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Abstract

The notion of bisimulation plays a very important role in theoretical computer
science where it provides several notions of equivalence between models of compu-
tation. These equivalences are in turn used to simplify verification and synthesis
for these models as well as to enable compositional reasoning. In systems theory, a
similar notion is also of interest in order to develop modular verification and design
tools for purely continuous or hybrid control systems. In this paper, we introduce
two notions of bisimulation for nonlinear systems. We present differential-algebraic
characterizations of these notions and show that bisimilar systems of different di-
mensions are obtained by factoring out certain invariant distributions. Furthermore,

we also show that all bisimilar systems of different dimension are of this form.
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invariance, symmetries.
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1 Introduction

In theoretical computer science the notion of bisimulation inspired the definition of various
notions of equivalence between models of computation. Each of these equivalences identifies
classes of systems with similar properties, so that proving a property for a certain system can

be done on a smaller equivalent system, thereby simplifying the proof process.

Similar notions are also important in the context of hybrid systems, where the inherent com-
plexity of the hybrid model render its analysis or design very difficult. Motivated by this, we
were naturally led to understand the continuous counterpart of this notion. Previous steps
towards this objective have been given in [16] where linear control systems are embedded in
the class of transition systems for which the notion of bisimulation was originally introduced
by [20] and also [12]. It is shown in [16] that different embeddings give rise to semantically
different notions of bisimulation being characterized by different conditions. For nonlinear
systems no such attempt has appeared in the literature so far, except for [6] where the notion
of bisimulation is presented in a sufficiently abstract categorical context to unify discrete and
continuous interpretations. Compared to the work in [6], this paper seeks not to unify, but to

characterize the notion by easily checkable (algebraic) conditions.

A characterization of bisimulation for nonlinear systems is important for several reasons that
go beyond its application in hybrid systems. In the series of papers [18,19,21], a methodology
has been introduced to compute abstractions of linear and nonlinear control systems. These
abstractions are clearly important for verification problems, but also for hierarchical synthesis.
For example, in [17] hierarchical stabilization of linear systems is discussed in the framework
of abstractions. The ability to perform hierarchical synthesis depends on finding low-level
trajectories that implement or refine trajectories of the abstracted model. A sufficient condition
is given by bisimilarity, and this fact constitutes another reason to provide algebraic tests for

its characterization.

The notion of bisimulation is also very interesting from a system theoretic point of view as
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it provides an equivalence relation on the class of control systems. This can be regarded as
another tool in the quest of classifying nonlinear control systems. Furthermore, this equiv-
alence relation has the important property of rendering as equivalent, control systems of
possibly different dimensions. This contrasts with other known equivalences such as diffeo-
morphisms [11], or feedback transformations [3,8,10]. Furthermore, the notion of bisimulation
also has interesting connections with other well known notions in systems theory such as

controlled invariance [7,9,13] and symmetries for nonlinear control systems [5,14].

In this paper we introduce two notions of bisimulation for nonlinear control system systems
based on the original definition in [12]. We then focus on control affine systems and rela-
tions between them defined by submersions, and provide algebraic characterizations for these
notions. These characterizations turn out to be related with the notion of ®-related control
systems introduced in [18]. We then show that by factoring out certain invariant distributions
one obtains bisimilar systems and that all bisimilar systems are obtained in this way. The dis-
tinguishing power of the two introduced notions is also discussed by showing that, locally, they
are equivalent up to a feedback transformation. This is achieved by relating the introduced

notions of bisimulation with controlled invariance.

2 Geometrical Preliminaries

Let M be a differentiable manifold and T, M its tangent space at x € M. In this paper, we
will consider that all the manifolds are smooth, that is C'*°, and that all related mathematical
objects are also smooth. The tangent bundle of M is denoted by TM = U, T, M and my; is
the canonical projection map my, : TM — M taking a tangent vector X (z) € T,M C TM to
the base point x € M. Given manifolds M and N and given a map ¢ : M — N, we denote
by To¢p : Ty M — Ty N the induced tangent map which maps tangent vectors X at T, M to
tangent vectors T,¢ - X at Ty, )N. If ¢ is such that T;¢ is surjective at z € M then we say
that ¢ is a submersion at x. When ¢ is a submersion at every x € M we simply say that it
is a submersion. If furthermore, the submanifolds ¢ (y) = {v € M : ¢(z) =y} C M are
connected, we say that ¢ has connected fibers. When ¢ has an inverse which is also smooth

we call ¢ a diffeomorphism.

A fiber bundle is a tuple (B, M,ng,F,{O;}icr), where B, M and F are manifolds called
the total space, the base space and standard fiber respectively. The map ng : B — M is a



surjective submersion and {O;};c; is an open cover of M such that for every i € I there exists
a diffeomorphism W; : 7,1(0;) — O; x F satisfying ,, o U; = g, where 7, is the projection
from O; x F to O;. The submanifold 73" (z) is called the fiber at x € M and is diffeomorphic
to F. Since a fiber bundle is locally a product, we can always find local coordinates, which
we shall call trivializing coordinates, of the form (z,b), where x are coordinates for the base

space and b are coordinates for the local representative of the standard fiber.

Definition 2.1 (Control System) A control system Xy = (M x V, Fyr) consists of smooth
manifolds M called the state space, V' called the input space and a smooth map Fyr : M X'V
— TM that assigns a vector X € T, M to each pair (x,v) € M x V.

