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Abstract

Abstraction is a natural way to hierarchically decompse the analysis and design of hybrid systems. Given a
hybrid control system and some desired properties, one extracts and abstracted system while preserving the
properties of interest. Abstractions of purely discrete systems is a mature area, whereas abstractions of
continuous systems is a recent activity. In this paper we present a framework for abstraction that applies to
discrete, continuous, and hybrid syustems. We introduce a composition operator that allows to build complex
hybrid systems from simpler ones and show compatibility between abstractions and this compositional
operator. Besides unifying the existing methodologies we also propose constructions to obtain abstractions of
hybrid control systems.
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COMPOSITIONAL ABSTRACTIONS OF HYBRID CONTROL SYSTEMS

PAULO TABUADA, GEORGE J. PAPPAS, AND PEDRO LIMA

ABSTRACT. Abstraction is a natural way to hierarchically decompose the analysis and design of hybrid sys-
tems. Given a hybrid control system and some desired properties, one extracts an abstracted system while
preserving the properties of interest. Abstractions of purely discrete systems is a mature area, whereas ab-
stractions of continuous systems is a recent activity. In this paper we present a framework for abstraction
that applies to discrete, continuous, and hybrid systems. We introduce a composition operator that allows
to build complex hybrid systems from simpler ones and show compatibility between abstractions and this
compositional operator. Besides unifying the existing methodologies we also propose constructions to obtain
abstractions of hybrid control systems.

1. INTRODUCTION

In the last decade, increasing attention has been paid to the modeling, analysis and control of large-scale,
multi-agent, complex, hybrid systems. The impulse from the applications side has been tremendous and
includes among others: automotive engines [7, 6], air-traffic management [45], chemical batch plants [29],
manufacturing systems [14], TCP congestion control [16] and biomolecular networks [1] among many others.

One approach to deal with the inherent complexity of hybrid control systems is to organize them in a hierar-
chical framework where different layers of abstraction represent different aspects of the same system. Analysis
tasks are performed on simpler, abstracted models that are equivalent with respect to the relevant properties.
Synthesis tasks also benefit from this approach since the design starts as the top of the hierarchy on a simple
model and is then successively refined by incorporating the modeling details of each layer of abstraction.

The notion of abstraction is quite mature in theoretical computer science, and, in particular, in the areas
of concurrency theory [27] [46], and computer aided verification [26]. This has resulted in formal and very
meaningful notions of abstraction which are used to tackle exponential explosion of purely discrete systems.
Given a discrete system, an abstraction is simply a quotient system that preserves some properties of interest
while ignoring detail. Language equivalence, simulation, and bisimulation are established notions of abstraction
for discrete systems that preserve properties expressed in various temporal logics [25].

For purely continuous systems, the notions of simulation, and bisimulation had no counterparts. Recently,
similar notions were introduced in the collection of papers [32, 31, 33, 30, 42, 43]. This research resulted
in automatic constructions of abstractions for linear control systems [31], while characterizing abstracting
maps that preserve properties of interest such as controllability. Such notions were furthermore generalized
for nonlinear control affine systems [33] and fully nonlinear systems [43]. Notions of bisimulation for purely
continuous control systems were introduced in [30] where linear control systems are embedded in the class
of transition systems for which the notion of bisimulation was originally introduced in [34] and also [27]. It
is shown in [30] that different embeddings give rise to semantically different notions of bisimulation being
characterized by different conditions. For nonlinear systems, bisimulation was introduced in [42] and it was
shown that under certain conditions the abstractions described in [33] are in fact bisimilar to the original
system.

This research was partially supported by Fundacdo para a Ciéncia e Tecnologia under grant PRAXIS XXI/BD/18149/98, and
the National Science Foundation Information Technology Research grant CCR01-21431.

1



2 PAULO TABUADA, GEORGE J. PAPPAS, AND PEDRO LIMA

The notion of bisimulation has also proved useful in the context of control of discrete event systems. In [9] the
relation between bisimulation, supervisory control of discrete event systems and model matching problems is
clarified. Furthermore, it is shown how recasting supervisory control problems for discrete event systems as
a bisimulation problem leads to more efficient algorithms. In [24], bisimulation is fundamentally used at the
level of the problem formulation by requiring the closed loop system to simulate or bisimulate the specification.

Based on these results, in [41], we took the first steps towards constructing abstractions of hybrid systems
while preserving timed languages. Even though only the continuous part of the system was abstracted, the
important property that needed to be preserved in this abstraction was the detectability of the discrete
switching conditions. Related but orthogonal work considers purely discrete abstractions of hybrid systems [2,
10, 12, 36].

The similarities between notions of abstraction for discrete, continuous, and hybrid systems immediately raise
the question of a more unified theory of abstraction. In this paper, we begin addressing this important issue.
We start by first considering a more unified and abstract model for control systems. Our abstract control
systems model is inspired by categorical definitions of systems that are as old as [4, 37] and as recent as [39].
Although categorically inspired, the paper is accessible to readers that are not familiar with category theory,
except for some proofs that rely on simple category theory notions.

We show that purely discrete, continuous, and hybrid systems can be easily captured by our abstract model.
Furthermore, at this level of abstraction, one can show many useful properties regarding abstraction or com-
position that are independent of the discrete, continuous, or hybrid structure of the system.

As abstraction clearly depends on the property to be preserved, in this paper, we focus on simulations and
bisimulations where the properties that are preserved are the trajectories of the original system. In other
words, given an original hybrid control system and an abstracting map, which performs state aggregation, we
would like to extract another hybrid control system which simulates all trajectories of the original system.
This is clearly useful for verification purposes since in order to determine if a system satisfies certain properties
it is sufficient to check if its abstraction verifies the desired properties. However in many situations one needs
lower complexity models that are both sufficient and necessary. This motivates the need for bisimulations
which are symmetric simulation relations, that is, each system simulates the other.

We also introduce an abstract operator that allows to built systems by interconnection of subsystems. This
compositional operator, based on the categorical ideas in [46], turns out to be compatible with simulations
and even with bisimulations in certain cases. Compatibility means that instead on computing an abstraction
of a complex large-scale system one can compute abstractions of the subsystems and is guaranteed that the
interconnection of those abstractions is an abstraction of the original large-scale system. Our composition
operator differs from the approaches described in [23, 13], in that we model synchronization by restricting the
behavior of the systems without a priori defining inputs and outputs.

We specialize the developed results for hybrid systems, presenting a construction to obtain abstractions of
hybrid control systems. Furthermore, we also provide sufficient conditions for the resulting abstraction to be
a bisimulation of the original system. These results are then illustrated in a concrete application. We consider
the hybrid model of a spark ignition engine described in [8] and show how our methods can be applied to
obtain a smaller abstract model.

The structure of this paper is as follows:

In Section 2, an abstract notion of control systems which captures discrete, continuous, and hybrid control
systems is introduced as well as a notion of abstraction and bisimulation. It is also shown how these notions
can be used for verification of reachability based properties. Compositionality is discussed in Section 3 by
introducing the notion of parallel composition with synchronization and showing how abstractions and bisim-
ulations preserve this composition operator. In Section 4 we specialize these results to hybrid control systems,
and present a construction to obtain abstractions of hybrid control systems that simulate the trajectories of
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the original system. The proposed methodology is illustrated with a spark ignition engine example at Sec-
tion 5 and at Section 6 we list many interesting issues for future research. To keep the presentation of ideas
fluid, we have collected some mathematical facts regarding partial maps and monoids in Appendix A, while
in Appendix B we introduce the categorical notions of product and equalizer used in some of the proofs.

2. ABSTRACT CONTROL SYSTEMS

In this section we seek to extract the essential features common to purely discrete and continuous systems
that will allow to develop a fruitful theory of abstractions for hybrid systems. This approach has the clear
advantage of presenting in a unified way notions, results and algorithms common to discrete, continuous and
hybrid control systems.

We start by recalling some know interpretations of continuous and discrete control systems to gain some
motivation for the general definitions.

2.1. Discrete Control Systems. One of the usual models for discrete control systems are finite state au-
tomata [11, 20], defined by a triple (@, X, ) where:

e () is a finite set of states,
e Y is a finite set of input symbols,
e §:(Q x X — (@ is the next-state function.

We regard the partially defined map § as defining the controlled dynamics, in the sense that for each ¢ € @
there exists a set of choices (the elements o € ¥ such that §(g, o) is defined) that will influence the evolution
of the state. This controlled evolution is also usually modeled as a transition relation —€ @ x X x @), but we
will restrict our attention to deterministic! systems for which the relation — can be represented as a (partial)
function 4.

