
 x

LIST OF TABLES 

 

Table 2-1 Rate equations for EpoR/GATA-1 erythrocyte commitment model................ 65 

Table 2-2 Nondimensional rate equations for EpoR/GATA-1 model .............................. 66 

Table 2-3 Nondimensional parameters for EpoR/GATA-1 model................................... 67 

Table 2-4 Nondimensional ratios and initial conditions of the reactants.......................... 68 

Table 2-5 Values of the kinetic parameters in the EpoR/GATA-1 model........................ 69 

Table 2-6 Initial concentrations of the reactants before Epo addition .............................. 70 

Table 2-7 Rate equations for the minimal model.............................................................. 71 

Table 2-8 Nondimensional rate equations for the minimal model ................................... 72 

Table 2-9 Nondimensional parameters for the minimal model ........................................ 73 

Table 2-10 Nondimensional ratios and initial conditions for the minimal model ............ 74 

Table 2-11 Exact solution of the minimal model.............................................................. 75 

Table 2-12 Values of the kinetic parameters mentioned in the minimal model ............... 76 

Table 4-1 Plasmids used in this study............................................................................. 122 

Table 4-2 Yeast strains used in this study....................................................................... 123 

Table 5-1 Ordinary differential equations for the deterministic model .......................... 167 

Table 5-2 Rate constants and initial conditions for the deterministic and stochastic models
......................................................................................................................................... 168 

Table 5-3 Probability functions and reactions for the stochastic model......................... 169 

Table 5-4 Parameter fitting of microarray data............................................................... 170 

 





 xii

Figure 4-2 Variation in set-point and synthesis rate of GFP .......................................... 117 

Figure 4-3 Tunability of set-point, EC50 and ultrasensitivity ........................................ 118 

Figure 4-4 Degradation kinetics and bimodality ............................................................ 120 

Figure 5-1 A minimal model of multilineage commitment ............................................ 155 

Figure 5-2 Effect of the positive feedback loops on the on-state ATFA levels............... 156 

Figure 5-3 Effect of the positive feedback loops on the on-state ATFB levels............... 158 

Figure 5-4 Effect of ligand on the on-state ATF levels .................................................. 159 

Figure 5-5 External regulation of stochastic transitions ................................................. 161 

Figure 5-6 Time trajectories during lineage commitment .............................................. 163 

Figure 5-7 Comparison of multilineage commitment model to experimental data ........ 164 

Figure 5-8 Proposed paradigm for hematopoiesis .......................................................... 166 



 1

 

 

Chapter 1 

Introduction 

‘It’s high time molecular biology became quantitative, it cries out to a physicist… for 

modeling. Modeling isn’t a crutch, it’s the opposite; it’s a way of suggesting experiments 

to do, to fill gaps in our understanding.’ 

- John Maddox, Editor of Nature, 1966-73 and 1980-95. 

1.1. From genes to behaviors 

Biological species show great diversity and exhibit a wide array of complex behaviors. 

The displayed behaviors in each species, the phenotype, have been traditionally attributed 

to its genetic framework, the genotype. Elucidation of this correlation between genotype 

and phenotype is among the most actively studied problems in the biological sciences. 

The crux of this challenge lies in the fact that complexity in biological systems is evolved 

rather than designed and therefore our knowledge of the underlying framework is 

unlikely to be complete. With the advent of molecular biology, the genotype-phenotype 

problem was reduced to the understanding of the molecular details of the genetic 

elements and their role in exhibiting robust cellular states. The sequencing of the human 

genome has led us to uncover most of the molecular elements and classical genetic and 

biochemical approaches have successfully revealed most of the cellular states. However, 
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we still lack the mechanistic understanding of how molecular interactions (e.g., protein-

protein or protein-DNA) regulate the processes (e.g., differentiation, proliferation, or 

apoptosis) involved in the achievement of cellular phenotypes. It is now well known that 

genetic elements are connected through large biochemical networks and their interactions 

tend to be highly non-linear. Technological advancement in quantifying gene expression 

at the single cell level has led us to identify various biochemical responses that dictate 

cellular phenotypes. By studying the network-response dynamics, we can potentially gain 

mechanistic insights into cellular behaviors. 

