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Composing Abstractions of Hybrid Systems

Abstract

The analysis and design of hybrid systems must exploit their hierarchical and compositional nature of in order
to tackle complexity. In previous work, we presented a hierarchical abstraction framework for hybrid control
systems based on the notions of simulation and bisimulation. In this paper, we build upon our previous work
and investigate the compositionality of our abstraction framework. We present a composition operator that
allows synchronization on inputs and states of hybrid systems. We then show that the composition operator is
compatible with our abstraction framework in the sense that abstracting subsystems will the result in an
abstraction of the overall system.
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Abstract. The analysis and design of hybrid systems must exploit their
hierarchical and compositional nature of in order to tackle complexity.
In previous work, we presented a hierarchical abstraction framework for
hybrid control systems based on the notions of simulation and bisimula-
tion. In this paper, we build upon our previous work and investigate the
compositionality of our abstraction framework. We present a composi-
tion operator that allows synchronization on inputs and states of hybrid
systems. We then show that the composition operator is compatible with
our abstraction framework in the sense that abstracting subsystems will
the result in an abstraction of the overall system.

1 Introduction

The complexity of hybrid systems analysis and design motivate the development,
of methods and tools that scale well with dimension and exploit system structure.
Hierarchical decompositions model hybrid system using a hierarchy of models
at different layers of abstraction. Analysis tasks are then performed on simpler,
abstracted models that are equivalent with respect to the relevant properties.
Design also benefits from this approach since the design starts at the top of the
hierarchy on a simple model and is then successively refined by incorporating
the modeling details of each layer.

In addition, as systems are usually compositions of subsystems, one must take
advantage of the compositional structure of hybrid systems. We seek, therefore,
to take advantage of this compositional structure of hybrid systems to simplify
the computation of abstractions. This simplification comes from the fact that it
is much simpler to abstract subsystems individually and then interconnect them
in order to obtain an abstraction, rather than to extract an abstraction of the
system as a whole. In order to accomplish this, compositional operators need to
be compatible with abstraction operators.

The notions of composition and abstraction are mature in theoretical com-
puter science, and, in particular, in the areas of concurrency theory [9], [17], and
computer aided verification [8]. Notions of abstraction such as language inclu-
sion, simulation relations, and bisimulation relations have been considered in the
context of hybrid systems. A formal model for hybrid systems allowing composi-
tion was proposed in [7], compositional refinements in a hierarchical setting are
discussed in [2], and assume guarantee proof rules presented in [4].



For purely continuous systems, the notions of simulation, and bisimulation
had not received much attention [16]. Recently, similar notions were introduced
in [10,11] which has resulted in constructions of abstractions for linear control
systems [10], and nonlinear control systems [11] while characterizing abstracting
maps that preserve properties of interest such as controllability. Based on these
results, in [14], we took the first steps towards constructing abstractions of hybrid
systems while preserving timed languages. This allowed us to introduce in [15]
of an abstract notion of control systems comprising discrete, continuous and
hybrid systems. This abstract framework was the natural setting to understand
abstractions of hybrid control systems.

In this paper we extend the hierarchical approach described in [15] towards
compositionality. Following the approach described in [17], we introduce a gen-
eral composition operator modeling the interconnection of subsystems and relate
compositionality with abstractions. We prove that simulations and bisimulations
of hybrid systems are compositional and we also give necessary and sufficient
conditions for bisimulations to be compositional.

This paper is structured as follows. In Section 2 we review the abstract control
systems framework introduced in [15] and introduce the notions of simulation and
bisimulation. In Section 3 we introduce a composition operator based on [17],
modeling the interconnection of subsystems and relate compositionality with
abstractions. We prove the main results of the paper showing that abstractions
are compositional. We conclude at Section 4 by providing some topics for future
research. In Appendix A we collect some mathematical facts and notational
issues, and Appendix B contains the proofs of all the results.

2 Abstract Control Systems

In [15], we presented an abstract control systems framework which allows the
treatment of discrete, continuous, and hybrid control systems in a unified way.
This approach differs from other attempts of unification [6,13] by regarding
systems as control systems. The framework is based on a notion of evolution,
and the ability to control the evolution. The reader is refered to Appendix A for
some mathematical preliminaries.