We now look at finite state automata from a different but equivalent perspective. Let us denote by ¥* the set
of all finite strings obtained by concatenating elements in ¥. In particular, the empty string € also belongs
to ¥*. Regarding concatenation of strings as a map from ¥* x ¥* to ¥*, we can give ¥* the structure of a
monoid. Concatenation of strings is clearly an associative operation and the empty string € can be taken as
the monoid identity since it satisfies s-€ = €-s = s for any s € ¥*. We now recall from basic automata
theory [17] that the transition function 0 defines a unique partial map from @ x ¥* to () with the following
properties:

*(g,e) = ¢
0"(q,0102) = 6"(6"(q,01),02)

These properties are in fact the definition of a monoid action, that is, 6* is a (right) partially defined action
of the monoid ¥* on the set Q.

To clarify the similarities to the continuous case that we describe next, we elaborate a little on the structure of
the monoid ¥*. This monoid has been defined as the set of all finite sequences of elements in ¥. Alternatively
we can regard ¥ as the disjoint union of all maps X", represented by:

o* — Hzn

n€ENp

INondeterministic transition relations can also be captured by parameterizing the nondeterminism. This can be accomplished
by modeling ¥ as ¥ = ¥, X ¥, where the labels in ¥, are regarded as controllable inputs, while the labels in ¥,, are regarded as
uncontrollable inputs or disturbances. This allows to model nondeterminism since (g, (0c,04)) is a set of states parameterized
by the labels o, € 3, which are independent of the choice o¢.
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Each set ¥, in the previous disjoint union, can be identified with the set of all maps from a set with n elements
to X. In fact, choosing {1,2,3,...,n} as the set with n elements, we see that (o1, 02,03, ...,0,) € X" is simply
the map w : {1,2,3,...,n} — ¥ defined by u(i) = o; for i = 1,2,3,...,n. The empty string ¢ is identified
with the (unique) map from the empty set to ¥. Concatenation of strings can now be seen as concatenation
of maps defined as follows:

D Y Y D

(2.1) (u(@), v(@)) = (“'v)(i):{ 5((;.)—70 g :LJSrZISSTZLSThLm

The above operation is well defined only if the number n is finite, otherwise we could not append the second
map after the end of the first. Furthermore, as the concatenation u - v € £t must belong to ¥* we need
also to ensure that n 4+ m is finite which implies that m must also be finite. This shows that we are forced to
work with finite length strings which will not be the case for continuous systems as we will see shortly.

2.2. Continuous Control Systems. For simplicity of presentation, we consider only time-invariant control
systems, although the construction to be presented is generalizable to time varying systems. We assume also
that the control systems satisfy the usual conditions for existence and uniqueness of solutions [40]. Consider
a continuous control system, described by the triple (M, U, f), where:

e M is a smooth manifold modeling the state space,
e (U is a smooth manifold modeling the input space,
e f: M xU — TM is a smooth map assigning for each u € U the vector field f(—,u): M — TM.

Similarly to the discrete case, continuous control systems can also be understood by means of a monoid action.
To reveal this fact, we define the set Ut as the set of all maps? from the interval [0, ¢[ to the space of inputs U:

(2.2) Ut =vt jo,t[e RS

An element of U! is denoted by u’, and represents a map from [0,¢[ to U. Consider now the set U* which is
the disjoint union of all U! for ¢t € Ry :

(2.3) vr=[[ v

tery

The set U* can also be regarded as a monoid under the operation of concatenation, that is, if u?* € Ut* c U*
and v*2 € Ut C U* then ultot? = wh T2 € Uh1+t2 C U* with concatenation given by:

t1 .
t1,,t2 _ u (t) if 0<t<ty
(24) u-v (t) - { ,Utz (t _ tl) if tl S t < tl +t2

The identity element is given by the empty input, that is ¢ = u°. This construction is analogous to the

construction that obtains ¥* from X, however the fact that #; and ¢ are (finite) real numbers does not imply
that u!t is a finite concatenation of elements in U*. We can have an infinite number of concatenations as long
as the sum of the duration times converges. This should be contrasted with the finite case, where a finite
number of concatenations is required.

Choosing an admissible input trajectory u! (an element of U*), f(x,u?) is a well defined vector field and as
such, it induces a flow which we denote by =, : [0,¢{{— M, satisfying +,(0) = z. We can then regard any
smooth control system as a monoid action by defining;:

. MxU* — M
(2.5) (z,ut) = (1)

2Technically speaking, we allow only classes of maps u(t) for which the solution of f(x(t),u(t)) is well defined. However, our
results are independent of the chosen class.
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It is not difficult to see that @ is in fact a well defined monoid action since
b(z,6) =7.(0) ==
and
B(z,utu?) = 7 (t + 1) = 7y, (1) (2) = S(@(a, u),u'?)

It is interesting to note that when U is a singleton (there are no choices to be made) the set U can be identified?
with the number ¢ so that U* is given by U* = HteRgt = R and our control system ® degenerates into an

action of ]Rg' on M, that is, the solution of a differential equation (a degenerate control system).

2.3. Abstract Control Systems. Motivated by the previous examples, we are lead to consider monoid
actions as good candidates for an abstract model of control systems. This is quite classic in the discrete case
and has also been explored in [40] for the continuous case. Recently, similar ideas have been used to lift several
results from regular expressions to timed expressions [5]. The fact that the same characterization also captures
the hybrid case, is perhaps surprising, but motivates the need to formalize the discussion so far.

Definition 2.1 (Abstract Control System). An abstract control system is a triple (S, M, ®), where S is a
set, M is a monoid and ® is a (possibly partially defined) action of the monoid M on the set S, that is, a
map ¢ : S x M — S satisfying:

1. Identity: ®(s,e) =s
2. Semi-group: ®(s,mimsy) = ®(P(s,my), ms)

We will usually denote an abstract control system simply by ® or ®g if we wish to emphasize the set S. We
also represent by s — s’ the evolution from s to s’ controlled by m and described by ®, that is, ®(s,m) = s'.

We are now ready to see how the present formalism can also describe hybrid control systems.

2.4. Hybrid Control Systems as Abstract Control Systems. Hybrid control systems also fit in the
previous abstract framework. The state space of an hybrid control system is usually described as @ x X,
where () is a finite set of states and X a smooth manifold. However it will be convenient to relax this concept,
and consider a set of smooth manifolds X, parameterized by the discrete states, denoted by X = {X,},e0
as the state space. This is natural, as different discrete states may be associated with different continuous
control systems defined on different continuous state spaces. A point in X is represented by the pair (g, z),
where z € X,.

As monoid we will use the set:

(2.6) M=TJJw uz)"
neN
assuming that U* N X* = {e} and regarding U* and ¥* simply as sets. Let us elaborate on the product
operation on M. This operation is defined as the usual concatenation and therefore it requires finite length
strings. To accommodate this requirement and still be able to have an infinite number of concatenations
of elements in U* we proceed as follows. Suppose that we want to show that oju’tu’2 ... u* ...0y belongs
to M, where t, is a convergent sequence. Instead of regarding each element in the string as an element in
M, which would not allow us to define the last concatenation since it would happen after oo, we regard o
and o9 as elements of M and uftuf2 .. ul» ... = u! as an element of U* and consequently as an element of
o0
M, where t' = " t,. This string is then regarded as the map v : {1,2,3} — M defined by u(l) = oy,
n=1
u(2) = u' and u(3) = o3. The product in M is then the usual concatenation on reduced strings, that is,
strings where all consequent sequences of elements of U* or ¥* have been replaced by their product in U* or
¥*, respectively. The monoid M obtained by this construction is called the free product of U* and ¥* and is

3There exists only one function from [0, ¢] to a singleton, the constant map.
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in fact the coproduct* in the category of monoids [18]. Furthermore, we have the following characterization
of M that will be useful in the next sections:

Proposition 2.2 ([18]). The monoid M is freely generated by the symbols U* U X*.

Hybrid control systems are now cast into the abstract control systems framework as:

Definition 2.3 (Hybrid Control Systems). A hybrid control system H = (X, M, ®) consists of:

e The state space X = {X;}4eq,
e A monoid M = [, .n(U*UX*)",
e A partial action ® of M on X such that:
— Existence of invariants: For all ¢ € @, there exists a set Inv(q) C X,
— Invariance of invariants: For all z € I'nv(q) there exists at least one u? € U* such that ®((q, z), u?)
is defined and satisfies ®((q,z),u!) € Inv(q) for every prefix u!" of u’.