 

1.2. Analytical modeling 

Compared to the physical sciences, the role of mathematics in the biological sciences is 

far less appreciated. As explained above, non-linearity lies at the heart of biological 

problems and studying only the properties of individual molecules or interactions will not 

help us in predicting or understanding behaviors. Mathematical modeling and analysis 

has traditionally proven potent in understanding non-linear systems and in combination 

with classical experiments can provide an invaluable tool in studying biological 

processes1. 

 In the biological community, there is a great deal of skepticism about the utility of 

mathematical models in solving complex biological problems. The most popular criticism 

among biologist is that any attempt to quantitatively model biological systems is flawed, 

as we have not yet identified all of the molecular players or characterized all of the 

existing biochemical interactions. This concern is completely valid as we saw from the 
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recent discovery of the previously unknown world of short RNAs2. However, this 

limitation only affects those mathematical models that focus on accurately matching 

experimental data by exhaustively incorporating from incomplete lists of molecules and 

interactions. Even though these models can be closely fitted to data, they often prove less 

useful in predicting newer experiments or in uncovering underlying principles if 

fundamental mechanisms are missing from the model description. 

 An alternate modeling approach, which does not suffer from the limitations of 

exhaustive modeling is analytical modeling or in a more ideal case, minimal modeling 

that targets only the most important players in a given biological process and shows how 

topological connections between these molecules may influence the overall property of 

the system studied (Figure 1.1). These models, when constructed with reasonable 

approximations, tend to be predictive and can identify key processes that regulate the 

overlying behavior. 

 

1.3. Cell differentiation 

Cell differentiation is a process in which a progenitor cell commits and morphs into a 

more lineage-restricted progenitor or a mature cell. This process has been intensely 

studied for decades by cell and developmental biologists, therefore making it an attractive 

dynamic system to model. As shown in Figure 1.2, studies have characterized several 

network topologies and responses that lead to various phenotypic behaviors3. With 

respect to cell differentiation, the most well recognized response is the “all-or-none” 

switch-like response and the most studied players are the lineage-specific cytokines and 
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transcription factors (this is particularly true in the hematopoietic system, discussed 

further in Chapter 2).  Lineage-specific cytokines are cell-extrinsic molecules that bind to 

their cognate receptors on the cell surface and transmit signals through a cascade to the 

nucleus that promotes survival, proliferation and differentiation of the cell to a particular 

lineage. Lineage-specific transcription factors are cell-intrinsic, DNA-binding elements 

that bind to the promoter elements of the lineage-specific gene and regulate their 

expression. A primary focus of this dissertation is to examine how known topological 

connections between cell-extrinsic cues (e.g., cytokines) and cell-intrinsic factors (e.g., 

transcription factors) can give rise to all-or-none switch-like responses during 

differentiation. 

 

1.4. All-or-none response 

Cell differentiation was originally thought to be a process in which an undifferentiated 

cell gradually transitions into a mature state by traversing through a series of stable 

intermediate states. This theory originated when cell differentiation was studied with 

classical population averaging experiments like western blotting or RT-PCR. As seen in 

Figure 1.3A, when undifferentiated cells are treated with various levels of differentiation-

inducing stimulus and the population average of a lineage-specific gene is measured, the 

experiment shows a graded response, i.e., the expression of the lineage-specific gene 

increased linearly with stimulus concentration. This effect can be explained by the 

proposed theory that each cell rests on a stable intermediate state based on the 

concentration of the stimuli (Figure 1.3B). However, with the advent of single cell 
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measurements, when the same experiment was repeated, it was noticed that the cells do 

not navigate through stable intermediate states, whereas the percentage of cells resting in 

the initial state and final differentiated state changes with the concentration of the stimuli 

(Figure 1.3C). According to this observation, each cell either remains in the 

undifferentiated state or differentiates completely to the mature state, hence the name all-

or-none or bistable response4-8. 