Definition 1 (Abstract Control System). Let S be a set, M a monoid and
A a fibering relation on S x M with base space S such that A is a prefiz closed
subset of M containing the identity for every s € S. An abstract control system
over S is a map ® : A — S respecting the monoid structure, that is &5 : Ay
— S wverifies:

1. Identity: &5(c) = s
2. Semi-group: ®¢ (4,)(as) = Ps(asay)

Intuitively, we can think of the set S as the state space, and the fiber bundle
A, also called in this work a fibering monoid, as the set of possible actions, that
depend on the base point. The map & assigns to each point s € S a function



from A, to S representing all the input choices that can be made at the point s.
Given an input choice as € A, Ps(as) returns the state reached under the action
of the control input as. To get a better understanding of the above definition we
will see how it applies to three classes of systems.

Discrete Control Systems: Let (), X, 0) be a discrete labeled transition
system, where @ is a finite set of states, X' is a finite set of input symbols, and 9 :
Q x X — @ is the next-state function. For simplicity, we restrict to deterministic
transition systems, and note that J is in general a partial function. Let us denote
by X* the set of all finite strings obtained by concatenating elements in X'. In
particular the empty string € also belongs to X'*. With concatenation as a monoid
operation, X* can be taken as the monoid M. The state space is naturally S = Q.
The transition function ¢ defines a unigue partial map from @Q x X* to () which is
just an abstract control system @ : (S x M)|g = A — S, where R is the fibering
monoid respecting relation given by R = {(s,m) € Sx M : &(s,m) is defined}.

Continuous Control Systems: Let U be the space of admissible control
inputs. Define the set U? as:

U'={u:[0,{[=>U | [0,¢[CRy} (1)

An element of U? is denoted by u?, and represents a map from [0, ¢[ to U. Consider
now the set U* which is the disjoint union of all U? for 0 < t < oco:

vr=|J U (2)

0<t<o0

The set U* can be regarded as a monoid under the operation of concatenation,
that is if utt € Ut C U* and u’? € U C U* then uhtul? = yh1ttz ¢ Uhttz C
U* with concatenation given by:

t1 1
t tore  Jutt(t) if 0<t<ty
uru () {utZ(t—t1)if t1 St <t +ty @)

The identity element is given by the empty input, that is e = u°. Let & = f(z, u)
be a smooth control system, where x € M, a smooth manifold and v € U, the
set of admissible inputs. Choosing an admissible input trajectory u!, f(x,u?’)
is a well defined vector field and as such it induces a flow which we denote by
vz @ [0,8[— M, such that 7,(0) = z. We can then cast any smooth control
system into our framework by defining:

G:MxU*— M
(z,u") = 72 () (4)

It is not difficult to see that & is in fact a well defined abstract control sys-
tem since @(z,e) = 7,(0) = z and S(z,u" u?) = v, (t1 + t2) = vy, (1a)(t2) =
&(P(x,u'r),ut?). In general, the set of admissible control inputs may change
with the point z so that the domain of & will be in fact a fiber bundle over M.

Hybrid Control Systems: The state space of an hybrid control system
is a set of smooth manifolds X, parameterized by the discrete states ¢ € @,



denoted by X = {X,}seq- A point in X is represented by the pair (¢g,z). As
action monoid we will use the set:

M = U (U* U Z*){I,Z,...,t} (5)

te{1,2,...,n}

assuming that U* N X* = {¢} and regarding U* and X* simply as sets. Let us
elaborate on the product operation on M. This operation is defined as the usual
concatenation and therefore it requires finite length strings. To accommodate
this requirement and still be able to have an infinite number of concatenations
of elements in U* we proceed as follows. Suppose that we want to show that
oruttut? . ulr ... oy belongs to M, where t, is a convergent series. Instead of
regarding each element in the string as an element in M, which would not allow
us to define the last concatenation since it would happen after oo, we regard
o1 and o4 as elements of M and wiiu?2...ul» ... = u! as an element of U*

and consequently as an element of M, where t' = lLr)n t,,. This string is then
n oo

regarded as the map u : {1,2,3} — M defined by u(1) = oy, u(2) = u!" and
u(3) = 3. The product in M is then the usual concatenation on reduced strings,
that is, strings where all consequent sequences of elements of U* or X* have been
replaced by their product in U* or X*, respectively. Hybrid control systems are
now cast into the abstract control systems framework as:

Definition 2 (Hybrid Control System). An hybrid control system H =
(X,Ax,Px) consists of:

— The state space X = {X;}qeq-
— A fibering relation Ax on X x M defined by:

Ax = {((gy2),m) € X x M : &x((q,x),m) is defined }

— A partial map x : X x M — X respecting the monoid structure such
that for all ¢ € Q, there is a set Inv(q) C X, and for all z € Inv(q),
A(gey NU* # {e} and ®((q,z),u’") € Inv(q) for every prefiz ut of every
ut € A(q,w)'

The semantics associated with the evolution from (g, z) governed by ¢ and
controlled by a € A, is the standard transition semantics of hybrid au-
tomata [3]. Suppose that a = ut'oy02ut?, then #((q,z),a) = (¢',2') means that
the system starting at (g, z) evolves during ¢; units of time under continuous
input u!, jumps under input o; and them jumps again under o,. After the two
consecutive jumps, the system evolves under the continuous control input u!2
reaching (¢', ") to units of time after the last jump.

2.1 Control System Abstractions

We now review the notions of simulation and bisimulation in the context of
abstract control systems.



Definition 3 (Simulations of Abstract Control Systems). Let $x and
dy be two abstract control systems over X and Y with fibering monoids Ax and
Ay, respectively. Let R C Ax x Ay be a fibering monoid respecting relation.
Then @y is a simulation of ®x with respect to R or a R-simulation iff:

VaceX(w, y) € Rp = v(z,am)edom(R)E(z,am,y,ay)ER (¢X (CE, aw)a Py (ya a'y)) € Rp

The above definition slightly generalizes the usual notions of morphisms between
transition systems in [17], since we allow the control inputs to depend on the
state space and since we use relations instead of functions. It is straightforward
to see that abstract control systems and relations satisfying the above condition
form a category, that we call the abstract control systems category. The notion
of bisimulation is defined as a symmetric simulation:

Definition 4. Let $x and $y be abstract control systems over X and Y with
fibering monoids Ax and Ay respectively. If R C Ax x Ay is a fiber respecting
relation we say that ®x is a R-bisimilar to @y iff Py is a R-simulation of Px
and x is a R~'-simulation of Py .

The approach taken to define bisimulation is similar in spirit to the one in [9],
however instead of preserving labels between bisimulations, we relate them through
the relation. Several other approaches to bisimulation are reported in the litera-
ture and we point the reader to the comparative study in [12] and the references
therein.

If the simulation relation is surjective and defined for every (z,a) € Ax then
in [15] we have presented an algorithm to perform the abstraction process for
hybrid systems, based on the continuous constructions of [10] and [11].

3 Compositional Abstractions

In this section, we follow the categorical description of composition of transition
systems as described in [17]. A variety of composition operations can be modeled
as the product operation followed by a restriction operation.

3.1 Parallel Composition with Synchronization

The first step of composition combines two abstract control systems into a single
one by forming their product. Given two abstract control systems &y : Ay — X
and Py : Ay — Y we define their product to be the abstract control system
QSX X @y : (AX X Ay) — (X X Y), ¢X X @y(am,ay) = (@X(ax),¢y(ay)), where
the fibers of (Ax x Ay) are subsets of the direct product monoid M x ® My . The
trajectories of the product control system consist of all possible combinations
of the initial control systems trajectories. The product can also be defined in a
categorical manner.

Definition 5 (Product of abstract control systems). Let &x : Ax — X
and Py : Ay — Y be two abstract control systems. The product of these abstract



control systems is a triple (Px X Py, wx,my) where x X Py is an abstract
control system and 7x C (X XY) x X and 7y C (X X Y) XY are projection
relations such that ®x is a wx-simulation of ®x X @y, Py is a 7wy -simulation
of &x x Py, and for any other triple (Pz,px,py) of this type there is one and
only one relation ( C Z x (X xY) such that &x x Py is a (-simulation of D4,
and the following diagram commutes:

dx 471 bx X Oy ﬂ’ by
f
pPx ¢ Py
|
by (7)

The relations mx and 7y are in fact those induced by the canonical projection
maps 7x : X XY — X 7y : X XY — Y and the relation ( is easily seen
to be given by ¢ = (px,py). This definition of product may seem unnecessarily
abstract and complicated at the first contact, it will, however, render the proof
of the main result on the compatibility of parallel composition with respect to
simulations an almost trivial task.

