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Modular Strategies for Infinite Games on Recursive Graphs

Abstract

In this paper, we focus on solving games in recursive game graphs that can model the control flow of
sequential programs with recursive procedure calls. The winning condition is given as an w-regular
specification over the observable, and, unlike traditional pushdown games, the strategy is required to be
modular: resolution of choices within a component should not depend on the context in which the
component is invoked, but only on the history within the current invocation of the component. We first
consider the case when the specification is given as a deterministic Biichi automaton. We show the problem to
be decidable, and present a solution based on two-way alternating tree automata with time complexity that is
polynomial in the number of internal nodes, exponential in the specification and exponential in the number of
exits of the components. We show that the problem is EXPTIME-complete in general, and NP-complete for
fixed-size specifications. Then, we show that the same complexity bounds apply if the specification is given as

a universal co-Biichi automaton. Finally, for specifications given as formulas of linear temporal logic LTL, we
obtain a synthesis algorithm that is doubly-exponential in the formula and singly exponential in the number of
exits of components.
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Modular Strategies for Infinite Games on
Recursive Graphs*

Rajeev Alur!, Salvatore La Torre?, and P. Madhusudan'

! University of Pennsylvania
2 Universita degli Studi di Salerno

Abstract. In this paper, we focus on solving games in recursive game
graphs that can model the control flow of sequential programs with recur-
sive procedure calls. The winning condition is given as an w-regular speci-
fication over the observable, and, unlike traditional pushdown games, the
strategy is required to be modular: resolution of choices within a com-
ponent should not depend on the context in which the component is
invoked, but only on the history within the current invocation of the
component. We first consider the case when the specification is given
as a deterministic Biichi automaton. We show the problem to be decid-
able, and present a solution based on two-way alternating tree automata
with time complexity that is polynomial in the number of internal nodes,
exponential in the specification and exponential in the number of exits
of the components. We show that the problem is EXPTIME-complete in
general, and NP-complete for fixed-size specifications. Then, we show
that the same complexity bounds apply if the specification is given as a
universal co-Biichi automaton. Finally, for specifications given as formu-
las of linear temporal logic LTL, we obtain a synthesis algorithm that is
doubly-exponential in the formula and singly exponential in the number
of exits of components.

1 Introduction

An interesting class of infinite-state systems that permits algorithmic verification
is pushdown systems. Pushdown systems can model the control flow in sequential
imperative programming languages with recursive procedure calls. Their anal-
ysis has been well studied theoretically [6,20], and forms the basis of recent
tools for software verification [4,11,12]. In this paper, we focus on solving games
over such models. The original motivation for studying games in the context of
formal analysis of systems comes from the controller synthesis problem [7,16,
17]: given a model of the system where some of the choices depend upon the
controllable inputs and some of the choices represent uncontrollable nondeter-
minism, synthesizing a controller that supplies inputs to the system so that the
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also supported by the MIUR in the framework of project “Metodi Formali per la
Sicurezza e il Tempo” (MEFISTO) and MIUR, grant 60% 2002.



product of the controller and the system satisfies the correctness specification
corresponds to computing winning strategies in two-player games. Besides the
long-term dream of synthesizing correct programs from formal specifications,
games are relevant for modular verification of open systems. For instance, Al-
ternating Temporal Logic allows specification of requirements such as “module
A can ensure delivery of the message no matter how module B behaves” [2];
module checking deals with the problem of checking whether a module behaves
correctly no matter in which environment it is placed [14]; and the framework
of interface automata allows assumptions about the usage of a component to
be built into the specification of the interface of the component, and formulates
compatibility of interfaces using games [10].