 

1.5. Significance of a bistable response 

There can be several physiologically significant advantages in possessing a bistable 

response instead of a graded response during cell differentiation. Figure 1.4 shows the 

steady-state expression of a lineage-specific gene to varying concentration of stimulus for 

a graded and a bistable response. By comparing the plots, we can see that the bistable 

response is less noisy and requires a threshold concentration of stimulus to exhibit a 

strong expression. Also, the off-state and on-state, classified based on the expression of 

the gene, are discrete in a bistable response. Moreover, the high-expression on-state 

achieved in the bistable response is much more robust to fluctuations in stimulus 

concentration than graded response due to the presence of hysteresis or memory 

(discussed further in Chapter 2). 
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1.6. Positive feedback loops in cell differentiation 

It is not that apparent how the graded response curve arising from cytokine-receptor 

binding can give rise to an all-or-none response during cell differentiation. The answer 

may lie in the non-linear wiring of the signaling topology that transmits information into 

and out of the cell. Networks associated with cell differentiation that are capable of 

exhibiting bistable response most often require positive feedback loops for achieving 

non-linearity. Figure 1.5 shows examples of minimal topologies that exhibit different 

responses. Let us consider S as the stimulus and A as a transcription factor that activates 

a series of lineage-specific genes B, C, and D. If S activates A linearly and A 

correspondingly activates B, C and D, the system shows a graded response (Figure 1.5A). 

When an auto-activation loop is added to the first topology, the system shows an 

ultrasensitive response (Figure 1.5B). Ultrasensitivity is a system level property in which 

a less-than 81-fold increase in stimulus drives the system form 10% to 90% response9. 

Since the transition curvature is steeper in an ultrasensitive network compared to a graded 

network, they tend to be less noisy; however, they do not possess hysteresis or memory 

of the stimulus. When the auto-activation loop requires cooperative binding of the 

transcription factor A, the system shows bistability (Figure 1.5C). Transcription 

autofeedback loops with cooperativity are indeed the most recognized topology for 

showing all-or-none response during cell-differentiation10. 
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1.7. Significance of the research 

Throughout the normal lifespan of an organism, certain cells and tissues require adult 

stem cells for turnover and repair. Adult stem cells provide an excellent alternative to 

embryonic stem cells in basic research and clinical treatment. Also, using adult stem cells 

for research and clinical purposes avoids any ethical or legal issues that are associated 

with embryonic stem cells. However, the number of cell types that can be generated by 

multipotent adult stem cells compares poorly with pluripotent embryonic stem cells. 

Studies of adult stem cells can provide valuable information about complex signaling 

events occurring during tissue maintenance and repair. One of the most important 

motivations in these studies is understanding how undifferentiated cells differentiate and 

stay differentiated. Dysregulated cell division and differentiation can lead to various 

physiological disorders including various forms of cancer and tissue abnormalities. 

Understanding the molecular details of cell cycle progression and stem cell 

differentiation can suggest new therapies for such diseases. 

One of the most important potential applications of adult stem cells is cell-based 

therapies. The need for transplantable organs and tissues far surpasses the available 

supply. Stem cells directed to differentiate into specific cell types can offer an ever-

lasting source of replacement cells and tissues to treat diseases including anemia, 

leukopenia, thrombocytopenia, Type I diabetes, Parkinson’s, Alzheimer’s, spinal cord 

injury, heart disease, stroke, arthritis, burns and immunodeficiency diseases. For 

example, in anemia and thrombocytopenia, patients have lower-than-normal blood counts 
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of erythrocytes and platelets, respectively. Directed differentiation of stem cells to 

produce erythrocytes and megakaryocytes can provide potential therapies through 

autologous or allogeneic transplants. 

  It is well appreciated that understanding and manipulating cellular function 

requires much more than identifying cellular components and establishing component-

component interactions. There is a constant need to understand how these components 

work together to produce complex, often emergent, behaviors. Systems biology has been 

successfully used to study biological pathways and its interactions as non-linear 

networks. Mathematical modeling of these networks can help us gain a quantitative and 

predictive understanding of a biological system and can further assist in establishing the 

core topologies that can be used to re-wire or re-engineer native pathways to attain 

desired phenotypes. Systems biology can thus provide a design framework within which 

synthetic biology can operate. Synthetic biology is still an emerging field, which has 

great potential to contribute to a wide-range of applications from therapeutics to alternate 

fuels. Synthetic biologists are currently at the stage of constructing and testing out 

fundamental motifs, which can provide a wide range of complex behaviors including 

ultrasensitivity, bistability, hysteresis, oscillations, noise-reduction and logic gates. In the 

near future, these regulatory modules can be interfaced with various sensory inputs 

(environmental, physical or chemical) to confer desired, complex biological responses in 

processes ranging from metabolism to protein synthesis to cell differentiation. 
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1.8. Thesis statement 

We will use experimental and computational techniques to understand how 

integrating cell-extrinsic and cell-intrinsic elements can regulate lineage 

commitment during cell differentiation and can also be used to create tunable 

synthetic molecular switches for cell engineering applications. 

