity (Pappaset al., 2000), and stabilizability (Pappas
and Lafferriere, 2001). Similar results have also been
established for nonlinear systems in Pappas and Simic
(2001).

Simulation relations of labeled transition systems is
one such formal notion of abstraction (Milner, 1989).
Roughly, transition systeff, simulates transition sys-
temT,, if every transition taken by, can be matched
by a similar transition taken b¥,. SystemT, may,
however, contain transitions infeasibleTp and thus
overapproximates the transitionsyf Simulation re-



In this paper, we consider for the first time simulation Definition 2.2.Let T, = (Q,%,—;) andT, = (Q,,
relations forany two discrete-time linear systems in 5, —,) be two transition systems over the same label
the exact sense that the notion is used in theoreti-setX . The relatiorSC Q, x Q, is called a simulation
cal computer science. More precisely, given any two relation if for all (q,,q,) € S, the following property
discrete-time linear control systems, we consider aholds:

variety of labeled transition systems that are gener-
ated by the linear systems. In particular, we consider 5 o
timed andtime-abstractiransition systems generated 0, — G and(qy, ;) € S

by linear systems, depending on whether we wish to

maintain or ignore timing information as labels on the |f such a simulation relation exists, th@ simulates
transitions. In all cases, however, we abstract away(or imp]ements)Tl, since every transition taken by
control information, in contrast to model reduction T, can be matched by,. Note that the label seX
results which reduce systems while preserving controlis common to both transition systems. In gendial
input information (Aoki, 1968). may have many more transitions, and may be a much

Given two discrete-time systems and the associatedMOreé complicated system. Transition syst@mcan
embeddings into transition systems, we obtain neces-/So serve as a more abstract description of transition
sary and sufficient conditions under which one system SyStemTy.

simulates the transitions of the other. The more infor- In terms of O-successors, Definition 2.2 can be
mation that is abstracted away in the embedding, therephrased as.

weaker the conditions become. In the special case of

surjective simulation relations, we obtain as a corol- Definition 2.3. Transition systenT, simulatesT, iff

lary the discrete-time analogues of the results in Pap-for all (4,,0,) € Sand for allo € £ we have

paset al. (2000). v}, € Post (dy), 3dh € Post (d,) : (df.0p) € S
In Section 2 we briefly review simulation relations for
labeled transition systems. In Section 3, we embedd
discrete-time linear systems into various transition
systems, and in Section 4 we characterize simulation
relations for transition systems generated by linear
systems. Section 5 contains various special cases o
the main results.

e if q; — g}, then there existg, € Q, with

The goal of this paper is to establish simulation rela-
tions for linear systems. In order to achieve this, we
must relate the world of linear systems with the world
Pf transition systems.

3. EMBEDDING LINEAR SYSTEMS INTO
TRANSITION SYSTEMS

2. SIMULATIONS OF LABELED TRANSITION

Every discrete-time linear system can be embedded
SYSTEMS

into various labeled transition systems. We consider
) ) ) o various embeddings that differ in the amount of timing
In this section we review the standard definitions of jnformation retained or abstracted away on the transi-
simulation relations for transition systems (Milner, tions. For each embedding, the semantics (and even-
1989). tually the characterization) of the simulation relation

_— . . will be different.
Definition 2.1. A labeled transition system is a tuple

T = (Q,%,—) that consists of: Consider discrete-time, linear control systems:
o A (possibly infinite) set Q of states, Al X = AX+ By )
e A (possibly infinite) sek of labels, with time k € N, statex, € R", controlu, € R™,
e A transition relation—C Q x Z x Q, and matricesA, B of appropriate dimension. From

linear systems theory (Wonham, 1985), we know that

. . given an initial conditiorx, at time zero, and an input
The transition(q,, 0,0,) €— is commonly denoted sequence{ui}!‘;Ol — {Up,Uy....,U_y}, then the state

asq, — d,. The transition system is calldiiteis Q x, at timek is
andZ are finite, andnfinite otherwise. Aregionis a

subseP C Q of the states. The-successoof a region X, = A% + k_lA"*HBui -
P is defined as the set that can be reached fPomith k i;
oneo-transition. More precisely, The first embedding of discrete-time systems into

control systems maintains only transitions that happen
Post,(P) ={qe Q | Ipe P with p 9, a} (1) in one time step, abstracting away the control that was
used for the transition.
Simulation relations between transition systems are
used to formally define when one transition system Definition 3.1. The one-step transition systeTg1L =
implements another. (Q,Z,—) generated by consists of:



e State spac® =R", 4. SIMULATION CHARACTERIZATIONS

e Unique label = {1},

e Transition relation—C Q x {1} x Qwith Consider two discrete-time linear systerg,andA,
of the form,