Ezample 1. Consider the transition systems inspired from [17] and displayed on
the left of Figure 1 where the € evolutions are not represented. The product of
these transitions systems will consist of all possible evolutions of both systems

as displayed on the right of Figure 1.
(e,0)

(ﬁzyle
A / \
b (,b) a,€
— b 5
1 3;2 Q °
c (z1, 91 EENTY
P —— o)
X X3 a,¢€)
2ys)

(w1592

Fig. 1. Two transition systems on the left and the corresponding product transition
system on the right.

In the product abstract control system, the behavior of one system does not
influence the behavior of the other system. Since in general the behavior of
a system composed of several subsystems depends strongly on the interaction
between the subsystems, one tries to capture this interaction by removing un-
desired evolutions from the product system ®x x @y through the operation of
restriction. Given a fibering submonoid! A; C Ay we define the restriction of
control system @y : Ay — W to A, as a new control system @y |a, : A — L
which is given by ®w |4, (z,a) = Pw(z,a) iff (z,a) € A and Pw (x,a’) belongs
to L for any prefix a' of a. If the fibering submonoid Ay, has the same base space

LA fibering submonoid A of a fibering monoid B is understood as a fibering monoid
such that the inclusion relation i : A — B is fibering monoid preserving.



as Aw but “smaller” fibers, then restriction is modeling synchronization of both
systems on the control inputs. If on the other hand the fibers are equal but the
base space of Ay, is “smaller” then the base space of Ay then both systems are
being synchronized on the state space. Synchronization on inputs and states is
also captured by the operation of restriction by choosing a fibering submonoid
with “smaller” fibers and base space. This operation also admits a categorical
characterization.

Definition 6 (Restriction of abstract control systems). Let &y : Ay —
W be an abstract control system and let Ay, be a fibering submonoid of Ay . The
restriction of Pw to Ar, is a pair (Pw|a,,i1) where w4, is an abstract control
system and iy, C L X W is an inclusion relation such that @w is a ir-simulation
of Pwla,, and for any other pair (Pz,iz) of this type with iz(Az) = iL(AL)
there is one and only one relation 1 such that w|L is a n-simulation of ¢4,
and the following diagram commutes:

ir,
Pw|a, — Pw

%

b, (8)

The inclusion relation iy, is in fact the map iy : Ay — Aw sending [ € A, to
ir(l) =1 € Aw, and consequently the relation n is trivially given by n = iz.
With the notions of products and restriction at hand, we can now define a general
operation of parallel composition with synchronization.

Definition 7 (Parallel Composition with synchronization). Let $x : Ax
— X and ¢y : Ay — Y be two abstract control systems and consider a fiber-
ing submonoid Ay C Ax x Ay. The parallel composition of &x and Py with
synchronization over Ap is the abstract control system defined as:

Px ||a, &y = (Px X Py)|a, (9)

Example 2. Consider the transition systems displayed on the left of Figure 1.
By specifying the subbundle:

Ap = {((xlyyl)a (a)b))v ((mlayl)) (6)6))) ((x27y1)7 (576))>
((mg,yl),(s,s)), (372,];2),(5,5)), (x15y2)7(575))} (10)

it is possible to synchronize the event a with the event b on the parallel compo-
sition of these systems. The resulting transition system is displayed in Figure 2.

(a.b) (c.0)

(w1,91) (T2, 1) (2, Y2)

Fig. 2. Parallel composition with synchronization of the transition systems displayed
on the left of Figure 1.



3.2 Compositionality of Simulations

We now determine if composition of subsystems is compatible with abstraction.
A positive answer to this question is given by the next theorem which describes
how the process of computing abstractions can be rendered more efficient by
exploring the interconnection structure of hybrid systems.