 

1.9. Chapter layout 

In Chapter 2, we present a deterministic model of a cytokine signaling pathway that plays 

a role in committing progenitor cells to red blood cells, the differentiation process known 

as erythropoiesis. This model connects erythropoietin (Epo), an erythrocyte-specific 

cytokine and GATA1, an erythrocyte-specific transcription factor. We show that, due to 

the presence of multiple topological connections between the cytokine receptor and 

transcription factor, the system can exhibit a bistable response to the cytokine even 

without cooperativity. Furthermore, we identify a minimal topology within this 

erythrocyte model that still gives rise to an all-or-none response. In Chapter 3, we 

experimentally demonstrate a positive correlation between EpoR and GATA1 expression 

during human progenitor cell differentiation and we explore the dynamics and phenotypic 

consequences of this correlation. In Chapter 4, to assess the possibility of using the 

minimal model discovered in Chapter 1 as a tunable bistable switch, we construct it 

synthetically in Saccharomyces cerevisiae using signaling elements from Arabidopsis 
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thaliana. We demonstrate that key features of our synthetic switch can be rationally tuned 

using predictions from our minimal model. In Chapter 5, we extend the minimal model in 

Chapter 1 to a multilineage commitment model and provide a stochastic framework for 

understanding both canonical and alternative pathways of lineage commitment in 

hematopoiesis.  



Figure 1.1 

 

Figure 1-1 Topology of an autofeedback loop 

Stimulus S binds to the response element present upstream of gene A and initiates its 
transcription. Once expressed, A can regulate its own expression through an autofeedback loop.
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Figure 1.2 

 

Figure 1-2 List of well studied network topologies and responses 

Mechanistic understanding of genotype-phenotype association can be achieved by studying the 
underlying network-response dynamics. 
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Figure 1.3 

 

Figure 1-3 Graded vs bistable response in cell differentiation 

(A) Western blot showing linear increase in the population-average expression of a gene of 
interest with change in concentration of stimulus. (B) Two different models explaining the 
observed result in A; graded response (left) and bistable response (right) 
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Figure 1.4 

 

Figure 1-4 Steady-state plots for graded and bistable responses 

For each stimulus concentration, the system is allowed to reach steady state and the 
corresponding response or expression value is plotted. (A) Graded response shows linear change 
in the levels of response with increase in stimulus until the system reaches saturation. (B) Bistable 
response stays low for stimulus concentrations less the threshold concentration. Above threshold 
level, the system switches to the high-expression or on-state. Once the on-state is reached, the 
system can sustain the response, even when the stimulus is lowered from the initial threshold 
concentration due to hysteresis (dotted red line). 
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Figure 1.5 

 

Figure 1-5 Topologies that give rise to graded, ultrasensitive and bistable responses 

(A) Stimulus S activates a transcription factor A, which in turn activates several downstream 
genes (graded response). (B) Topology A with an additional transcriptional autofeedback loop 
(ultrasensitive response). (C) Topology B with cooperative binding of transcription factor 
(bistable response). 
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Chapter 2 

Receptor Feedback Loop Can Generate Bistability in GATA-1 

Expression 

(Adapted from Palani S. and Sarkar C.A. (2008) Positive Receptor Feedback during 

Lineage Commitment Can Generate Ultrasensitivity to Ligand and Confer Robustness to 

a Bistable Switch, Biophysical Journal, Volume 95, Issue 4, 1575-1589) 

 

2.1. Introduction 

The process of cellular differentiation entails a complex series of events through which 

an uncommitted progenitor can morph into a stable specialized cell. While many of the 

critical individual molecular components involved in specific differentiation processes 

have been identified, the complex interactions and topology of signaling and 

transcriptional networks can lead to non-intuitive behavior. Mathematical modeling and 

analysis can provide insights into the system-level properties that arise from such an 

array of interactions.  