X - X & Ju such that¥ = Ax+ Bu
A, %1 =AX+Bu, xeRLucR™ (4)

— r S
The transitions of the one-step transition system natu- B, z,=Fz+Gy, zeR,veR ®)

rally correspond to evolution of the discrete-time sys- \yhere AB,F, and G are of appropriate dimension.
tem in one time step (hence the unique label 1 on thepoth linear systems), andA, generate the transition
transitions). Furthermore, the transitions of Definition sysiems described in Section 3. We are now inter-
3.1 arecontrol abstractin the sense that the transi- ested in determining necessary and sufficient condi-

tion system does not care which particular control  tjons on the discrete time systems under which
is responsible for the transition of the discrete-time 2

: 1 Ny o N, T oj
system. simulatesTy , T, + simulatesT, ,andTAz simulates

2
TArl. Clearly, different embeddihgs will result in differ-

There are two natural variations of Definition 3.1. The o
ent characterizations.

first variation maintains not only 1-step transitions, but
also k-step transitions for ank € N, whereas the  The simulation relations that we shall consider in this
second variation does not care how many time stepspaper are of the forr8C R" x R" where

are needed for a transition. (X, Hx+y) e SCR"xR', yeY (6)

Definition 3.2. The timed transition systerii,+ =  WhereH € R""is an arbitrary linear map, and R”

(Q.Z,—) generated by consists of: is a subspace. The relatiddcan be regarded as a
set valued map assigning to eack R" an affine set

e State spac® = R", Hx+Y CR'.

o Labelsetr =N_,

o Transition relation—C Q x N, x Qwith The structure of the relations (6) considered in this

paper captures at least two important cases. In the
first case, wher¥ = 0 and the mapix is surjective,
we are interested in simulating the transitionsAgf
s K by a systemA,, which should be smaller in size,
X =AX+ ,Z}A Bu thus performing complexity reduction. In the second
= case, where the magx is injective andy = R(H)*,
we are interested in the more complicated sysfgm
More intuitively, there exists a transition— ¥’ if simulating the transitions of the simpler systéy
there is an appropriate sequence of control inputsthUS refining the transitions from the simpler to the
{u}} that inexactly ktime steps will result in the ~ more complicated model.
discrete-time systerh reaching state&’ from statex.

x =5 X = {u ¢ such that

N . o o Theorem 4.1(One-Step Simulation). Consider discrete
Contrary toT, "+ which maintains all timing infor-  4ime systemd, andA, given in equations (4, 5), and
mation, the féllowing transition system does not care 5 (g|ationS of the form (6). TherT simulatesT? if
about the exact number of time steps needed to reacr}md only if b2 &

a state. Since it abstracts away timing information, it
is called a time-abstract transition system.
ZHA—FH)+#%(HB)C Z(G)+Y @)
Definition 3.3. The time-abstract transition system FYCY +2(G) (8)
TA = (Q,Z,—) generated by consists of:

e State spac® = R", Proof: By definition, A, one-step simulated; with
e Unique label = {1}, respect to the relatio8iff V(x,z) € S:
e Transition relation—C Q x {1} x Qwith VX € Post(x),37 € Posi(2) : (X,Z) €S

Given the structure dbwe havev(x,z) € S
VX' € Post(x),3y; € Y: Z = Hx+y, € Post(z).

k-1
X = A+ Z) A By Substituting the Pogbperators for the one-step tran-
= sition systems generated By andA,, the above be-
comesy(x,z) € SYueR™ 3y, € Y, Ive RS
In other words, a transition — X occurs ifx' is Fz+ Gv=H(AX+ Bu)+y,
reachable fromx in any number of steps by an ap-
propriate sequence of control inputs. Therefdigjs
both time-abstract and control-abstract. F(H+y,) + Gv=H(Ax+Bu) +y,

x — X <= Fke N, H{y K3 such that

and sincgXx,z) € S& z=Hx+ Y, thenvx e R™



Collecting terms and eliminating the quantifiers:

)

which is a necessary and sufficient condition for sim-
ulation, derived from the definition. We proceed to
show that (7)-(8) are equivalent to (10)

Z(HA —FH) + Z(HB) + FY = Z(G) + Y

(=): from condition (8) we get thaty € Y,3v; €
RS, 3y, € Y: Fy= Gv; +y;. Similarly, from (7),vx €
R",Yue R™ 3v, € R® Jy, € Y: (HA—FH)x+HBu=
Gv,+Y,. Adding these equalities yield& € R",Vu €
R™ Yy eY,3v,v, e R% Ty, y, € V:

(HA — FH)X+HBU+ Fy = G(v; +V,) + (Y, + )

and since Y is a subspace we can write thate
R Vue R™Vy, € Y, Ive RS Iy, € Y:
(HA—FH)x+HBu+Fy, = Gv+y,

which by eliminating the quantifiers becomes:

Z(HA — FH) + 2 (HB) +FY C #(G) + Y

(«): From (10), since, u andy, belong to subspaces
we can have:

(1) for y; = 0 = Vx,Yu,3v,3y, : (HA — FH)x +
HBu = Gv+y, = Z(HA — FH) + Z(HB) C
Z(G)+Y,

(2) forx=0,u=0=Vy;,3v, Iy, : Fy; =Gv+y, =
FY C#(G)+Y

a

k—1 ,
P (HAK — FKH) + %%(HA'B) +FkY =

k-1
lZ)?/?(F"G) +Y (10)

We show that (7)-(8) are equivalent to (10):

(=) : The fact that (7)-(8) imply (10) can be shown by
induction: if it holds forp = k then

-1
FPrisc F([_)Zjﬂ?(FiGH-Y) C _i%(FiG)+Y (12)

On the other hand, rewrity? /% (HA'B) as 3P !
#(HAIB) +2%(HAPB — FPHB 4 FPHB) and# (HAP+1
—FPHIH) as Z(HAPHL — FPHIH 4 FPHA — FPHA).
Then, by applying the conditions assumed true for
k= pand (11), one arrives at:

p . p .
R(HAPHL_FPHLH) 4 Z)?/?(HA'B) C ;@(F'G)w
i= i=

(12)
By induction, (11)-(12) hold for everly and therefore
imply (10).
(«<): From (10) if follows ¥x € R", Wy, € Y, V{u }<- 1 e
R™, Jy, € Y,3{v} 3 € RS (HAK — FrH)x + zlkzl
HA'BuI + Fry, = z:(:OlF Gv; +y,. Sincex, u, andy,
belong to subspaces we can have:

(1) ¥, = 0 = vx.V{u g, 3{v g3y (HAN -
FKH)x+ 3K HATBY, = SKAF Gy, +y, = sK8
P (HAK—FKH) + 5 lg’(HA' ) C YA #(FG)
+Y,

k k-1
Notice that condition ( 7) relates the system dynamics (2) X=U=0=y, 3{v Hoo, et Py, = 3o FiGy

and control of the two systems in question, whereas

condition ( 8) is a condition only on systefyy and the
simulation relatiors. This is because the dynamics on
theY subspace have meaning only in theMjesystem
which may contain more states thiat

Since the transitions dfl generate the transitions of
TN+ it should come as no suprise that simulating 1-

+y, = FKY C K22 (FIG) + V.

and since this is true for aK, it should also hold for
k=1 in which case we have:
ZHA—FH)+#%(HB)C Z(G)+Y
FY CZ(G)+Y

a

step transitions is necessary and sufficient to simulate

k-step transitions.