The semantics associated with the evolution from (¢, ) governed by ® and controlled by m € M(q, ) is the
standard transition semantics of hybrid systems [15]. Suppose that m = uf'oy0ou??, then (¢,z) = (¢',2")
means that the system starting at (g,z) evolves during #; units of time under continuous input uf!, jumps
under discrete input o; and them jumps again under o5. After the two consecutive jumps, the system evolves
under the continuous control input u!2? reaching (¢', '), t2 units of time after the last jump. From the hybrid
system construction we can clearly extract the purely discrete case presented in Section 2.1 when X, is a
singleton and U, = @& for each ¢ € (). The purely continuous case presented in Section 2.2 is also recovered
when @ is a singleton and ¥ = @. This shows that the above model seems to provide the right generalization
from the discrete and continuous models.

2.5. Control System Abstractions. Having defined the structure of control systems and hybrid control
systems in particular, we now consider relationships between abstract control systems that preserve their
structure and can therefore be seen as abstract control systems homomorphisms. We shall call such maps,
simulation maps, for reasons to be discussed shortly.

Definition 2.4 (Simulations of Abstract Control Systems). Let ®x and ®y be two abstract control systems
over X and Y with monoids M x and My, respectively. A pair of maps (¢, ) is said to be a simulation from
dx to &y when:

e ¢: X — Y is a total map,
e p: X x My — My is a partial map defined on &' (X) satisfying for every = € X:

27) plr,e) = ¢
(28) (p(m7m1m2) = (p(mvml)(p(q)X(x)ml))mﬁ

e the maps ¢ and ¢ satisfy (¢, )(X, Mx) C ®3'(Y) and relate ®x to ®y as expressed in the following
commutative diagram:

Y x My Py Y
(¢, ) )
(2.9) X x My X
dx

or equivalently ¢ o ®x(z,m) = Py (d(z), p(z,m)).

4See, for example, Appendix A for a definition of coproduct.
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When (¢, ¢) is a simulation from ®x to &y we also say that ®y is a simulation of ®x since for every evolution
of ®x, the map ¢ transforms that evolution into an evolution of ®y . It is in this sense, that &y simulates ®x.
The map ¢ (when it is not injective) is to be understood as a state aggregation map, specifying which state
information is propagated from the original system ®x to ®y. Similarly, the map ¢ transforms the inputs of
the original system ®x to the inputs of system ®y.

This definition of simulation slightly generalizes the usual notions of morphisms between transition systems as
described in [46]. Instead of considering maps ¢ : X — Y and ¢ : Mx — My, we allow ¢ to depend also on
X. This is necessary in order to correctly describe the relation between the input spaces of continuous control
systems and its abstractions as discussed in [43]. Nevertheless, abstract control systems and simulation maps
still define a category, where composition of morphisms (¢; (1), @1 (21, m1)) and (d2(x2), p2(x2,m2)) is given
by (¢2 o ¢1(x1),p2(¢1(x1), 1 (21, m1))) and identity morphisms are simply the identity maps.

The conditions expressed in Definition 2.4 may seem difficult to check in concrete examples. However, we
shall take a constructive approach by introducing a construction that builds the map ¢ and the system ®y
from a given system ®x and map ¢. Furthermore, p and ®y will satisfy all the conditions of Definition 2.4
by construction, thereby overcoming the necessity of determining if they are indeed satisfied.

It is within this category that we shall develop our study of abstractions, considering any simulation of a system
as an abstraction of that system. We introduce also the celebrated notion of bisimulation [34, 27], a special
simulation in the current setting. As the morphisms in this category are functions, we will only introduce
bisimulations induced by maps. A different approach would consider defining morphisms as relations, in which
case a bisimulation would simply be a symmetric simulation relation, that is, a relation R such that both R
and R~! are simulations. We direct the reader to [44] for an account of such an approach and proceed with
the definition:

Definition 2.5 (Bisimulations of Abstract Control Systems). Let ®x and ®y be abstract control systems
over X and Y with monoids M x and My respectively. A simulation (¢, ) from ®x to ®y is a bisimulation
when (¢(z),n) € &3 (V) implies:

(2.10) Vo' € o7 (p(z)) Im € Mx(z') suchthat o(z',m)=n

We note that in the special case where ¢ is in fact the identity map on M x, that is, p =id : Mx — Mx =
My, we recover the notion of bisimulation introduced in [27] by regarding the graph T" of ¢:

F={(z,y) e X XY : y=¢(x)}

as the bisimulation relation. In fact, if (z,y) € T and z - z', then by commutativity of diagram (2.9) we
!

have that ¢(z) =y — y' and (z',y') € T by noting that ¢(z,m) = id(m) = m and ¢(z') = y'.
Several other approaches to bisimulation are reported in the literature and we point the reader to the com-
parative study in [38] and the references therein.

The importance of simulations lies on the fact that simulations capture all trajectories of the simulated abstract
control system after being transformed by the state aggregation map ¢. This allows to transfer the study of
properties over the trajectories of ®x to the study of the same properties over trajectories of ®y. We now
make this fact precise. Instead of trying to define trajectories of abstract control systems (which would be as
difficult as defining trajectories of hybrid control systems, see the different approaches in [19, 28, 35]) we will
restrict our attention to the orbits of abstract control systems.

Definition 2.6. Let ®x be an abstract control system over X with monoid M x. The set O, is an orbit of
®x through the point « € X if there exists a m € M such that:

(2.11) O,={2"€ X : 2/ =dx(z,m') for some prefix m' of m}

Intuitively, the orbit O, through z is the set of all the points that are visited on a evolution starting at  and
controlled by m. Note that this notion differs from the usual notions of monoid or group action orbit, which
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can be recovered as the union of all orbits through z. We can now relate the orbits of abstract control systems
to the orbits of the corresponding simulations:

Proposition 2.7 (Orbit Propagation). Let ®x and ®y be abstract control systems over X and Y, respectively
and (¢, ) a simulation from ®x to @y, then for every x € X :

(2.12) ¢(0z) € Oy(a)

Proof. Assume that ®y is a simulation of ®x. If ' € O,, then, by definition of orbit, there exists a m € Mx
such that ®x (z,m) = z’. Applying ¢ on both sides we get:

podx(z,m) = o¢(')
& Oy (d(z), p(z,m)) = ¢(z')

where the second equality holds by definition of simulation. This shows that ¢(z') € Oy(,), and as 2’ was any
point in O,, the desired inclusion is proved. O

This result is important as it shows that any abstraction, in this context, can be used to verify reachability
based properties of which safety [26] is an important example. This, we state formally in the next corollary:

Corollary 2.8 (Reachability Propagation). Let ®x and ®y be abstract control systems over X and Y, re-
spectively, (¢, ) a simulation from ®x to Py, x € X and B C X. Then, if every orbit of ®y from ¢(z) does
not intersect ¢(B), every orbit of ®x from x does not intersect B.

Proof. Assume for the sake of contradiction that no orbit of ®y from ¢(z) intersects ¢(B) and that there
exists an orbit of ®x from z intersecting B. Denoting by O, such orbit we have O, N B # @. It then follows
by Proposition 2.7 that for any z' € O, N B:

¢(z') € $(02) N $(B) € Op(a) N $(B)
which shows that Oy,) N ¢(B) # @ and leads to the desired contradiction. O

This result provides only a sufficient condition, since if one shows that orbits of ®y do intersect B, one cannot
conclude anything about the original system. It is, therefore, desirable to determine abstractions which are
not only sufficient but also necessary with respect to reachability based properties. This is the case for
bisimulations as we now state:

Corollary 2.9 (Reachability Equivalence). Let ®x and ®y be abstract control systems over X and Y, re-
spectively, (¢, ) a bisimulation from ®x to @y, v € X and B C X. Then, every orbit of ®y from ¢(x) does
not intersect ¢(B) iff every orbit of ®x from z does not intersect ¢ (¢(B)).