 In cellular processes in which a binary decision must be made, bistability can be 

an important system-level property that arises from the corresponding signaling 

http://www.cell.com/biophysj/issue?pii=S0006-3495%2808%29X7004-3
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networks. Changes in the system input can toggle a bistable system between two steady 

states; additionally, the system can display memory by sustaining a high (or low) steady-

state response after significant reduction (or increase) in the magnitude of the stimulus1. 

Biological examples of bistability include cell-cycle regulation in Xenopus oocytes2 and 

Saccharomyces cerevisiae3, self-sustaining biochemical memory4, synthetic genetic 

switches5-9, and differentiation of common myeloid precursors into macrophages and 

neutrophils10. Bistability is often accompanied by ultrasensitivity to a stimulus, another 

common property of nonlinear systems11-13. Since, there is growing evidence that cell 

differentiation is an all-or-none ‘switch-like’ event, rather than a continuous transition of 

an unspecialized cell into a mature one2, 14, mathematical modeling of the commitment 

process is attractive because the switch-like response and cellular memory implicit in the 

biological process arise naturally in the formulation of such nonlinear models.  

 Hematopoiesis, the formation of blood cells, takes place in two distinct stages: 

primitive differentiation and terminal differentiation. During primitive differentiation, a 

hematopoietic stem cell differentiates into a multipotent or bipotent progenitor cell, 

which, upon terminal differentiation, gives rise to a mature cell. Lineage-specific 

cytokines (extrinsic) and transcription factors (intrinsic) are believed to be the important 

molecular components that affect cell survival, proliferation, and commitment during 

terminal differentiation15, 16.  

 Erythropoietin (Epo) is a hematopoietic cytokine responsible for the proliferation, 

survival, and differentiation of erythroid cells17. The Epo receptor (EpoR) has a single 

transmembrane domain, an extracellular domain for Epo binding, and an intracellular 

domain for signaling18. In the absence of ligand, Epo receptors exist predominantly as 
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inactive homodimers on the cell surface19. Binding of Epo to the receptor homodimer 

changes the orientation of the receptor subunits, which leads to activation of several 

signaling cascades including the PI3K/AKT, STAT5-BclXL, and Ras/MAPK pathways20. 

Erythroid progenitors lacking functional EpoR do not mature into erythrocytes and show 

phenotypic abnormalities21, 22. 

 The zinc-finger GATA-1 is a transcription factor that plays a critical role in 

erythroid differentiation23, 24. It binds as a monomer to the consensus sequence 

(A/T)GATA(A/G), which is present in the promoter and enhancer regions of virtually all 

erythroid-specific genes25-28. GATA-1 undergoes several post-translational modifications 

(acetylation, phosphorylation, sumoylation, and ubiquitination) that may be critical for its 

optimal transcriptional activity29. Analysis of the promoter regions of the EpoR gene 

shows no TATA or CAAT box, but does reveal the presence of a GATA-1 binding motif, 

thus providing a meaningful link between a lineage-specific transcription factor and a 

lineage-restricted receptor30-32. Active GATA-1 also binds to the regulatory region of its 

own gene, thereby enhancing its total expression through a positive feedback loop33-36. 

Disruption of the GATA-1 gene in murine embryonic stem cells by homologous 

recombination blocks erythroid development, emphasizing the absolute need for GATA-1 

in red blood cell maturation37. 

 Common myeloid progenitors give rise to erythroid burst-forming units (BFU-E), 

the earliest known erythroid precursor cells. BFU-E mature into erythroid colony-

forming units (CFU-E); this is accompanied by an increase in EpoR expression and the 

cells become increasingly dependent on Epo38, 39. EpoR and GATA-1 levels both rise in 

parallel and reach their maximum during CFU-E maturation into proerythroblasts and 
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their subsequent differentiation into early basophilic erythroblasts40, 41. Both GATA-1 and 

EpoR levels fall during further maturation from the basophilic stage to the polychromatic 

stage as cells synthesize large amounts of globins38, 41. Further differentiation from 

polychromatic erythrocytes to reticulocytes is independent of EpoR and GATA-1, as their 

levels fall sharply and the cells also show a decrease in globin expression. Hence, it is 

during the temporal window from an early CFU-E to a basophilic erythroblast that EpoR 

and GATA-1 may act in concert to drive commitment of the erythroid precursor to 

terminal differentiation and induce the synthesis of globins. 