Theorem 1 (Compositionality of Simulations). Given abstract control sys-
tems &x, Py (which is a Rx-simulation of &x), by, w (which is a Ry-
simulation of @y ) and the fibering submonoid A;, C Ax x Ay, the parallel com-
position of the simulations 7 and Pw with synchronization over Rx «y (ArL) is
a Rx xv|a, -simulation of the parallel composition of ®x with $y with synchro-
nization over Ay .

The above result was stated for parallel composition of two abstract control
systems but it can be easily extended to any finite number of abstract control
systems. The relevance of the result lies in the fact that, in general, it is much
easier to abstract each individual subsystem and by parallel composition obtain
an abstraction of the overall system.

Ezample 3. To illustrate the use of Theorem 1 we shall make use of the cele-
brated water tank system from [1]. Consider two water tanks that can be filled
by water coming from a pipe as displayed on the left of Figure 3. The water

/%\
w , \F —w —k(w—w)

w — v
o w ) T W—w — vy

X2

Fig. 3. Water tank system: Physical setup on the left and hybrid model on the right.

level at tank A is measured by z; while the water level at tank B is measured
by z-. Each tank has also an outflow that causes a decrease in the water level.
The outflow rate at tank A is v; while at tank B is vy. This outflow can be
compensated by a water inflow coming from the pipe on top of the tanks. This
pipe has an inflow rate of w which can be directed to tank A or to tank B by
means of a valve located in the pipe. Contrary to [1] we explicitly incorporate
a first order model of the pump in the hybrid automaton describing this hybrid
control system, displayed on the right of Figure 3. We now seek to abstract away
the pump dynamics to obtain the usual model that considers the commutation
of the inflow from one tank to the other instantaneous?. Instead of computing an

2 We remark that considering the water commutation instantaneous leads to zeno
trajectories [5], however this problem falls beyond the scope of the current paper.



abstraction directly from this hybrid automaton we start by realizing that this
automaton can be obtained by parallel composition of hybrid control systems H x
and Hy modeling the pipe and the tanks, respectively, as shown in Figure 4. This

25

Fig. 4. Hybrid model of the pipe and water tanks on the left and right, respectively.

composition is synchronized on the fibering submonoid Ay C Ax x Ay defined
by the points of the form (((g1,w), (z1,22)), (g,u?)), (((q1,w), (z1,22)), (01,¢)),
(g2, w), (1, 22)), (¢, u')) and (((g2,w), (z1,22)), (52,€)), where the continuous
inputs satisfy u! = (w(t),w — w(t)). We now abstract the pipe model by aggre-
gating all the continuous states in discrete state ¢; to 0 and all the continuous
states in discrete state g2 to w. Theorem 1 ensures that composing Hy with this
abstraction will result in an abstraction of hybrid control system Hx ||4, Hy.
The new synchronizing fibering monoid is obtained from Ay, by replacing w by 0
on the continuous inputs in state g1, replacing w by w in the continuous inputs at
discrete state ¢» and identifying (g1, w) and (g2, w) with ¢; and g2, respectively.
The resulting hybrid control system is displayed in Figure 5. This example il-

a2

Fig. 5. Abstracted hybrid model of the water tank system.

lustrates the clear advantage of exploring compositionality in computing hybrid
abstractions. We have only computed continuous abstractions of one-dimensional
control systems (for the pipe automaton), whereas if one would have proceeded
directly from hybrid control system Hyx ||a, Hy without exploring the com-
positional structure, one would have computed continuous abstractions of the
three-dimensional continuous control systems at each discrete location.

3.3 Compositionality of Bisimulations

In this section we extend the previous compatibility results from simulations to
bisimulations. Although the product respects bisimulations the same does not



happen with the operation of restriction so we need additional assumptions to
ensure that bisimulations are respected by composition as stated in the next
result.

Theorem 2 (Compositionality of Bisimulations). Given abstract control
systems ®x, Pz (a Rx-bisimulation of &x), Py, Pw (a Ry-bisimulation of
&y ) and a fibering submonoid A, C Ax x Ay we have that the parallel com-
position of the bisimulations &z and Py with synchronization over Rx xy (AL)
is a Rxxy|a, -bisimulation of the parallel composition of &x with &y with syn-
chronization over Ar, iﬁR}leORXXﬂAL =ida, and Rxxyo(Rxxy|a,)™! =
idRXXY(AL)'

From the previous result we conclude that if we have a mean of computing bisim-
ulations and if we choose the synchronization fibering submonoid carefully we
can compute bisimulations by exploring the interconnecting structure of large-
scale systems. A constructive algorithm to compute abstractions of hybrid con-
trol systems was proposed in [15]. It was also shown that if certain assumptions
hold, then the algorithm also computes bisimulations.