Proof. We only need to show that if some orbit of ®y from ¢(z) intersects ¢(B) then there exist an orbit of
®x from x that intersects ¢~'(¢(B)). Assume that y € Op(,) N ¢(B), then by definition of orbit there exist
an € My such that @y (¢(x),n) = y. Using the fact that (¢, ) is a bisimulation, we know that there exists
am € Mx such that ¢ o ®x(x,m) = y which shows that ®x (z,m) € ¢ 1(y) C ¢ (&(B)). O

3. COMPOSITIONAL ABSTRACTIONS

We have introduced the basic framework to discuss abstractions of hybrid control systems when regarded as
a single component. However, in many situations, we also have knowledge about the internal interconnection
structure of hybrid systems and we seek to take advantage of such knowledge. We thus need to model in
the current framework, composition and synchronization of hybrid systems. We will follow the categorical
description of transition systems in [46], and introduce a notion of parallel composition with synchronization
for abstract control systems. Furthermore, we will also determine when such notions are compatible with
simulation and bisimulation.
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T
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T T (e,b)
(a,c) .
b (z1,y1 T2, Y2)
Q C (57 C)
) a,¢€)
Y1 Yo
T, (x:%y2)

FiGURE 1. Transition systems 77 and 75 on the left and the corresponding product transition
system 7} x T5 on the right.

3.1. Parallel Composition with Synchronization. We model parallel composition with synchronization
in two steps. In the first step, we perform what can be seen as an asynchronous product, where no interaction
between systems is modeled and all possible evolutions of the two systems are allowed. Then we restrict this
product by removing undesired evolutions thereby modeling synchronization. We start by introducing the
product® of abstract control systems:

Definition 3.1 (Product of abstract control systems). Let ®x : X x Mx — X and &y : ¥ x My — Y
be two abstract control systems. The product of ®x and ®y is the abstract control system ®x x @y :
(X xY)x Mx @ My) = X xY defined by:

Px x q)Y((may)v (mvn)) = ((I)X(mam)aq)y(yan))

We now present a simple example of a product of two systems.

Example 3.2. Consider the transition systems 7} and T, inspired from [46] and displayed on the left of
Figure 1, where only the transitions labeled by the monoid generators are represented. The product of these
transitions systems T} x To will consist of all possible evolutions of both systems as displayed on the right of
Figure 1.

Example 3.3. For a purely continuous example, consider two control systems (M, U, f) and (N,V,g). On
the product state space M x N and the product input space U x V' we can define the product control system
defined by f x g: M x N — T(M x N) defined by (f x g)((z,u), (y,v)) = (f(x,u),g(y,v)). Clearly, this
control system captures all the possible trajectories of the individual control systems f and g.

As this notion of product captures all possible evolutions of both systems, we cannot model how the behavior
of one of the systems influences the behavior of the other system. This will be achieved through the operation
of restriction, which allows to remove undesired evolutions from the product system.

Definition 3.4 (Restriction of abstract control systems). Let ®x : X x Mx — X be an abstract control
system and L a subset of X x M x.The restriction of ®x to L is the abstract control system ® x|z : Lx X Mx
— Lx defined by:

bx|r(z,m) =®x(z,m) iff (z,m)€ L and for any prefix m’' of m, ®x(z,m') € Lx A (z,m') € L
where Lx is the projection of L on X.
This restriction operation captures synchronization notions for continuous and discrete control systems as we
now describe in the following examples:

5This notion of product corresponds to the product in the category of abstract control systems. See, for example, Appendix
B for a definition of product in a category.
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T |l To
) R CY B
(ml,yl) (1'273/1) (1'273/2)
(e,¢)

(xltyQ)

FIGURE 2. Parallel composition with synchronization of the transition systems T; and T5
displayed on the left of Figure 1.

Example 3.5. As an example of continuous synchronization we consider two robots in the plane. The state
space for each robot is R* consisting of (1, z2, 3, z4), where (1, z2) represent the robot position and (x3, 4)
the robot velocity. The coordinates for the second robot are (y1,¥2,ys,y4) and have similar interpretation.
We now assume that the robots are cooperatively transporting a rigid object. The synchronization of the two
robots can be modeled as the subset Lpa,pe C R* x R* defined by:

Lypaxrs = {((z1,22,23,24), (Y1,Y2,y3,94) ER* xR @ 2y =y + ki Aao = yo + ko }

where k; and ks are positive constants related with the dimensions of the transported object. The final
synchronizing set is obtained by appending to Lpaygr+ the monoids to obtain L = Lpayps X Mx X My.

The previous example modeled restriction at the level of the states, however for purely discrete systems one
of the most popular notions of synchronization consists of synchronizing state machines or transition systems
on common events. This is captured in this framework by properly choosing the set L as shown in the next
example:

Example 3.6. Consider the transition system displayed on the left of Figure 1. By specifying the set L as
the product and prefix closure of:

{1’1,1’2} X {ylvyZ} X {(6>C)7 (a>b)}

it is possible to synchronize the event a with the event b on the parallel composition of these systems. The
resulting transition system is displayed in Figure 2.

With the notions of product and restriction at hand, we can now define a general operation of parallel
composition with synchronization.

Definition 3.7 (Parallel Composition with synchronization). Let ®x : X x Mx — X and ®y : ¥ x My
— Y be two abstract control systems and consider the set L C (X xY) x (Mx ® My). The parallel
composition of ®x and ®y with synchronization over L is the abstract control system denoted by ®x || ®y
and defined as:

(3.1) Ox || Py = (Px x Py)|L

3.2. Compositionality of Simulations. We now determine if composition of subsystems is compatible with
simulation. This compatibility allows to break the computation of abstractions by computing abstractions
of each subsystem individually. The resulting abstractions are then composed and synchronized to obtain
an abstraction of the original system. The next result shows that this is always possible for simulations
and describes how the process of computing abstractions can be rendered more efficient by exploiting the
interconnection structure of hybrid systems.

Theorem 3.8 (Compositionality of Simulations). Let ®x, ®y, @4, Pw be abstract control systems and let
fx =(¢x,0x) and fy = (¢v,py) be simulations from ®x to ®z and from ®y to ®w, respectively. Consider
aset L C (X xY)x (Mx ® My) and its projection Lxxy on X x Y. The parallel composition of ®z
and ®w with synchronization over (fx X fy)(L) is a simulation of the parallel composition of ®x and Py
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with synchronization over L, where the simulation from ®x || @y to @z |[(sxxsy)) Pw 45 fx X fy =
Fx X fYl@x|n@y) =1 (Lxuy)-

The contents of the previous theorem can equivalently be expressed in the following commutative diagram:

I |£x x sy (1) Oz [l (r) Bw
fx | fy foxhr
by x Oy Iz Pl

which emphasizes its importance. We can see that, in general, it is much easier to abstract each individual
subsystem ®x and ®y and by parallel composition with synchronization on fx x fy (L) obtain ® 7 ||t x #y (1)
®yy, then is to abstract directly ®x || ®y. The above result was stated for parallel composition of two
abstract control systems but it can be easily extended to any finite number of abstract control systems.

Proof. We shall make use of the categorical notions of product and equalizer reviewed in Appendix A. Consider
the product system (®7 x ®w, 7z, 7w ) and the triple (Px x ®y, fx o 7x, fy o 7wy ). By definition of product
we know that there is one and only one morphism ¢ such that:

<I>Z><<I>W4><I>W

@XX@Y

commutes and this morphism is given by ( =< fx, fy >= fx X fy, meaning that fx x fy is a simulation
from ®x x Py to 7z x . We now make use of the fact that the operation of restriction can be categorically
defined by an equalizer. With this in mind we consider the following diagram:

i f
((}Z X (I>W)|((L) ﬂ» by X Oy —— By
Coig

(32) (‘I)X X (I)y)|L

where (®7 X ®w |¢(1),ic(r)) is the equalizer of f and g, which agree on ((L). We now show that fo(oiz, = go(o
i, for iy, the inclusion morphism from ® y x ®y |, to ®x x ®y. This follows from (®x ||, ®y) ' (Lxxy) C L,
which implies Coir((®x || v) ' (Lxxy)) = (((x llz ®v) ' (Lxxy)) € ((L) since f = g on ((L), we have
fo(oir =go(oir. Therefore, by definition of equalizer, there exists one and only one simulation n from
‘I)X ||L ‘I)y to (I)Z ||C(L) CI>W which is given by n= COiL = fX X fY|(‘I’X||L<I>Y)’1(L)' O

3.3. Compositionality of Bisimulations. We now extend the previous compatibility results from simula-
tions to bisimulations. We start with a very simple lemma stating that product respects bisimulations:
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Lemma 3.9. Given abstract control systems ®x, Py, ¢, ®w and bisimulations fx and fy from ®x to
b, and from @y to Py, respectively, the product system ®z X Py is a bisimulation of ®x x Py, where the

bisimulation from ®x X Py to Pz X @y is fx X fy.