 Recent evidence suggests several modes of crosstalk between EpoR signaling and 

GATA-1 transcriptional activity, and analysis of these interactions may offer insights into 

the commitment program during erythroid differentiation. In brief, EpoR signaling via 

AKT can lead to GATA-1 activation; in return, active GATA-1 can upregulate synthesis 

of both itself and EpoR. Epo activates AKT by phosphorylating this kinase at Ser-473 in 

a PI3K-dependent manner42. The importance of AKT signaling in erythropoiesis was 

demonstrated in JAK2-deficient fetal liver progenitor cells: erythroid differentiation can 

be supported in these cells by overexpressing active AKT and it can also be inhibited by 

downmodulating AKT using RNA interference43. Active AKT appears to have a 

significant role in enhancing GATA-1 transcriptional activity by mediating some of its 

post-translational modifications, including phosphorylation and acetylation. AKT 

phosphorylates GATA-1 at Ser-310 and enhances its transcriptional activity in primary 

fetal liver cells42. However, mice with a S310A mutation in GATA-1 showed no 

hematopoietic abnormalities during normal or stress erythropoiesis, indicating that 
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phosphorylation of GATA-1 is dispensable for red blood cell differentiation and may 

only be required for maximal activity44.  

 p300 and CBP acetyltransferases (AT) acetylate GATA-1 at lysine residues 

present in the C-terminal tail of its zinc fingers45-47. In vivo ChIP assays show that lysine 

to alanine mutations at the acetylation residues dramatically impair GATA-1 association 

with chromatin48, suggesting that acetylation is critical for GATA-1-mediated gene 

expression. p300 and CBP also have histone acetyltransferase (HAT) activity and may 

play a role in enhanceosome stability by acetylating GATA-1 and histones49, 50. AKT 

phosphorylates p300 at Ser-1834 and this has been shown to be essential for AT, HAT, 

and transcriptional activity of p30051-53. Interestingly, Ser-1834 lies in the E1A binding 

domain that is necessary for binding of p300/CBP to GATA-1. It has also been suggested 

that phosphorylation may aid in GATA-1 binding to CBP, since the Ser-310 residue of 

GATA-1 is within the C-terminal acetylation motif of GATA-1. Taken together, these 

results suggest an additional role for Epo (other than providing survival and proliferation 

cues) in erythroid precursor commitment and differentiation by activating GATA-1 

through the PI3K/AKT pathway and influencing the intrinsic signals that lead to 

commitment and differentiation. 

Based on this experimental evidence, we present a deterministic model of the 

upregulation and activation of the erythrocyte-specific transcription factor GATA-1, a 

‘master regulator’ of erythrocyte commitment. Lineage specification models previously 

reported suggest that erythrocyte differentiation from erythroid/myeloid bipotent 

precursor can arise due to the differential expression of antagonistic transcription factors 

(upregulation of GATA-1 and downregulation of PU.1) driven primarily by cell-intrinsic 
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events54, 55. These models provide insight into the dynamics of a binary cell-fate decision 

from the viewpoint of ‘multilineage priming,’ auto-stimulation, and reciprocal repression.  

 The present work focuses on erythrocyte commitment rather than differentiation 

and examines how both intracellular and extracellular factors may influence the cell-fate 

decision. As depicted in Figure 2.1, the topology of our model captures the essential 

elements of outside-in signaling (Epo-mediated activation of GATA-1), intracellular 

signal amplification (GATA-1-mediated upregulation of GATA-1 synthesis), and inside-

out signaling (GATA-1-mediated upregulation of EpoR). Using this model, we show that 

upregulation of EpoR in erythroid precursor cells upon Epo addition can generate 

ultrasensitivity to ligand as well as robust bistability in GATA-1 expression during 

commitment and this may provide ‘switch-like’ differentiation characteristics. 