Among the many roughly equivalent formulations of pushdown systems, we
use the model of recursive state machines (RSMs) [1,5]. A recursive state ma-
chine consists of a set of component machines called modules. Each module has
a set of nodes (atomic states) and bozes (each of which is mapped to a module),
a well-defined interface consisting of entry and exit nodes, and edges connecting
nodes/boxes. An edge entering a box models the invocation of the module as-
sociated with the box, and an edge leaving a box corresponds to a return from
that module. To define two-player games on recursive state machines, the nodes
are partitioned into two sets such that a player gets to choose the transition
when the current node belongs to its own partition. While the complexity of
pushdown games has already been studied [8,20], existing algorithms for solving
pushdown games assume that each player has access to the entire global history
which includes the information of the play in all modules. In a recent paper, we
introduced the notion of modular strategies for games on RSMs [3]. A modular
strategy is a strategy that has only local memory, and thus, resolution of choices
within a module does not depend on the context in which the module is invoked,
but only on the history within the current invocation of the module. This permits
a natural definition of synthesis of recursive controllers: a controller for a module
can be plugged into any context where the module is invoked. Recent work on
the interface compatibility checking for software modules implements the global
games on pushdown systems [10], but we believe that checking for existence of
modular strategies matches better with the intuition for compatibility.

In [3], we showed that solving modular reachability games is NP-complete.
In this paper, we consider the general case where the winning condition is spec-
ified as an w-regular language over the observable, using Biichi automata or
linear temporal logic formulas. Compared to reachability games, there are two
additional technical hurdles now. First, the winning strategy needs to produce
accepting cycles. Second, the specification is external, and we require the same
strategy to be used every time a module is invoked. Consequently, if we take the
product of the game graph and the specification automaton, as is done typically,
we need to find a winning strategy over the product graph that is modular as
well as oblivious to the state of the specification.

Our first result is that for a specification given as a deterministic Biichi au-
tomaton B, the problem of deciding whether there exists a modular strategy



so that the resulting plays are guaranteed to be accepted by B is EXPTIME-
complete. The upper bound is established using an automata-theoretic solution.
We first define strategy trees that encode modular strategies in the recursive
game graph A in a particular way. The strategy tree contains a subtree corre-
sponding to each module. The subtree corresponding to a module A,, specifies
the choice at every existential node of A,,, and when it enters a box b corre-
sponding to an invocation of another module 4,,:, it just specifies the exit nodes
of A, that are guaranteed to be avoided by the strategy for A,, . The next step
is to define a two-way alternating tree automaton T that accepts the winning
strategy trees. An important task of this automaton is to check the consistency
of the input tree with respect to the exits to be avoided in each module. The
alternating nature allows sending of multiple copies, and the two-way nature is
exploited to move up and down the tree, rereading strategies of modules as and
when needed, and thereby making sure that only one strategy for each module is
used. Using the exponential translation from two-way alternating tree automata
to nondeterministic tree automata [18], and then, employing the polynomial-time
algorithm for checking emptiness of nondeterministic tree automata, we get a
complexity bound that is polynomial in the number of internal nodes of A, ex-
ponential in the specification automaton B, and exponential in the total number
of exit nodes in A. The exponential dependence on the number of exits seems
unavoidable as even reachability games are Np-hard [3]. We show that the Np
upper bound applies for fixed-size specifications given by Biichi automata.

Our second result is that given a recursive game graph A whose nodes are
labeled with atomic propositions, and a formula ¢ of linear temporal logic L'TL,
the problem of deciding whether there exists a modular strategy in A so that
the resulting paths are guaranteed to satisfy ¢, is 2EXPTIME-complete. The
hardness holds even for ordinary game graphs [16]. Since translation from LTL
to deterministic parity automata is doubly-exponential, using our construction
for deterministic specifications would lead to a 3EXPTIME upper bound. We show
that the construction for deterministic Biichi specifications can be modified to
universal Biichi as well as co-Biichi specifications with the same complexity.
Unlike a nondeterministic automaton, a universal automaton accepts a word if
all runs over that word are accepting. Since the set of models of an LTL formula
can be characterized by a universal co-Biichi automaton that is only exponential
in the formula, we get a 2EXPTIME bound for LTL games.

We recall that two-way alternating tree automata have been used to solve
synthesis problems for pushdown systems with respect to specifications given by
p-calculus formulas [13] and parity pushdown games [9]. Apart from the fact
that these papers only solve for global strategies and not modular ones, the
encodings of strategies are different. While in their encodings, paths to nodes of
the tree represent the stack content and the two-way nature is used to push and
pop elements, in our setup paths to nodes represent the local history and the
two-way nature is used to re-read strategies for a module.