Proof. Consider the following commutative diagram'

@ZX‘I>W4>

fXN /ﬂy

@XX@Y

By definition of product there exists one and only one morphism 7 such that the above diagram commutes. In
fact, n is the morphism n = (fx o7x, fy omy) = fx X fy meaning that & x &y is a simulation of ®x x Py
with simulation fx X fy from ®x x ®y to ®; x ®y. We now show that fx x fy is also a bisimulation. Let
((z,w), (0,p)) € (Zx W) x (Mz & Mz). Since ® is a bisimulation of ®x, there is a (z,m) € X x Mx such
that fx(xz,m) = (z,0) and similarly there exists a (y,n) € Y x My such that fy(y,n) = (w,p). We now see
that fx x fy((z,y), (m,n)) = ((z,w), (0,p)) which shows that fx x fy is also a bisimulation. O

Although the product respects bisimulations the same does not happen with the operation of restriction.
Consider the example displayed in Figure 3 where the abstract control system on top is bisimilar to the

[ [
my
—>e
T )

FiGURE 3. Bisimilar abstract control systems.

system below with respect to the maps defined by:

(x1) = 71, d(r2) = 73, P(T3) = 73, P(T4) = 74
o(x1,e) =€, p(x1,m1) =ma, p(xe,e) =€, p(x2,m2) =¢, p(xs3,¢) =€, p(xs3,m3) =ms3, p(rs,6) =¢€
If we now restrict the system below to the product and prefix closure of:
(3.3) L= {(ml,s), (x1,m1), (x2,¢), (x3,€), (x3,M3), (m4,5)}

and restrict the system on top to (¢, ¢)(L) the systems will cease to be bisimilar since the system on top can
move from z3 to x4 by m3 but the restricted system can not simulate that evolution when on x5 € ¢71(m3).
This difficulty can be overcomed by additional assumptions as stated in the next proposition:

Proposition 3.10. Let ®x and ®y be abstract control systems, f a bisimulation from ®x to ®y, L a subset
of X x Mx satisfying f~'(f(L)) = L. The restriction ®x|r, is a bisimulation of ®y |1y where f|<I>x|;1(Lx)
is the bisimulation from ®x|r, to ®y|s(r,)
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Proof. Let f = (¢,¢) and (y,n) € <I>y|]7(1L) (¢(Lx)). Since (y,n) € &' (Y) and ®y is bisimilar to ®x we
know that for every z € ¢!(y) there exists a m such that ¢(z,m) = n. We now show that such (z,m) also
belongs to ®x|;'(Lx). Let ' = ®x(x,m) and note that ¢(z') = &y (y,n) since f is a simulation from ®x
to ®y. From the assumption f~1(f(L)) = L, it follows that ' € Lx and (z,m) € L so that by definition of
restriction (z,m) € ®x|;'(Lx) as desired. O

The above propositions lead to the following result concerning the compositionality of bisimulations:

Theorem 3.11 (Compositionality of Bisimulations). Let ®x, Py, ®z, ®w be abstract control systems, fx =
(¢x,0x) and fy = (¢y,py) bisimulations from ®x to ®; and from ®y to ®w, respectively, L a subset of
C(X xY) x (Mx ® My) satisfying (fx X fy) *(fx x fy (L)) = L and denote by Lx«y the projection of L
on X xY. The parallel composition of the simulations ®; and ®w with synchronization over (fx x fy)(L)
is a bisimulation of the parallel composition of ®x and ®y with synchronization over L, where the simulation

from @x || @y to @z ||ty xpyy) Pw is fx X fy = fx X fyl@x|ody) 1 (Lxxy)

From the previous result we conclude that if we have a means of computing bisimulations and choose the
synchronization set L carefully, we can compute bisimulations by exploring interconnection of large-scale
systems. In the next section we provide a construction to effectively compute abstractions and in certain
situations bisimulations of hybrid control systems.

4. HYBRID CONTROL SYSTEMS

Having developed the general theory at a fairly abstract level, allowing to show the desired results with
relatively ease, we turn to the application of such results to hybrid control systems. The results presented in
this section can be seen as a translation to the language of hybrid systems of the introduced results for abstract
control systems. Inevitably, the statement of such results will become extremely complicated by making explicit
all the relevant conditions at the level of invariants, guards, etc. The reader is urged to contrast the simplicity
of the abstract control systems formulation with the tedious version for hybrid systems.

We start by reviewing the hybrid automaton model to set the notation for the remaining section.

Definition 4.1 (Hybrid Automata). An hybrid automaton is a tuple
Hx = (X,Xo,Xx,Ux, fx, Invx,Guardx, Resetx) consisting of:

o the state space X = {X,}seq, a collection of smooth manifolds X, parameterized by a finite set of
discrete states @,

e 3 set of initial states Xg C X,

e a finite set of labels ¥ x, parameterizing the discrete transitions between discrete states,

e the continuous input space Ux = {U% }4eq, a collection of inputs spaces parameterized by the discrete

states,

e a collection of control systems fx = {f% }qc0, fx : Invk xU% — TInv%, parameterized by the discrete
locations,

e the invariant Invx = {Inv% }seq, Invy C X, a collection of subsets of X parameterized by the discrete
locations,

e the guards Guardx = {Guardg?’g’q’)}(q7g7qr)en, Guardg?’a’ql) C Inv%, a collection of subsets of the

invariant, parameterized by II, the subset of all the triples (¢,0,q") € @ x £ x x @ such that there exists
a discrete transition from ¢ to ¢’ labeled by o,
o the reset maps, Resetxy = {Reset'"" "}, o0 Reset' &7 : Guard ") — 21" | a collection of
J X (¢,0,q") €I X X )
set valued maps defining the possible locations of the continuous state after the discrete transition.

We now translate the theory developed for abstract control systems to the language of hybrid automata. The
principal link between the two formulations will be given by the notion of simulation that we now characterize
in terms of hybrid automata:
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Proposition 4.2. Let

Hyx (X, X0,2x,Ux, fx,Invx,Guardy, Resetx)
Hy = (Y,Yy,2y,Uy, fy,Invy,Guardy, Resety)

be hybrid control systems and Dx = {D%},cq and Dy = {D% },cp the collection of vector fields pointwise
defined by:

Di(z) = [ filaw
ueU%

Dhy) = | A
velUy

A pair of maps ¢ = (¢p,dc) : X — Y consisting of:

e Discrete state aggregation map: ¢p : Q — P,

e Continuous state aggregation map: ¢c = {¢{ }4c0, ¢& : Inv — Inv?ﬁD (»)

satisfying:

e Preservation of initial conditions: f(X,) C Y,
e Continuous abstraction: T,¢% (D% (z)) C D@D(q) o ¢%(z),

and a map pp : Q x Xx — Yy satisfying:

e Preservation of transition enabling: ngqC(Guardg?’g’q’)) - GuardgfﬁD(q)’vD(q’g)’d’D(ql)),

e Preservation of resets: ¢é(Reset()‘(1’a’q1)(a:)) - Resetng(Q)’wD(q’”)’d’D(ql)) o ¢L(z).

defines a simulation from Hx to Hy.

Proof. We will show that the given data defines a simulation (¢, p) from Hyx to Hy. For the state aggregation
map ¢ we simply take ¢ = (ép, dc). The definition of p takes more work and will make use of the freeness
properties of the monoid M x associated with the hybrid system Hx. Recall that by Proposition 2.2 the
monoid Mx =[], oy, (2% UUx)" is freely generated by the set ¥% UUx and that ¥% is freely generated by
the set X x, therefore we only need to define ¢ for elements in ¥ x U Uy . We treat the discrete case first:

As we considered only deterministic systems in the abstract framework we start by enlarging the set ©x to X x
so as to parameterize the nondeterminism. We replace every o € Xx with (o,2') for every 2’ € Resetg?’a’q’)
and similarly for ¥y . This ensures that the abstract control systems ® x and ®y associated with Hxy and Hy
are now deterministic, since different elements in Resetg?’a’ql) are parameterized by different symbols in Yx.

We also extend ¢p to pp : Q x x — Xy by @p(q, (0,2')) = (0, 2"), where o' = ¢p(q,0) and z"" satisfies:

2y ((¢n (), 8¢(2)). P (0, (0,2")) = ¢(d',2")
(41) = (z)o(I)X((q,x),(O',ZCI))

which is always possible given the preservation of transition enabling and resets assumptions on the map ¢p.
This allows to define ¢ by $p for elements in X x. Freeness of ¥% and (4.1) now ensures the existence of an
extension of Pp satisfying conditions (2.7), (2.8) and (2.9) of Definition 2.4.