4 Conclusions

In this paper we addressed the compositional abstractions of hybrid systems.
Based on previous work on abstractions of hybrid control systems, we intro-
duced a composition operator, and showed that this composition operator is
compatible with abstractions. Furthermore, we presented necessary and suffi-
cient conditions for these operator to be also compatible with bisimulations.
Clearly, future research should focus on classes of hybrid systems and composi-
tion operators where the abstraction process can be fully automated.

Acknowledgments: The authors would like to thank Esfandiar Haghverdi
for extremely stimulating discussions on category theory, and its use for hybrid
systems. The work of George J. Pappas is partially supported by DARPA ITO
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A Notation and Mathematical Facts

A relation is a generalization of a function in the sense that it assigns to each
element in its domain a set of elements in its codomain. Mathematically a rela-
tion R between the sets S; and Ss is simply a subset of their Cartesian product,
that is R C Sy x S2. The domain of a relation is the set dom(R) = {s; € S;

dsy € S2 (s1,82) € R}. Given two relations R C S; x Sy and R' C Sy x S3
we can define their composition to be the relation R' o R C S; x S3 defined
by R oR = {(81,83) € 51 xS3 : dsy €85 (81,82) € RA (82,83) S R’}
Given a relation R C S; x S we call R~ C Sy x S; given by R™! = {(s2,51) €



S2 x S1 : (s1,82) € R} the inverse relation. An object that we will use fre-
quently is the set valued map R : S; — 2°2 induced by a relation R and defined
by R(s1) ={s2 € Sa : (s1,s2) € R}.

We also introduce some notation for later use. Given relations R; C S; X Ss,
Ry C S3 x Sy and a subset L C S; x S3 we define the new relations R;x2 and
R1><2|L as R1><2 = R1 XR2 = {((81, 83), (82, 84)) € (51 XS3)X(SQXS4) : (81, 82) S
Ry A (s3,54) € Ry} and Ryyxa|r = {((51,53),(52,54)) € Rix2 : (s1,83) € L}.

The product S; x Sa comes equipped with two projection maps mg, : S1 X Sa
— S1 and 7g, 1 S1 X Sz — S». If we now chose a subset R of the product such
that g, (R) = S; we can regard this subset R as a fiber bundle over the base
space S1 and we call R a fibering relation. The fiber over s € Sy, denoted by
Rs = wgll(s) is given by all the elements r € R such that wg, (1) = s. We also
denote an element r = (a,b) € R by b, when we whish to emphasize the fiber
part of r.

A monoid is a triple (M, -,e) where M is a set closed under the associative
operation - : M x M — M and ¢ is a special element of M called identity. This
element satisfies e-m = m-¢ = m for any m € M. We will usually denote m -m
simply by mims and refer to the monoid simply as M. Given two elements m4
and mo from M we say that m; is a prefix of ms iff there exists another m € M
such that mym = my. Suppose now that we have a fibering relation R C S x M
with base space S. If wgl(s) contains € and is prefix closed for every s € S then
we call R a fibering monoid.

We now relate relations with fiber bundles and monoids. Suppose that the
sets S; and Sy are in fact fiber bundles. Then a relation R C S; x S5 induces a
relation Rg C B; X Bs on the base spaces By and B, of S and Ss, respectively,
by declaring (b1, b2) € Rp iff (s1,s2) € R, and 7g, (s1) = by and 7g,(s2) = be. If
the fiber bundles have a richer structure such as fibering monoids we need the
relation to also respect that structure. We then say that a relation R C S; X S5
between two fibering monoids is fibering monoid respecting iff satisfies:

— Identity: (s1,s2) € R = ((s1,€),(s2,€)) € R
- Semi-group: ((817m1)7 (825m2))7 ((Sllvmll)a (SIQamé)) ER
and (s1,mym}) € S1 = ((s1,mim}), (s2, mam})) € R.