Theorem 4.2(Timed Simulation). Consider the dis-

crete time system&, andA, givenin equations (4, 5),

and a relatiors of the form (6). ThenTAN+ simulates
2

TAN+ iff conditions (7)-(8) are satisfied:
1

% (HA —FH) + Z(HB) C
FY CY+%(G)

Proof: By definition, the necessary and sufficient con-
dition for A, to k-step simulaté,; with respect to the
relationSisV(x,z) € S, VX' € Post(x),3Z € Pos(2) :
(X,Z) € S. After some manipulation and substitution
of the Post operators, this condition expands to:

In order to obtain the simulation characterizations for
the time abstract transition systems, we shall need
the following lemmas. ByR(A,B), we denote the
reachable subspace from the origin, thaR(#, B) =
ImBAB... A™1B].

Lemma4.3LetAc R He R FeR™*M, Ge
RS be matrices ands full rank with s <r. If,
Z(HA — FH) C R(F,G), then for everyk, it holds
%#(HAX — FkH) C R(F,G)

Proof: Itis shown by induction: clearly it holds fdr=
1. Assume it holds fok = p: 3p,#(HAP — FPH) C
R(F,G). Then sinceHAP*1 — FPHIH = HAP+L
FPH 4+ FPHA — FPHA = (HAP — FPH)A 4- FP(HA —
FH), it will be that#Z(HAP+1 — FP+IH) C 2((HAP —
FPH)A) + Z(FP(HA — FH)) C R(F,G) + FPR(F,G).



However, R(F,G) is F— invariant and therefore,
FPR(F,G) € R(F,G). Thus, Z(HAP+1 — FP¥1H) C
R(F,G) and therefore by inductionyk, Z(HAK —
FkH) C R(F,G)

O

Lemma4.4.Let Y be a subspace aride R"™", G €
RS be matrices an@ full rank withs<r. If FY C
R(F,G), then for every, it holdsFKY C R(F,G)

Proof: It is shown by induction: obviously, it is
true fork = 1. Suppose there exists@for which:
FPY CR(F,G). Then fork= p+1,FP*lY = FFPY C
FR(F,G), and sinceR(F, G) is F— invariant,FP+1y C
R(F,G). By induction we conclude thak € N, FKY C
R(F,G).

a

(1) fory, = 0= v¥x,Vw € R(A,B),3v,3y, : (HA -
FH)x+Hw= Gv+y, = Z(HA—FH)+HR(A,B)
C#(G)+Y,

(2) forx=0,w=0=Vy;,3v, 3y, :Fy, = Gv+y, =
FY C2(G)+Y.

a

It is straightfoward that the simulation conditions
(13,14) in the time-abstract case are clearly weaker
that their counterparts (7, 8) in the timed-simulation
case. Therefore, as timing information is abstracted
away from the semantics of the transition systems, the
simulation conditions become weaker.

5. SPECIAL CASES
Simulation relations induce partial order relations

among transition systems. In the case where transition
systemT,, simulates transition system with simula-

Theorem 4.5(Time-Abstract Simulation). Consider thetion relationS and, in additionT; simulatesT, with

discrete time systents, andA, given in equations (4,
5), and consider a relatid®of the form (6). TheriI'AT2

simulatesTAT1 if and only if

Z(HA—FH)+HR(A,B) CR(F,G)+Y (13)
FY CY +R(F,G). (14)

Proof: By definition, forA, to simulated\; in abstract
time, with respect td& it should hold that for every
(x,2) € S= WX € Postx),3Z € Pos{z) : (X,Z) € S
Taking to account the structure 8fand the expres-
sion for the Post operatorsx € R", HUk>0AkxjL
HR(A,B) + Uy F¥(HX+Y) C R(F,G) + Y. Collect-
ing terms and eliminating the quantifiemm?/?(HAk—
FKH) + HR(A, B) + Uy o FY C R(F,G) + Y. By lem-
mas 4.3 and 4.4 this reduces to:
Z#(HA—-FH)+HR(A,B)+FY CR(F,G)+Y (15)

Equation (15) is necessary and sufficient foy to
simulate,; in abstract time. It remains to establish
the equivalence of (13)-(14) to (15):

(=): from condition (14) we get thaty € Y,3v; €
RS, 3y, € Y: Fy= Gv, +y;. Similarly, from (13),vx €
R"vw € R(A,B),3v, € R%, 3y, € Y: (HA—FH)x+
HBw = Gv, +Y,. Adding these equalities yield& €
R"vwe R(A,B),Vy € Y,3v;,v, e R% Ty, y, € V:

(HA — FH)X+ HW+ Fy = G(V; +V,) + (Y, + Y,)

and since Y is a subspace we hawec R",Vw e
R(A,B),Vy, € Y,3ve RS 3y, € Y:

(HA — FH)x+Hw+Fy, = Gv+y,
which by eliminating the quantifiers becomes:
#(HA—-FH)+HR(A,B)+FY CZ2(G)+Y

(«<): From (15), sincexe R",we R(A,B) andy, € Y
belong to subspaces we have:

relationS1, thenT, andT, are called bisimilar.

Consider now two discrete-time systems and arelation
Sof the form

X,HX) € SCR"x R'
(X,

where Hx is a surjective map (that is < n). The
map z = Hx is therefore grouping states iR" to a
single state inR", thus inducing a partition oR".
This partition aims at complexity reduction from the
original system!\, to the quotient systei,.

The results of the former section can be restated for
this special case in the following corollaries.

Corollary 5.1. Transition systerﬁ'Al2 (TAN;) simulates

TAl1 (respectiverTAI\l+) with simulation relationS =

{(x,2) e R" x R"|z= Hx} if and only if
Z(HA —FH) + %(HB) C 2(G) (16)

Condition (16) is the discrete-time analogue of the
notion of H-related control systems, first introduced
in Pappagt al.(2000). Given systemy; with matrices

A, B, and surjective map= Hx, we can always con-
struct systemf\, and matrices, G, so that condition
(16) is satisfied. Sincél is full-row rank, one such
choice is

F=HAH"
G=[HB HAKerH)]

17)
(18)
With the above choice of matrices, transition system
Ta, simulatesTy . In order for Ty to be bisimilar

to Ty, T4, must also simulatd@;. with relationS ™,
which has the form

(zHTz+Ker(H)) e STCR" xR"

Therefore, in this case, if we apply conditions (7, 8)
with Y = Ker(H) (and the roles oA,B,H interchanged



with those ofF,G,H ™) we obtain that in order foTAl Pappas, G. J. and G. Lafferriere (2001). Hierarchies of
2 stabilizability preserving linear systems. Pro-

ceedings of the 40th IEEE Conference in Deci-

AKer(H) C Ker(H) + %(B) (19) sion and ContralOrlando, FL.

Pappas, G. J. and S. Simic (2001). Consistent abstrac-
tions of affine control systemdEEE Transac-
tions on Automatic ControSubmitted.

Pappas, G. J., G. Lafferriere and S. Sastry (2000).

to be bisimilar toTAl1 it is necessary that

In straightforward to show that for the choice of ma-
trices (17,18) this condition is the only relevant nec-
essary and sufficient condition, as (7) is automatically

satisfied. Hierarchically consistent control systemiEEE

In the time abstract case the relation naturally loosens Transactions on Automatic Contrdb(6), 1144—

up since timing information is irrelavant and simula- 1160.

tion actually involves aligning the reachable sets of the van der Schaft, A. J. and J. M. Schumacher (2001).

systems in question. Compositionality issues in discrete, continuous,
and hybrid systemdnternational Journal of Ro-

Corollary 5.2. Transition systemTAT 5|mulatesTT bust and Nonlinear Contrdl 1(5), 417-434.

with simulation relatiors= {(x,z) € Rn xR |z= Hx} Wong, K.C. and W.M. Wonham (1995). Hierarchical

if and only if control of discrete-event systeni3iscrete Event
Dynamic Systen®y 241-273.

Z(HA —FH) +HR(A,B) C R(F,G). Wonham, W.M. (1985)Linear Multivariable Control

: A Geometric Approachvol. 10 of Applications

of MathematicsSpringer-Verlag. New York.
6. CONCLUSIONS

In this paper we characterized simulation relations for
various transition systems generated by discrete-time
linear systems. The characterizations can be extended
to continuous-time systems, as well as to nonlinear
and hybrid systems for various transition system se-
mantics.

Of particular interest is to consider such questions for
discrete-time systems with state and input constraints.
This will allow the not only establishing consistency
between different models, but also between their re-
spective constraint sets.
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