For elements in Uk we consider an arbitrary but fixed ¢ € ) and make use of the fact (shown in [43]) that a
map ¢%, : Invk — Invd? ) satisfying T.¢L (D% (x)) C DiD(Q) o ¢ (z) defines a unique map % : Invh x UL
— USPP) such that for any pair ((t),u(t)) of state and input trajectories of f%, (L, L) (x(t),u(t)) is a
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¢p(q)

state and input trajectory of f;°""’. We now see that for any ut' € Uk with codomain U% we have:
pox(z,u’) = (0(0), 6% 0% (t)
(4.2) = By ((¢p(q), % (@), 9L (z,u"))

where 7, is the integral curve of f;X(z, u!). Furthermore, by definition of ¢% we have ¢% (Inv%) C Im;?iD(Q)
so that ®x (z,u!) € Inv’ for every prefix u' of u’ implies that ®y (¢% (), % (z,ul)) € Invf}D('I) for every

prefix oL (z,u?) of % (x,u’). It then follows from (4.2) that we can define ¢ by {¢%},eq for elements in U*
as it satisfies conditions (2.7), (2.8) and (2.9) of Definition 2.4.

Having defined ¢ for elements in ¥x and U*, it follows that ¢ extends uniquely to Mx thereby defining a
simulation (¢, ) from Hx to Hy. O

The previous proposition can also be used in a more constructive way if used as a construction for hybrid
abstractions. Before presenting the construction, we review some notions of invariance. Given a smooth map
f: M — N we denote by T'f the tangent map or derivative of f. We will also use the notation ker(7'f) to
denote the distribution consisting of all vector fields X such that T'f(X) = 0. Given a set A, we say that A
is invariant under a vector field X if every trajectory of X starting in A will remain in A for all time. This
notion is extended to invariance under a distribution by considering that A is invariant under every vector
field belonging to a distribution. These concepts are now used in the following construction, which given Hx
and ¢, constructs Hy simulating Hx.

Construction 4.3 (Construction of Abstractions). Let Hx = (X, Xo,Yx,Ux, fx,Invx,Guardyx, Resetx)
be an hybrid system, ¢ = (¢p,{dt}eqeq) : X — Y a pair of maps, with ¢p : Q@ — P and ¢f, : Inv’
— Im)?,D(Q). Hybrid system Hy = (Y,Yy, Xy, Uy, fy, Invy,Guardy, Resety) is obtained from Hx and ¢ by
the following steps:

V= f(X),
Yo := f(XO)’
Yy =Xy,
o ¢ _ ! !
Uy :={Uy}pep, pr(q) = Uq'e¢510¢D(q)‘Pé(Ug(),
f{ﬁD(Q) := the continuous abstraction® of every f% such that ¢’ € ¢,,' o dp(q),

¢ o 7 7
ImJYD(Q) = Uq’e¢glo¢p(q)¢g} (Inv%),

Guardgfm (@.0.¢0(a) Uyrep=lon(q) ngqC” (Guardgg

ResetgﬁbD(Q)’a"pD(q Do oL () == Uq,,e¢510¢D(q)¢qC (Resetg? 74 (7).

”,a,q’))

2

® N o e W=

The steps of the previous construction were designed so as to provide the conditions described in Proposi-
tion 4.2. The first step defines the new state space as the image of X by f. Since the invariants, guards and
resets can be seen as subsets of the state space, they are also defined as the image of Hx invariants, guards
and resets by f as described in steps 6, 7 and 8. Similarly, the space of continuous inputs Uy is obtained as
the image of Ux by the map ¢¢, uniquely determined by ¢ as described in [43]. Note, that in concrete appli-
cations the explicit computation of Uy and ¢ is not necessary as the construction of continuous abstractions
described in [33] and required by step 5 provides the equations for the abstracted control system. The second
step ensures that “preservation of initial conditions” is met while the third step defines the discrete labels in
Hy as the discrete labels in Hx.

6Continuous abstractions are discussed in [31] for linear systems and in [33] for nonlinear systems. However, in these references
abstractions of a single control system are considered whereas in the present situation it may be necessary to determine an
abstraction of several control systems for which the results of [31, 33] can be easily extended. Consider, for example, two control
affine systems defined by the affine distributions X; + A; and X2 + Ap and a aggregation map ¢ : M — N. If Tp¢(X1(z)) =
T, $(X2(z)) for every x € M, then the abstraction of both control systems is simply given by T'¢(X1 + A1) + T¢(X2 + As),
otherwise we can take as an abstraction T¢p(X1 + A1) + span(TP(X2)) + Th(Az) or TH(X2 + Az) + span(THp(X1)) + TP(A1).



16 PAULO TABUADA, GEORGE J. PAPPAS, AND PEDRO LIMA

This construction determines an abstraction of a given hybrid control system Hyx based on the state aggregation
map ¢ as asserted in the next result where the relevant assumptions on the input data are provided:

Theorem 4.4 (Computation of Hybrid Abstractions). Given an hybrid control system Hx where the control
systems f% are control affine and a map ¢ = (¢p,pc) where ¢p : Q@ — P and ¢ = {9l }qeq, 0% : Invk

— ImJgD(q) is a submersion, Construction 4.3 defines a hybrid control system Hy which is a simulation of
Hy.

Proof. The result follows by Proposition 4.2 by considering;:

e the map ¢p : Q x Ex — Ty defined by ¢p(g,0) = o for every (g, o) such that there exists a z € Inv%
satisfying ((q,z),0) € @}1 (X), where ®x is the abstract control system associated with hybrid control
system Hx.

e the fact that D?}D(q) satisfies Tzd% (Dg;(:r)) - D?}D(q) o ¢l (z) for every z € Invgé and every ¢' €

op' 0 dp(q).
O

As was already discussed for abstract control systems, bisimulations provide sufficient as well as necessary
conditions regarding reachability equivalence. It is therefore important to determine when the abstraction
determined by Construction 4.3 is in fact a bisimulation. Sufficient conditions are presented in the following
result:

Theorem 4.5 (Bisimilar Hybrid Systems). Let Hx = (X, Xo,Xx,Ux, fx,Invx,Guardx, Resetx) be a hy-
brid control system, ¢ = (¢p,Pc) a state aggregation map satisfying the conditions of Theorem 4.4 and
Hy = (YV,Yy, Xy, Uy, fy, Invy, Guardy , Resety) the hybrid control system defined by Construction 4.3. If
the following conditions are met:

e Continuous invariance - for every q € Q):
— ker(T'¢%) is controlled invariant for f%,
— Inv% is invariant for ker(T¢% ),
— Every guard on discrete state ¢ is invariant for ker(T'¢%),
— The image by the reset maps (of discrete state ¢) of every point in its domain is invariant for
ker(T¢%).
e Discrete invariance - ¢p(q) = dp(q’) implies:
- TOL(DL() = Lol (D4 ().
- ¢é(Guard§?’”’q )y = oL (Guardgg i ”)), Vq" € ¢p' o ¢((I'I')f y
~Bb() = ol(@) B GL(Reset ™) (x) = Gl (Reset ™" ) (x)), Vg € 0" 0 b(").

then Hy 1is a bisimulation of Hx.

Proof. As in the proof of Proposition 4.2 we consider that ¥ x, ¥y and pp have been extended so that (¢, )
is a simulation from ®x to ®y. We will show that (2.10) holds for elements in £x U U since the freeness
properties of M x will then imply that (2.10) holds for every element in M x.

We treat the continuous case first.

From the results reported in [42] we know that if ker(T'¢{,) is controlled invariant for a control system [,
then its abstraction under the map ¢f, is a bisimulation. If several discrete states are aggregated to the same
continuous case, the resulting continuous abstraction is still a bisimulation since ¢p(q) = ¢p(q’) implies that

the abstractions of f% and f}’(l are the same. Furthermore, from invariance of Inv% under ker(T'¢%) we
conclude that any continuous trajectory z(t) leaves the invariant iff the abstracted trajectory ¢?(z(t)) leaves
the invariant, which means that continuous trajectories are well defined on the original system iff they are well
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defined in the abstraction. This shows that for any (¢(z),n) € &, (Y), there exists a (z,m) € Mx such that
p(x,m) = n, where ®x and ®y are the abstract control systems associated with Hx and Hy, respectively.