Due to the lack of space we omit some details in this version and refer the
interested reader to the full paper.



2 Games on Recursive Graphs

Let us fix a finite alphabet Y. Let X* denote the finite words and X“ denote
the set of w-words over X. For any n € N, let [n] denote the set {1,...,n}.

Definition 1. A recursive game graph A (for short RGG) over X is a tuple
(M, M, {Amtmem), where M is a finite set of module names, m;, € M is
the name of the initial module and for every m € M, A,, is a game module
(N, B, Y, Enpy Bz, PO P 8, mm) that consists of:

— A finite set of nodes N,, and a finite set of boxes B,.

— A nonempty set of entry nodes En,, C N,, and a nonempty set of exit
nodes Fx,, C Ny,.

— A labeling Yy, : B, = M that assigns a module to every boz.

— Let Calls,, = {(b,e) | b € By, e € Eny, )} denote the set of calls of m and
let Retns,, = {(b,x) | b € By,,x € Exy, ()} denote the set of returns in m.
Then, 6 : Ny U Retns,, — 28mUCallsm s o transition function.

— PY and P}, form a partition of Ny, U By, into the set of positions of player
0 and player 1, respectively.

— Nm 45 a labeling function n,, : Ny, — X that associates a letter in X with
each node.

We assume that all the sets N, and By, (m € M) are disjoint. Also, we let

N =U,, Nm, B =,, Bm, Calls =J,, Calls,, and Retns = J,,, Retns,, denote

the set of all nodes, boxes, calls and returns, respectively. Similarly, let EFn =

Umenrr Bnm, Bz = U pens Bxm, P = U, e Ph, for £ € {0,1}. We extend the

functions Y,, to a single function Y : B — M by defining Y (b) = Y;,,(b), where

b € B,,. Similarly, we extend the functions 7,, to a single function n: N — X.
An element in Calls,, of the form (b, e) represents a call from m to the module

m', where Y,,(b) = m' and e is an entry of A,,,. An element in Retns,, of the

form (b, z) corresponds to the associated return of control from m' to m when

the call exits from m' at exit z. The transition function hence defines moves
from nodes and returns to a set of nodes and calls.

We denote the set of vertices of m as V,,, = N, U Calls,, U Retns,,. Viewed
in terms of vertices, each A,, defines a graph over the set of vertices V,,. Let
Vit = (Njm N PY) U{(b,x) € Retns,, | b € P.} denote the set of vertices of
player £. Note that returns are identified as belonging to player £ if the box
corresponding to it belongs to player £. The vertices in Calls,, are not assigned
to any player. (One can assign nodes to players in various ways; we have just
chosen one such way, without any real loss in generality.)

Without loss of generality, we make some assumptions of these graphs in the
sequel that enable a more readable presentation:

— There is only one entry point to every module, i.e. |E,,| = 1 for every m. We
refer to this unique entry point of 4, as e,;. One can reduce a game-graph
module with multiple entries to this setting by making copies of this module,
one for each entry point, and changing the calls and returns appropriately.
This causes only a cubic blow-up (see [3] where this is done for reachability
specifications).



Fig. 1. An example of a recursive game graph.

— For every u € Ny, €, & 0 (u) holds, and for every x € Ex,,, 6,,(x) is empty.
That is, within a module there are no transitions to its entry point and no
transitions from its exits.

— A module is not called immediately after a return from another module. That
is, for any m, 0., (Retnsy,) C Npy,.

As an example of a recursive game graph consider the graph in Figure 1. There

are two modules A; and A, and A; is the initial module. We denote by squares

the nodes of player 1 and by circles those of player 0. The rectangles with curved
corners denote the boxes of player 0. Box b; is mapped by Y to module A; and

bs is mapped to As. In this recursive game graph, all boxes belong to player 0.
A state of the game is an element in (y,u) € B* x N such that either

— y=¢€and u € Ny,,, or,

— v ="b...bg, by € By, and for each i € [1,k — 1], if Y (b;) = m, then
bi+1 € By, and u € Np,r where Y (bi) = m/'.