B Proofs

Proof (of Theorem 1). Consider the product system (@7 x @w, 7z, 7w ) and the
triple (&x x @y, Rx omx, Ry omy). By definition of product we know that there
is one and only one relation ( such that:

Z‘_QSZXQSW_’QSW

XON /;oﬂy

QSXXQSY



commutes and this relation is given by ( = (Rx,Ry) = Rxxy, meaning that
b, X Py is a Rx xy-simulation of @ x x @y . Consider now the following diagram:

i L
(P72 X Pw)lc(ar) U, x By
n CO iAL
(Px X Py)|a, (12)

Once sees that the unique relation 7 is given by n = (oi4, = Rxxy 0t4,, that
is, 1 is the relation Ry xy restricted to the fibering submonoid Ay. From this
we conclude that @7 [|r, ., (4,) Pw is a Rxxy|a,-simulation of &x ||4, Py as
desired.

We now prove Theorem 2 through a series of results. We start by showing that
product respects bisimulations:

Lemma 1. Given abstract control systems ®x, P4 (a Rx -bisimulation of Px ),
&y and Py (a Ry -bisimulation of Py ) the product abstract control system @7 x
by is a Rx xy -bisimulation of ®x X Py .

Proof. Consider the following diagram:

QSX X Spy
7{')/ \(Y
Dx Py
Rx || R5'm || Ry || Ry
bz Py
F‘Z\ /:W
¢Z X QSW

By definition of product there exists one and only one relation n; and one and
only one relation 72 such that the diagram commutes. In fact, n; is the relation
m = (Rx onx,Ry omy) = Rxxy and 12 = (R)_(1 o WZ,R;I omw) = R}lxy
meaning that ®x x @y is Rx xy-bisimilar to &7 x & .

Under the proper assumptions the operation of restriction is also compatible
with bisimulations:

Proposition 1. Let ®x be an abstract control system, @y a R-bisimulation of
®x and AL a fibering submonoid of Ax such that R™' o R|s, = ida, and
ROR|Zi =idg(a,). The restriction ®x|a, is a R|a, -bisimulation of Py |r(a,)-



Proof. Consider the restrictions ($x,ir) and (Sy |g(a,), R™' 0ig(a,)) with if :
Ar — Ax andig(a,) : R(Ar) — Ay the inclusion morphisms. Since i4, (Ar) =
Ap =R 'oR(AL) = R ' oig(a,)(R(AL)) and by definition of restriction there
is one and only one morphism n; making;:

Py |Rr(AL)

" { Vl ©iR(AL)

x|a, 7~ Px (14)

L
commutative. A similar argument for the pairs (®y'|r(a,),ir(a,)) and (Px |4, , Ro
ia, ) assures the existence of a single morphism 7, such that:

LR(AL
¢Y|R(AL) L)¢Y

2 Ro LA

Bx|a, (15)

commutes. Since R~ o R|4, = ida, and R o R|Zi = idp(a,) we conclude
that i = R o inga,) = {(ay) (@,0,) € Ay X Ax : (7,0, (y,a,)) €
R A (z,a;) € Ar}. Noticing that 7o = Roia, = {((z,az),(y,ay)) € R :
(z,a,) € AL} we clearly have 1, = ;' meaning that ®x|4, and ®y|g4,) are
bisimilar as desired.

The condition of the previous result is in fact also a necessary one as we now
show:

Proposition 2. Let &x be an abstract control system, &y a R-bisimulation of
&x and Ay a fibering submonoid of Ax. If the restriction $x|a, is a R|a,-
bisimulation of ®y|p(a,) then R~ o R4, =ids, and Ro R|Zi =idpaL)-

Proof. Consider the following commutative diagram:

IR(AL)

Py |R(ay) Py
mulm e
i
b = ¢
x|, X (16)
from which we get the following equality:
iA, :RfloiR(AL)ORML :R710R|AL (17)

that implies R~ o R|4, = ida, . From the diagram we also extract the equality
ir(Ay) = Roiay 0R|Zi which gives us the remaining condition ROR|Zi =idga,.

Theorem 2 is just a restatement of Lemma 1 and Propositions 1 and 2 and is
therefore proved.
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