We now consider the discrete case. Assume that we have ®y ((p,y), o) = (p',y’) for the abstract control system
@y associated with Hy. This means that (p,y) € G’uardgf0 P) and as the guards on Hx are invariant for
ker(T¢%) and ¢p(q) = ¢p(q') implies (qu(Guardg?’a’q )y = (bg (Guard? """} we have that every point z €
(¢L) " (y) for g € ¢! (p) belongs to the guard associated with the transitions (¢, o, ¢"") where ¢" € ¢3,' odp (p').

It now follows from ¢¢, (Resetg?’a’q”)(a:)) = ng‘é (Resetggl’g’qm)(a:)) that for every (¢,z) € ¢ *(p,y) there exists
a o such that such that ¢p((g,x),0) = o as required by (2.10). The result now follows from the freeness
properties of M x. O

The results regarding the computation of simulations and bisimulation are illustrated in the next section
where a spark ignition example is discussed in detail. Furthermore, the proposed construction combined

with Theorem 3.8 can be applied to complex hybrid systems to exploit interconnection. In that case the
synchronizing set L depends on the specific composition operator used.

5. A SPARK IGNITION ENGINE EXAMPLE

We now illustrate the use of Construction 4.3 with a spark ignition engine model taken from [8]. Consider the
block diagram representation displayed in Figure 4.

Spkla 8pk27 teey Spkn

41,42, ---,4n
\ 4
v p
— Intake Manifold > Cylinders A » Power train J—V
A
A
n n, o

FiGURE 4. Block diagram representation of the spark ignition engine model.

The intake manifold block models the throttle dynamics which can be controlled by applying a voltage v
to regulate the throttle angle. This angle, regulates the pressure p from which the air inflow rate into the
combustion chamber can be determined. The discrete operation of the n cylinders is modeled by the cylinders
block which admits as inputs the injected fuel described by q1,¢2,- .-, g, and discrete inputs spki, ..., spky
controlling the spark advance with respect to the top most position of the pistons. Finally, the torque T
produced by the cylinders is used in the power train block to determine the crack shaft angle 6, angular
velocity n as well as other variables contained in the vector (. We defer the reader to [8] for a more detailed
explanation of the model.

5.1. Modeling the cylinders. The hybrid nature of the system comes from the interaction of the contin-
uous dynamics describing the intake manifold and the power train, with the discrete nature of the cylinders
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evolution. Considering an engine with four cylinders, each cylinder is modeled by a state machine with 6
states, as displayed in Figure 5.

FI1GURE 5. State machine modeling the discrete operation of each cylinders.

In the notation of [8], the state I models the intake phase where the combustion chamber is filled with the
air-fuel mixture until reaching its top most position. The states BS and PA model the compression phase
where the piston compresses the air-fuel mixture. The state BS models the before spark phase where no
spark has yet occurred while the state PA models the positive advance phase, where a spark occurs before
the piston reaches its top most position. The states AS and NA model the expansion phase. In the state
AS, after spark, torque is being produced by the explosion of the mixture ignited by a spark. However, if no
spark occurs before the piston reaches the top most position, the expansion phase initiates and no torque is
produced, this is modeled by the state N A, negative advance. Finally the state H models the exhaust phase,
where the gases produced in the combustion process are expelled from the combustion chamber. While the
transitions H — I, I — BS, BS — NA, AS — H depend only on the cylinder position, the remaining
transitions depend on the discrete input SPK modeling the occurrence of a spark. Since several transitions
depend on the position of the cylinder which is given by the continuous dynamics governing the power train,
it is natural to combine the power train model with the state machine describing the cylinders in the hybrid
automaton presented in Figure 6.

The continuous dynamics is also displayed in Figure 6, where the continuous states z1, 2z, and z3 are used to
record the mass of air and fuel injected at the intake phase as well as the spark advance which will be used
to determine the torque produced at the state AS as described in [8]. Recording these values is in fact the
justification for the several reset maps appearing on the hybrid automaton. The continuous dynamics is equal
in every discrete state, except for the state AS where the produced torque T is added to the external torque
T. produced by the other pistons. The production of the torque T, generated by the other pistons is not
captured in this modeled so that T, is treated as an input. The invariants of each mode are defined by bounds
on the piston position measured by the crank shaft angle while the guards involve conditions on the crank
shaft angle as well as the external input SPK modeling the occurrence of a spark. The remaining undefined
constants and functions are irrelevant for our analysis and can be obtained from [8].

5.2. Abstracting the hybrid model. Asin an engine several pistons run in parallel to generate torque, the
model of the several pistons can be obtained by performing the parallel composition with synchronization of
the hybrid automaton describing each piston. We consider an engine with four pistons, where each piston is
described by the hybrid automaton displayed in Figure 6 having state space  x R and input space R. The
synchronization between the pistons is then defined by the set L C (Q x R® x R)?:

(5.1)
L={(g,z,u) € (Q@xR xR)" : 6 =6;+90° =03 + 180° = 64 +270° A Tei:ZTj i,j €{1,2,3,4}}
J#i
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AS

21 =0

29 =10

z3 =10

0 = 2702 0=180° (= AC+Db(T+T,) — b
6 =106 0]C

H, I, BS, PA, NA
52 =0
23 1= g(23) 2 =0
25 =0
(= AC+bT. — by
6 =106 0]¢

FIGURE 6. Hybrid automaton modeling each cylinder.

We have, therefore, two approaches to compute an abstraction of the engine model. Either we abstract the
model of each piston individually and then we compose the abstractions, or we abstract the model of the
engine as a whole. Theorem 3.8 ensures that both approaches produce the same results which lead us to
abstract each piston individually so as the reduce the complexity of the involved computations.

By inspecting Figure 6 we see that the states PA, BS and N A represent different phases leading the torque
production phase. This suggests that they can be aggregated into a single before torque state, denoted by BT
This is accomplished by defining the discrete aggregation map ¢p : Q — P to be:

¢p(PA) = ¢p(BS) = ¢p(NA) =BT ¢p(AS)=AS ¢p(H)=H ¢p(I)=1
For the continuous state aggregation map we take the identity, that is:
¢t (x) =z Vqe{I,PA ,BS,AS,NA, H}
Following the steps of Construction 4.3 we obtain:

Y ={BT,AS,H,I} x R" = P x R" = f(X),

Yo =Y = f(X) since the Xy = X,

E)( = EY:

U?¥ = R since we are not aggregating the continuous dynamics,

OU R W=

f{ﬁD(Q) = f% since we are not aggregating the continuous dynamics and the aggregated discrete states
have the same continuous dynamics,

6. The invariants remain the same for the states AS, H and I, while the invariant of RT is given by
InvBT = ¢EA(InvEA) U 9B (Invg®) U ¢¥A(InvA) = InvkA U InvgS U Inv{4 and is given by the
condition 0° < # < 180°.

7. The guard Guardng’BS%PA’PA) associated with the transition BS — PA remains unchanged as there

is no continuous state aggregation. It is therefore expressed as SPK A# < 90° since the guard is contained
in the invariant. Similarly Guardng’PA_Ms’AS) is transformed to 6 = 907, Guardg?S’BS_)AS’AS)
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transformed to SPK A8 = 90°, Guardgfs’BS_)NA’NA) transformed to 8 = 90° and finally GuardgéVA’NA_)AS’AS)
is transformed to SPK A 90° < 6.

8. The reset Resetg(BS’BS_)PA’P_A) is now a reset from BT to BT, while the functional form f of the

reset map does not change as there is no continuous state aggregation. Similarly Resetng’PA_)AS’AS),

BS,BS—AS,A BS,BS—NA,NA . . . NA,NA—»AS,A
Resetg( SBSASAS) and Resetg( SBSTINANA Lemain the identity maps and Resetg( NA—FAS,AS)

is now a reset from BT to AS with the same functional form given by the map g.

The resulting hybrid automaton is displayed in Figure 7.

FIGURE 7. Abstraction of the hybrid automaton displayed in Figure 6.

We note that this abstraction fails to be a bisimulation since ¢c(Inv¥?) = Inv{4 C InvBT # InvfA =
¢)C(Im)§‘4) and this implies that for a continuous evolution starting at § = 100° on discrete state BT, there
is no possible evolution of PA € (bf,l (BT) that can be mapped to the evolution on sate BT as evolutions in
PA have to conform to the invariant.

This model can be further simplified by identifying the transition BT — BT guarded by # = 90° with the
¢ transition which is defined for every point in the invariant. Similarly, the transitions from BT to AS with
guards 8 = 90° and 8 = 90° A SPK can also be identified as they have equal reset maps. This can be formally
done by considering a simulation map which does not aggregate the states, but aggregates these transitions.
Further aggregation is possible by identifying the states H, I and T which results in the hybrid automaton
displayed in Figure 8.