Intuitively a state of the form (b ba, u) represents the global state of the system

where, if Y (b1) = m and Y (b2) = m/, then the module A,,, has called module

A,, by box by, which in turn has called module m' by box by and the current

node inside m' is u. Hence, in a state (y,u), v denotes the stack of calls and u

denotes the current node in the last invoked module.

The following then defines the natural notion of a run of an RGG. A run of
an RGG A is a finite or infinite non-null sequence of states, sgsy ... such that:
1. Sg = (6, 60)

2. If s; = (v,u), u € Ny, and sj11 = (7', u’), then one of the following holds:
Internal move: u € Ny, \ Bz, u' € 6, (u) and ' = 7.

Call a module: u € Ny, \ Bz, (b,e) € 0 (), u' = €,y and v = 7.b.

Return from a call: u € Ez,,,, v =7'.b, u' € 6,/ ((b,u)), where b € B,,.
The first case above is when the control stays within module m, the second case
is when a new module m' is entered via a box of m (and we “push” the box
name b onto the stack) and the third is when the control exits m and returns to
m' (and we “pop” the box name b from the stack). A play in A is a run of A. We
denote by II; and II,, the set of all finite and infinite plays of A, respectively.

For a state s = (y,u), let V(s) denote the vertex corresponding to the state:
V(s) =uif vy =€or u € Ny \ Ezy; otherwise V(s) = (b,u) where v = ~'.b.
Then ctr : II; — M identifies the module where the control is after any finite
run and is defined as follows: for any m.s € Iy, ctr(w.s) = m, where V(s) € Vp,.



We can now define local histories that describe, for every finite play 7 such
that ctr(mw) = m, the history of the play within m since the current invocation
of the module m. For a state s = (b1 ...b,.,u), an s-history is {(B1,B2,...,58),
where for each i € [r], 8; € V% where b; € B,,. In other words, each §; is a
sequence of vertices of the module b; belongs to. We define a history function
Hst that associates with every finite play 7.s an s-history Hst(w.s) as follows.

— If 7 = s9 = (€, em,,), then Hst(m) = (em,,)-
— Let # = 7'.(7',u') where ' = 7" .(v,u), and let Hst(x') = (81, ..., B). Then:

Internal move: If ' = v, then Hst(w) = (B1,---,8r_1, Br-u').

Call: If ' = ~.b with Y(b) = m/, then Hst(w) = (B1,...,Br,em!)-

Return: If v =~+'.b, then Hst(n) = (61,...,B8r-1)-

Intuitively, in the beginning of the run, when the control is at m,, the history is
a single string e;,,. On an internal move, the last element in the history tuple gets
updated, while the other tuples remain unchanged. On a call, the last element
in the history tuple also freezes, and a new entry is created and initialized to the
entry corresponding to the called module. When the call returns, the last tuple
in the history gets erased. The history function hence keeps a stack of histories:
for each module in the stack of calls, there is a record of the moves that have
happened in that module during the play thus far.

We now define the local history, u, after a finite play m. For any play 7, u(7) =
Br, where Hst(w) = (B1,-- -, B%)- In other words, the local history is the fragment
of the play inside the current module m = ctr(n) since the corresponding entry
into m. Note that the local history is a sequence of vertices that correspond to
internal nodes, calls or returns of the module m.

A modular strategy is intuitively a set of functions, one for each module, that
encodes how player 0 must play in the game. However, which move to make at a
state can depend only on the local history of the play so far in the current module.
Formally, a modular strategy is a set of functions, f = {fm}mem, one for each
module, where for every m, fn, : V,:.V.9 — V,, such that f,(7v) € 6,,(v), for
every m € Vi, v e V0.

A play 7 in A according to a modular strategy f is a run sgs; - .. such that for
every i < ||, if ctr(sg...s;) = m and V(s;) € V;2, then s;11 = (v',u'), where
Fm(u(so - ..s;)) is either u' or (b,u'), for some b € B. In other words, if a prefix
of the play ends in a player 0 vertex, the move recommended by f for the local
memory in the current module must be taken.