 Further analysis of a generalized minimal model confirms that the topological 

connectivity of the two feedback loops alone is both necessary and sufficient for 

generating the overall system dynamics. Although there are several ways of achieving 

bistability1, 56, feedback loops are the most commonly identified mechanism; however, 

feedback loops that give rise to robust bistability in purely deterministic models have, to 

date, been shown to be highly cooperative in at least one reaction57-60. Here, we present a 

novel way of achieving robust bistability in cell signaling networks without molecular 

cooperativity through two linked positive feedback loops. This topology may have 

general implications for cellular decision-making. 
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2.2. Model Development 

2.2.1. Model construction and description 

The core reaction of the proposed erythrocyte commitment model is the activation of 

GATA-1 by AKT through EpoR signaling (Figure 2.1; light gray background). Our 

model concentrates exclusively on the two positive feedback loops that serve to increase 

the concentrations of the reactant species (AKTpp and GATA-1) in this core reaction, 

which leads to greater accumulation of GATA-1*, the activated form of a ‘master 

regulator’ of erythrocyte-specific genes. The model specifically incorporates the 

following components/motifs in the feedback loops which may have an effect on the 

overall system behavior. 1) EpoR homodimerization: Unlike many other cytokine-

receptor systems, EpoR homodimerizes (but does not signal) before Epo addition, which 

should therefore confer ultrasensitivity to the number of receptor dimers available to bind 

Epo. This effect was modeled as a two-step process of EpoR binding to JAK2 and EpoRJ 

dimerizing to form EpoRJD. Alternatively, EpoR homodimerization could be treated as a 

single-step process without considering the effect of JAK2. 2) PI3K/AKT pathway: 

Signaling in the MAPK cascade has been shown to convert graded signals into 

ultrasensitive responses61; therefore, the similar cascade structure in the PI3K/AKT 

pathway might ultrasensitize the signals from the cell surface to GATA-1. 3) Double 

phosphorylation of AKT: Recent reports have shown that bistability in signaling circuits 

can arise from multisite phosphorylation56; hence, we explicitly modeled AKT activation 

as two phosphorylation steps. 4) Transcription and translation: Delay in feedback loops 

have been shown to generate interesting behaviors in signaling networks62, so these two 

processes were modeled as separate steps. Additionally, explicit inclusion of mRNA 











Figure 5.3 

 

 

 

Figure 5-3 Effect of the positive feedback loops on the on-state ATFB levels 

Strengths of the autofeedback loops (F1A and F1B) are varied for both lineages and the steady-state 
values of ATFB are plotted for no (A), moderate (C) and strong (E) inhibition, keeping the 
strength of receptor feedback (F2A and F2B) constant. Strengths of the receptor feedback loops 
(F2A and F2B) are varied and the values of ATFB are plotted for no (B), moderate (D) and strong 
(F) inhibition, keeping the strength of autofeedback (F1A and F1B) constant. 
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Figure 5.4 

 

 

 

Figure 5-4 Effect of ligand on the on-state ATF levels 
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A. Phase plot showing the steady-state ATFA levels (blue – low, yellow – medium, red – high) 
when LA and LB values are varied. B. Phase plot showing the steady-state ATFB levels when LA 
and LB values are varied. Low LA and low LB do not commit the uncommitted cell to either 
lineage (overlapping blue region in A and B). Low LA and high LB values commit the cell to 
lineage B (blue region in A and red region in B). High LA and low LB values commit the cell to 
lineage A (red region in A and blue region in B). High LA and high LB commit the cell to the 
bipotent state (overlapping yellow region in A and B). Steady-state response plots: C. Increasing 
LA from 0, with LB constant at 300, abruptly switches the cell from the committed B state to the 
bipotent state (increase in ATFA to intermediate level) after reaching a threshold concentration 
(solid red line). After achieving the bipotent state, decreasing LA to sub-threshold values does not 
immediately switch the cell state, suggesting significant memory in the system (dotted red line). 
D. Increasing LA from 0, with LB constant at 300, decommits the cell to the bipotent state 
(decrease in ATFB to intermediate level) after reaching the threshold concentration (solid blue 
line). After achieving the bipotent state, decreasing LA to sub-threshold values does not 
immediately switch the cell state, again suggesting significant memory (dotted blue line). E. 
Increasing LA from 0, with LB constant at 100, abruptly switches the committed B cell to the 
bipotent state (increase in ATFA to intermediate level) and then again to the committed A state 
(increase in ATFA to high level) after reaching the corresponding threshold concentrations (solid 
red line). After achieving the bipotent state or the committed state, decreasing LA to sub-threshold 
values does not immediately switch the cell response, suggesting significant memory in both 
states (dotted and dot-dash red line). F. Increasing LA from 0, with LB constant at 100, decommits 
the cell to the bipotent state (decrease in ATFB to intermediate level) and then again to the 
committed lineage A state (decrease in ATFB to low level) after reaching the corresponding 
threshold concentrations (solid blue line). After achieving the bipotent state or the committed 
lineage A state, decreasing LA to sub-threshold values does not immediately switch the cell 
response, suggesting significant memory in both states (dotted and dot-dash blue line). Plots C 
and D show bistable expression of ATFA and ATFB; plots E and F exhibit both bistable and 
tristable expression of the transcription factors. 