This abstraction can now be composed with similar models of the remaining pistons to obtain the complete
hybrid automaton describing the engine. For an engine with 4 pistons this is achieved by determining the
product of 4 copies of the hybrid system displayed in Figure 8 followed by the operation of restriction. Following
Theorem 3.8, the synchronization set is defined by fi x fa x f3 X f4(L) for the set L defined in (5.1) and maps
fi = fo = f3 = f1 defining the state aggregation. Since the sequence of abstractions leading to the hybrid
model in Figure 8 was based on identity maps for continuous aggregation, it follows that:

fix fox f3x fa(L) =1L
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FIGURE 8. Abstraction of the hybrid automaton displayed in Figure 7.

Restricting the product hybrid system to the set L leads to the following possible discrete configurations:

¢ = (BT,BT,BT,AS)
@ = (BT,BT,AS,BT)
gs = (BT, AS,BT,BT)
@ = (AS,BT,BT,BT)
¢s = (BT,BT,BT,BT)

However, the first 4 discrete states can also be abstracted into a single discrete state T'P describing torque
production, which leads to an hybrid system with only two discrete states TP and NT P, where NT P cor-
responds to state ¢5, where no piston is producing torque. We note that a similar abstraction has been used
in [7] to determine the maximal safe set for idle speed control of automotive engines, although it has not been
obtained in any formal framework. The model used in [7] has three discrete states S, Sy and S_. State S_
corresponds to state NT'P while both states S and S correspond to our state 7P. Two states are used
in [7] to model the torque production phase to be able to distinguish between the before spark and after spark
phases in the compression mode. In our model no such distinction is visible at the level of discrete states, but
the continuous reset maps allow to update the variables 21, 2o and 23 required to determine the correct value
of the produced torque. We have thus been able to abstract the initial model, where each piston was modeled
by a 6 states hybrid automaton to an hybrid system with only two discrete states modeling the synchronized
operation of the 4 pistons. Furthermore, by exploiting compositionality we only performed the product of 4
hybrid systems with 2 discrete states each, resulting in a hybrid system with 2* = 16 discrete states. If one
would have abstracted the engine model as a whole, the required product hybrid system would have 6* = 1296
discrete states. These numbers clearly illustrate the computational advantages of exploiting compositionality
provided by Theorem 3.8. The resulting abstraction can now be used for analysis as is done, for example
in [7], or synthesis.

6. CONCLUSIONS

In this paper we have addressed the problem of computing abstractions for hybrid control systems. A notion of
abstraction was proposed based on the notions of simulation and bisimulation. These notions were presented
in a general setting comprising discrete, continuous and hybrid control systems. Several important properties
were proved in this general setting which are directly applicable to hybrid systems. We also introduced a
composition operator that allows to construct large-scale, complex hybrid systems by interconnecting smaller
hybrid systems. We showed that this composition operator is compatible with abstractions and under certain
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conditions also with bisimulation. These results were then instantiated to hybrid control systems where a
construction was proposed to compute abstractions based on state aggregation maps.

Several interesting directions for future research remain. It is important to understand how the proposed
notions of bisimulation and abstraction can be compared with several other discussed in the literature, specially
in the case when inputs and outputs are explicitly defined. Also important is to render the proposed results
more computational by looking at special classes of hybrid control systems for which the abstraction process
can be completely automated.

Acknowledgments: The authors would like to thank Esfandiar Haghverdi for extremely stimulating discus-
sions on category theory, and its use for hybrid systems.
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APPENDIX A - FUNCTIONS, PARTIAL FUNCTIONS AND MONOIDS

Functions and partial functions. We start by reviewing some facts regarding functions to set notation.
Let f: A — B be a map, if S is a subset of A we denote by f(S) the subset of B defined by:

(6.1) f8) = £s)

seS
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We also use the set notation f~!(b) to refer to all points a € A such that f(a) = b and if S is a subset of B
we denote by f~1(S) the set:

(6.2) S =U )

seS

Given maps f : A — B and g : C — D, we represent by f X g : A x C — B x D the map defined by
(a,¢) = (f(a),g(c)) for every (a,c) € Ax C.

We now introduce some ideas regarding partially defined maps. Given a partially defined map f: A — B, we
denote the subset of A for which f is defined by f~!(B). Furthermore, given another partially defined map
g : A — B, we shall consider the two maps equal iff g~(B) = f~1(B) and g|g_1(B) = f|f_1(B). Intuitively,
two partially defined maps are equal when they are defined on the same subset of A and when restricted to
that set, they are equal as ordinary maps. Composition is defined for partially defined maps f: A — B and
g: B — C providing go f : A — C defined on (go f)~1(C) = f~1(g~!(C)). We note that composition of
partially defined maps is still an associative operation. We also extend the notion of restriction of a function
to this context. For a given (partially defined or not) function f: A — B and a set C C f~!(B), we denote
that by f|c : A — B the partial function defined by:

fle(a) = f(a) for every a € C'
undefined otherwise

Monoids. A monoid is a triple (M, -, &) where M is a set closed under the associative operation - : M x M
— M and ¢ is a special element of M called identity. This element satisfies e-:m = m - = m for any m € M.
We will usually denote m; - mo simply by mimsy and refer to the monoid simply as M. Given two elements
my and my from M we say that my is a prefix of ms iff there exists another m € M such that mym = ms.

Given two monoids (Mx, ,ex) and (My,-,ey) we denote by Mx ® My the direct product of Mx and
My . The direct product, which is still a monoid, is defined by the set Mx x My equipped with pairwise
multiplication defined by:

(m,n)(m',n") = (mm’,nn') € Mx x My

for (m,n),(m',n') € Mx x My and where mm' denotes multiplication in M x and nn' denotes multiplication
in My . Finally, the unit in Mx ® My is naturally given by (ex,ey).

APPENDIX B - ELEMENTARY NOTIONS OF CATEGORY THEORY

Categories. In this paper we only use elementary notions of category theory. We point the reader to [21] for
further details as well to [22] and [3] for a “softer” introduction to the topic. Informally speaking, a category
is a universe of mathematical discourse and is perhaps better described by examples. If one is interested in
group theory one would certainly work in the universe of groups and group homomorphism, whereas if one is
learning elementary topology the natural universe are topological spaces and continuous maps between then.
In linear algebra one deals with vector spaces and linear maps, in differential geometry with smooth manifolds
and smooth maps between then, etc. This idea of universe of mathematical discourse can be formally defined
as follows:

Definition 6.1 (Category). A category is a tuple (O, hom,id, o) consisting of:

e A class of objects O.

e For each pair of objects (A, B) belonging to O, a set hom(A, B). The elements of hom(A, B) are called
morphisms from A to B. An element of this set f € hom(A, B) is usually denoted graphically as
454 B. ’

e For each object A € O a special morphism A ida, A, called the identity on A.
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e A binary operation which maps a pair of morphisms (A N B,B % C) to the composite” A 2k o
while satisfying:
— Associativity: ho (go f) = (hog) o f whenever the composition is defined.
— Identity: for a morphism A 7 B we have idpof=f=foidya.
— The sets hom(A, B) are pairwise disjoint.

In the above examples the objects are the groups, topological spaces, etc, while the arrows are the group
homomorphisms, continuous maps, etc, between them. As morphisms are displayed graphically, more elaborate
relations between morphisms are usually displayed in commutative diagrams. We shall say that a diagram
commutes iff the composition of morphisms in any path from one object to another object is the same. Consider
for example the following diagram

(6.3) C

where commutativity simply means that the two existing paths from A to D are equal, that is go f = j o h.

Products. Let A and B be objects in a category. The product of A and B is the triple (C,m4,7g) such
that for any other triple (C’, 7'y, mz) there exists one and only one morphism 7 making the following diagram
commutative:

(6.4) o

Note that the product captures the relevant notion of product with respect to the corresponding category. The
product on the category of sets and maps between them is the usual Cartesian product, while in the category
of groups is the direct product, in the category of topological spaces is the Cartesian product of the supports
equipped with the product topology, etc. Reversing the arrows in diagram (6.4) leads to the dual notion of
coproduct.

Equalizers. Let g and h be morphisms in a category. The equalizer of g and h is the morphism f satisfying
go f = ho f and such that for any other morphism f’ satisfying g o f' = ho f’ there is one and only one
morphism f such that the following diagram commutes:

|
s

"Note that composition of f and g is only defined if the target of f equals the source of g.
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