Winning conditions. A winning set over X' is a regular w-language over X,
i.e. a regular language £ C X“. A recursive game is a pair (A4, L) where A is
a recursive game graph and £ is a winning set, both over Y. Let us extend 7
to states by defining n((y,u)) = n(u). This then extends to plays: n(ses1...) =
1(s0)n(s1) --.. A play 7 is said to be winning if n(w) € £, the winning set. A
modular strategy is winning if every play according to it is winning. We consider
the following decision problem:

“Given a recursive game (A, £) is there a modular winning strategy for the
protagonist?”

In this paper we solve this problem for £ given by safety and determinis-
tic/universal Biichi/co-Biichi automata, and by LTL formulas.



3 Automata for winning strategies

3.1 Background: Words, trees and automata

An automaton on w-words over X' is 4 = (Q, ¢1,0, W) where @ is a finite set of
states, g1 € Q is the initial state, § : Q x ¥ — 2% is a transition function and W
is a winning condition. Depending on the winning condition we have a Biichi,
co-Biichi, or a parity automaton. A Biichi (resp. co-Biichi) winning condition
is W C @ and requires that a state from W repeats infinitely often (resp. only
finitely often). A parity condition is a function W : @ — [¢], for some ¢ € N,
that associates a colour to every element in . It requires that the minimal
colour seen infinitely often is even. A run of A over a word ogoy... € X% is
an w-sequence of states pop; ... such that pp = ¢ and Vi € N, p;11 € 6(p;,0).
A run is accepting if it satisfies the winning condition W. An automaton is
deterministic if |6(q,0)| < 1 for every q € ), o € X. For either deterministic or
nondeterministic automata a word o € X is accepted if there exists an accepting
run on it. For universal automata « is accepted if all runs on it are accepting.
A safety automaton is a deterministic Biichi automaton A4 = (Q, ¢1,, W) where
W = Q. In other words, it accepts a word as long as it has a run over the word,
thus we omit mentioning the winning condition.

Let k € N and A be a finite alphabet. A A-labelled k-tree is (T}, v) where
T, = (Z,E) is a tree with Z = [k]* and E = {(y,y.d) | y € [k]*,d € [k]}, and
v: Z — Ais alabelling function that labels every vertex of the tree with a letter
in A. To distinguish vertices of trees and vertices of recursive game graphs, we
refer to the former as tree-vertices. The tree-vertex e is the root of the tree Ty,
and for every y € Z, tree-vertex y.d is the d*" child of y. For any set X,
let BT(X) denote the set of boolean formulae over X using conjunctions and
disjunctions only (negation is not allowed). For any subset F' of X, we say that
F satisfies a formula ¢ € BT(X) if ¢ evaluates to true assigning the elements
in F to true and the other elements in X to false.

A two-way alternating parity tree automaton (see [18]) over A-labelled k-
trees is A = (Q, q1,d, W), where @ is a finite set of states, ¢; € @Q is the initial
state, W is a parity condition on @ and § : @ x A — Bt(({-1,0,1,...,k) x Q).
Intuitively, {—1,0, ..., k} code the directions from a tree-vertex, where {1, ..., k}
stand for the k children of the tree vertex, —1 stands for the parent of the
tree vertex, and 0 stands for the current tree-vertex itself. Let us extend the
definition of concatenation of words over [k]* as follows: (zi.(—1)) = z and
z.0 = z, for any = € [k]*, i € [k], i.e. when a word is concatenated with —1,
it removes the last letter and concatenating with 0 is the identity function. A
one-way nondeterministic tree automaton can be seen as a two-way alternating
tree automaton where the transition function is always a disjunction of formulas
of the kind /\le(j, g;), i-e. the automaton guesses nondeterministically to send
exactly one copy of itself in each forward direction.