Figure 5.5 

LA = 0, LB = 350 

 

LA = 100, LB = 250 

 

LA = 175, LB = 175 

 

Figure 5-5 External regulation of stochastic transitions 
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Three different LA|LB combinations (0|350, 100|250, and 175|175) were run using the stochastic 
version of the model with no, moderate, or strong inhibition conditions and the system was 
allowed to reach steady state. ATFA and ATFB values from 10,000 runs for each condition are 
plotted here as three-dimensional histograms. With strong inhibition, the system cannot achieve 
the intermediate, bipotent state that is seen with moderate inhibition. When induced with only one 
ligand (e.g., 0|350), the initial population, for all inhibition conditions, commits predominantly to 
the lineage corresponding to that ligand. When the uncommitted state is stimulated with equal 
values of ligand (175|175), the no inhibition condition primarily results in a state that corresponds 
to high activation of both transcription factors (unlikely to be a biologically relevant state for cell-
commitment decisions); the strong and the moderate inhibition conditions result in significant 
population of all of the available states except the uncommitted state. When one ligand value is 
higher (e.g., 100|250), in the presence of inhibition, the majority of the cells committed to the 
lineage corresponding to the higher ligand concentration. The number next to each individual 
population denotes the percentage of the total population when treated with the given 
combination of LA and LB. 



Figure 5.6 

 

Figure 5-6 Time trajectories during lineage commitment 

A. Phase plot of total transcription factor (ITF+ATF) for the four steady-state populations 
(uncommitted, A, B, and bipotent). B. Phase plot of active transcription factor (ATF). C. Time 
trajectories for ATFA in panel B for the transition from the uncommitted cell to committed A state 
(blue line) and bipotent state (orange line) and from the bipotent state to committed A state (green 
line) is shown as a time course plot. The error bars represent the standard deviation of the mean. 
The red line shows the level of ATFB as the bipotent cell transitions to the committed A state. D. 
Phase plot of total receptor (R+C). E. Phase plot of active complex (C). F. Time trajectories for 
CA in panel E for the transition from the uncommitted cell to committed A state (blue line) and 
bipotent state (orange line) and from the bipotent state to committed A state (green line) is shown 
as a time course plot. The error bars represent the standard deviation of the mean. The red line 
shows the level of CB as the bipotent cell transitions to the committed A state. In the phase plots, 
the arrows indicate the direction of commitment (averaged over 200 stochastic runs each): from 
the uncommitted state, the three possible commitment trajectories lead to pure lineage A, pure 
lineage B, and the bipotent state. In separate simulations starting with the bipotent state and with 
initial ligand concentrations sufficient to destabilize this state, the two possible commitment 
trajectories lead to pure lineage A and pure lineage B. Each trajectory has several nodes and the 
number at each node denotes the average time (in hours) it takes to reach the node from the initial 
state. Each black dot in A, B, D and E represents the endpoint (100,000 min) of an individual 
stochastic trajectory. 
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Figure 5.8 

 

Figure 5-8 Proposed paradigm for hematopoiesis 

Extrinsic (instructive) and intrinsic (stochastic) cues can both play roles in commitment of 
progenitor cells. In addition to classical pathways of commitment (solid arrows), bypass 
mechanisms have been reported for HSCs (dashed green arrow) and our model suggests that this 
may be possible for multipotent progenitors as well (dashed purple arrow). 
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Table 5.3 

Table 5-3 Probability functions and reactions for the stochastic model 
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Table 5.4 

Table 5-4 Parameter fitting of microarray data 
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