A run of A over a A-labelled k-tree (T%,v), where Ty, = (Z, E), is a labelled
tree T, = (R,, E,) where each tree-vertex in R, is labelled with a pair (z,q)
where x € Z is a tree-vertex of the input tree and ¢ € @ is a state of the automa-



ton A, such that: (a) the root of T}, is labelled (¢, g1 ), and (b) if a tree-vertex y of
T, is labelled (z, q), then we require that there is a set F C {-1,0,1,...,k} xQ
such that F satisfies d(q,v(z)) and for each (i,¢') € F, y has a child labelled
(z.i,q'). A run is accepting, if for every infinite path in the run tree, if one
projects the second component of the labels along the path, then it is a sequence
of states in () that satisfies the winning condition of A. Note that there is no
condition for finite paths of the run tree. An automaton 4 accepts a A-labelled
k-tree T iff there is an accepting run of A on T'; the language of A, denoted
L(A), is the set of all A-labelled k-trees that A accepts.

Proposition 1.

— Let A be a two-way alternating parity tree automaton. Then there is a one-
way nondeterministic parity tree automaton A' such that L(A) = L(A"), the
number of states in A’ is exponential in the number of states in A, and the
number of colours in the parity condition of A’ is linear in the number of
colours in the parity condition of A [18].

— The emptiness of one-way parity tree automata can be checked in time that is
polynomial in the number of states and exponential in the number of colours
in the parity condition (see [17]).

3.2 Strategy trees

Let us fix a set of h modules M = {mq,...,my}, which is ordered, and a

finite alphabet X for this section. Let us fix a recursive game graph over X,

A = (M,mq,{An}men), where each A, = (Ny, B, Yo, Bty B, 01). By

Ay we denote the set of labels {root, dummy} U (V x {T,L}).

A strategy tree is a Ag-labelled k-tree and is intended to encode a modular
strategy in the following way. First, we have the special symbol root labelling
the root of the tree. The subtree rooted at the i** child of the root will encode
the modular strategy for m;. The root of the subtree for m is labelled by the
entry point of m and tagged with T. (The other children of the root, if any, are
marked to be dummy tree-vertices and will not encode any information). No
other tree-vertices are labelled from the set En x {T,L}.

The subtree for a module m encodes the strategy for the module m by un-
ravelling the graph A,, and annotating each tree-vertex with either T or L, with
T intuitively encoding that a move to the corresponding node is possible while
a 1-tag signifies that the strategy will not allow a play to visit this node.

If a tree-vertex v of the subtree for m is labelled (p, T), then:

— When p € (N, \ Ez,,)URetns,,, the children of v are labelled by the successors
of p along with a T/L annotation. Further, if p is a player 0 vertex, then the
strategy must choose exactly one successor of p, and thus exactly one of the
annotations of the children is T. If p is a player 1 vertex, then all moves of
player 1 need to be accounted for, hence all children are tagged with T.

— When p € Calls,,, we do not encode calling the other module; we instead
simply have children corresponding to the returns from the called module,
with any T /L annotation. This hence encodes an assumption that the call to
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Fig. 2. A fragment of a strategy tree.

the other module will definitely not end in any return which is tagged with

1, no matter how player 1 plays. Note that we do not put any constraints

at this point that this assumption is indeed true—we take care of this later

when we check these trees using automata.

If a tree-vertex of the subtree for m is labelled (p, L), this denotes a move
disabled by the strategy and we do not continue to define the strategy from it;
we hence label the entire subtree under it as dummy. Similarly, if a tree-vertex
is labelled (p, ¢) where p € Ex,,, then this signifies reaching an exit node of the
module and again we do not encode the strategy after this point.

For example, consider the recursive game graph in Figure 1, and a modular
strategy such that the choices for player 0 are resolved selecting (bs, es) from
n1 and z3 from no. A fragment of the corresponding strategy tree is shown in
Figure 2. Note that the subtree encoding the strategy for module A; assumes
that when A, is called, it will not exit at x4, and the subtree for As assumes
that when A; is called, it will not exit at z2. In this example, the strategy does
indeed guarantee these assumptions. It is easy to see that:

Proposition 2. There exists an effectively constructible one-way nondetermin-
istic tree automaton Ay of size O(|A|) that accepts a A-labelled k-tree if and
only if it is a strategy tree.

3.3 Automata accepting winning strategy trees

In this section we sketch the construction of an automaton A, ;, that accepts a
strategy tree iff it represents a winning strategy with respect to a specification
given as a safety automaton B = (@, g1,05). In this construction it is crucial the
use of an avoid component in states of Ay, An avoid component (z,q) € Fr X Q)
corresponds to the assumption that a play must not end at the exit z with the
specification state g. There is also another type of avoid component denoted
$,» that is used instead for the assumption that the play must not exit at all
the current invocation of the module m. We will return to the avoid component
later.



Automaton A,;, is a two-way alternating tree automaton that performs
three main tasks. The first task is to simulate B so that we ensure the satisfac-
tion of the specification on an accepted strategy tree. This is achieved basically
simulating the transitions from i, whenever a node is read. On reading an exit
node the automaton also checks that the assumption of the avoid component is
fulfilled.

The second task is to ensure that plays are generated from the entry point of
the initial module m;,, starting with the initial state of the specification, and that
this invocation of m;,, does not exit. If this call exits then this would mean that
there are finite maximal plays according to the strategy, which are by definition
losing for player 0. Hence, the first transition sets the avoid component to every
possible pair (z,q) € Ez.,,, X Q.

The last task is to ensure that when a return of the input tree is tagged with
L, no matter how player 1 plays, the call to the other module will definitely not
end in such a return (see Section 3.2). Assuming that this return is from a module
m at exit x, the above requirement is checked sending a copy of the automaton
to the root of the subtree corresponding to m for every avoid component of the
form (z,q).

The winning condition we choose for A, is trivial: we just map every state
to the colour 0; hence the winning condition simply requires that there be a
run over the tree. There is a trick that is needed in the construction to keep
the size of Ay, small. When reading a T-tagged return (b,z) (z € Ez,),
the strategy encodes the assumption that when m' is called, it may return at
exit z, but it does not contain information on what the specification state can
be when it returns. The automaton hence will guess what the set of possible
specification states can be when the call returns. Since we would like to keep the
size of the transition function polynomial, we let the automaton step through
the specification states ¢ one by one, but staying at the same tree vertex, and
guess whether the current specification state ¢ is a possibility as the state on a
return. We omit further details here. Thus, we have the following.

Lemma 1. A, is a two-way alternating tree automaton that accepts a strategy
tree iff it corresponds to a winning strategy. Further, the size of Ayin is O(|Q|? -
|Ez|) where Q) is the set of states in the specification automaton and Ez is the
set of all exits in the recursive game graph.

We now convert Ay, to a one-way nondeterministic tree automaton and
take its intersection with the automaton A, that accepts strategy trees, to get
a one-way nondeterministic automaton A’ which accepts a tree iff it corresponds
to a winning strategy tree. Since we can prove EXPTIME-hardness, via a direct
reduction from linear-space Turing machines, and using Proposition 1, we have:

Theorem 1. For a recursive game graph A and a specification safety automa-
ton B, the problem whether there is a winning modular strategy for player 0 is
EXPTIME-complete, and can be decided in time O(|A| - exp(|Ez| - |B|)). !

! exp(z) stands for 2°.



4 Complexity of modular games

4.1 Handling other w-regular specifications

The construction given in Section 3.3 can be extended to games with specifica-
tions given as deterministic Biichi or co-Biichi automata on words. We consider
here only the case of Biichi automata; the case for co-Biichi automata is dual.

Let B = (Q,q1,08, W) be a deterministic Biichi automaton on words, and A
be a recursive game graph. We can extend the automaton A,;, of Section 3.3
to a two-way alternating tree automaton Al that accepts strategy trees cor-
responding to winning strategies in this game.

The main modifications are as follows. When the automaton reads a call in
the subtree for a module m, recall that we guessed for every return labelled T,
the set of specification states the play could be at when it exits from the called
module. In the case of Biichi specifications, we need to guess more about what
happened during the call. More precisely, we need to know whether all possible
sub-plays that return at this exit and specification state would have definitely
met a state in W or not. If the automaton guesses that this is so, it must send a
copy to the called module to check this, and also signal a Biichi final state (for
the tree automaton) before continuing the play in the current module.

Again, by Proposition 1, and the lower bound given in Theorem 1, we have.

Theorem 2. Deciding recursive game graphs with deterministic Biichi (or co-
Biichi) automaton specifications is EXPTIME-complete.

We can also extend the tree automaton from Section 3.3 to handle specifica-
tions given as universal Biichi (or co-Biichi) specifications. In the construction
of the automaton, whenever we were updating the specification state, we now
need to create a copy for each possible update of the specification state.

Theorem 3. Deciding recursive game graphs with universal Biichi (or co-Biichi)
automaton specifications is EXPTIME-complete.

The above theorem in fact shows that we can solve games for any w-regular
specification. If £ is any w-regular language, then its complement, £ is also w-
regular and can be accepted by some nondeterministic Biichi automaton B'. It is
easy to see that if B is viewed as a universal co-Biichi automaton B (we keep the
same states and the same transitions but interpret the automaton as universal
and co-Biichi), then B accepts a word « iff B' rejects a. Hence B accepts £ and
we can solve games against this automaton.

We can also deal with LTL-specifications ([15]) over a set of propositions P,
assuming the nodes in the game graph are labelled over ¥ = 27. Given an LTL
formula ¢, we can construct a nondeterministic Biichi automaton B_4 over 2P
that accepts a word iff it satisfies —¢ [19]. Moreover, the size of this automaton
is exponential in |¢|. By the previous observation, this automaton when viewed
as a universal co-Biichi automaton accepts the models of ¢. In other words,
for any LTL formula, we can construct an exponential sized universal co-Biichi
automaton accepting its models. Invoking Theorem 3 and using the fact that
LrL-games are 2EXPTIME-hard [16] even for normal graphs, we have:



Theorem 4. Deciding LTL recursive game graphs is 2EXPTIME-complete.

4.2 Structure Complexity

Our algorithm for deterministic automata specifications works in time exponen-
tial in the number of exits in the recursive game graph. We could ask whether this
exponential is necessary by asking for the structural complezity of the problem,
i.e. what is the complexity for fixed w-regular specifications. Since a reachability
game on a recursive game graph can be formulated by a simple fixed automaton
specification, and since reachability games in recursive game graphs are NP-hard
[3], we cannot hope to do polynomial in the game graph. However, we can show
that for fixed specifications, the problem is in NPp.

The NP upper bound can be shown by direct means, not involving automata.
Let us sketch the proof for deterministic safety automata. When a module m
invokes a module m' at a specification state ¢, the only relevant information
that it needs is the set of exits m' could return at, and at each of these exits,
the possible states the specification automaton can be in. This is a polynomial-
sized information that we can guess. For each module m and specification state
g, we build a graph Gy,,, which is a product of the game module for m and
the specification automaton starting at state ¢. The problem then boils down to
finding whether, for every module m, there is a strategy for the game module
for m such that, when this strategy is played on G, 4, for every ¢ € @ (in the
obvious way), the strategy meets the assumption pertaining to how module m
should behave when invoked at ¢. In doing this, whenever we call another module
in G q, we can “plug-in” a graph that captures the assumption on how the other
modules will behave. For any m, solving the game graphs Gy, 4 simultaneously is
akin to solving partial information games, which causes an exponential blow-up
only in the size of the specification state space (), which is a constant. Hence
the problem can be solved in NpP. The procedure extends to universal Biichi and
co-Biichi automata with some effort.

Theorem 5. Deciding recursive game graphs for fized w-regular specifications
is NP-complete.

5 Conclusions

In this paper, we have solved the problem of deciding the existence of modular
strategies in infinite games over recursive structures for winning conditions spec-
ified using w-automata or linear temporal logic. We have argued that the notion
of modular strategies, compared to the traditional definition of global strategies,
is more appropriate for designing modules that can be plugged in any context.
Our solution is automata theoretic, and can be generalized to allow other types
of specifications such as branching time logics. In terms of future work, we are
exploring the application of games to generate interface abstractions, and effi-
cient implementations using a combination of BDD-based symbolic techniques
and SAT solvers.
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