Although the previous definition captures the usual notion of control systems, in certain situa-
tions it is more natural to model available inputs as being dependent on the state. This depen-
dence can be captured by replacing the product M x V by a fiber bundle. In this situation, we
define a control system as ¥y, = (Ups, Fiyr) consisting of a fiber bundle 7y, : Uy — M called

the control bundle and a map Fj; : Uy, — T'M making the following diagram commutative:

Fu

Um TM

TUM ™

v (2.1)

that is, mp o Fiyy = 7y, , where my, : T'M — M is the tangent bundle projection.

In trivializing coordinates (x,v), the map Fy; : Upy — TM reduces to the familiar expression
@ = f(z,v) with v € m;; | (z). In the special case where the control bundle is trivial, that is,

Uy = M x V we recover Definition 2.1.

Having defined control systems the concept of trajectories or solutions of a control system is

naturally expressed as follows:

Definition 2.2 (Trajectories of Control Systems) A smooth curve ¢ : I — M, I =
[0,7[ C Ry is called a trajectory of control system Xy = (Unr, Fur), if there exists a (not

necessarily smooth) curve ¢ : I — V such that:

d 4
elt) = Fle(t), V(1) Vel (2.2)



We shall also say that a control system is forward complete? if solutions exist for all positive

times, that is, if we can take 7 to be +o0.

When we need to consider a fiber bundle Uj; instead of the product M x V', we replace ¢" by

¢V : I — Uy and require commutativity of the following diagrams:

UM UM
CU TUy CU FM
[ —F—M [—7—TM (2.3)

where we have identified I with T'I. These commutative diagrams are equivalent to the equali-

ties mp,,0cV = cand Te = Fy;(cV) which express in the language of fiber bundles equality (2.2).

A (left) action of a Lie group G on a manifold M is a map 6 : G x M — M such that
O(e,z) = x and 6(g192,x) = 0(g1,6(ga, x)), where e is the group identity and g;,g> € G (see
[2]). Given a point x € M we can define the orbit of # thru x to be the following subset of M:

{z' e M : 2’ =6(x,g) for some g € G}

An action is said to be free when 0(g,z) = ¥ = g = e and proper when the map 0(g,z) =
(x,0(g,x)) is proper. When 6 : G x M — M is a free and proper action, then M /G, the space
of orbits of 6 is a smooth manifold and the projection 7 : M — M /G taking each point in M
to its orbit is a smooth surjective submersion [2]. Furthermore by fixing any ¢ € G we obtain
6(g,—) =0, : M — M a diffeomorphism of M.

3 Bisimulation Relations

The notion of bisimulation is originally credited to [20] and [12], and since then many authors
have made important contributions to its development. In the context of continuous control
systems, bisimulations have been discussed for the first time in [16] for linear control systems.

We start by recalling the concept of transition system and bisimulation as presented in [12].

2 Determining if a control system is forward complete can be a nontrivial task. Standard sufficient

conditions include compactness of M or compact support of Fyy.



Definition 3.1 (Transition Systems) A transition system is a tuple T = (S, L,—) con-

sisting of:

o A set of states S;
o A set of labels L;

o A transition relation —C S x L x S.

We use the graphical representation ¢ SN ¢2 to denote (qi,[,q2) €—. Intuitively, one can
regard a transition system as a nondeterministic control system. Given a state s € S, one
interprets the set of labels [ € L such that s Ly ¢ for some s’ € S, as the set of control inputs
available at state s. Choosing one of those inputs will make the transition system evolve to
the new state or states s' satisfying (s,l,s’) €—. The nondeterminism is captured by the
fact that different triples (s,/,s’) and (s, [, s”) may belong to —. This is the analogy that we
shall make use to provide a continuous counterpart of the notion of bisimulation that we now

recall.

Definition 3.2 (Bisimulation relation) Let 71 = (Si, L, —1) and Ty = (S2, L, —2) be
transition systems. A relation F© C S; X Sy is said to be a bisimulation relation between T}

and Ty if (s1,82) € F implies for all l € L:

o if 5, —1 8| then there exists a s € Sy such that sy —y sy and (s}, s}) € F.

o if 55—, s, then there exists a s, € Sy such that s, —, s, and (s),s}) € F.

To import this notion into the continuous context we face the difficulty of not being able to
express the continuous dynamics in terms of the “atomic” jumps s; L si. We shall, therefore,
replace the atomic jumps for any evolution, that is, we will ask a control system to match
the evolution of another control system for every instant of time. Furthermore, as trajectories
must be obtained by using the same input trajectory, the input space cannot depend on the
state space. We shall, therefore assume, that the control bundle is a product Uy, = M x V,

being V' the input space.
Naturally, this leads to the following notion of bisimulation for control systems:

Definition 3.3 (Bisimulation of Control Systems) Let Xy = (Uy, Fur) and Xy = (Un, Fi)
be control systems such that Uyy = M XV and Uy = N x V. A relation FF C M x N s said

to be a bisimulation relation between Xy and Xy if (z,y) € F implies:

(1) for any state trajectory cpy : I — M of Xy with ¢y (0) = - determined by input trajectory



¢ I — V there exists a state trajectory cy : I — N of Sx with cx(0) =y determined
by input trajectory ¢V : I — V such that (car(t), en(t)) € F for every t € 1.

(2) for any state trajectory ¢y : I — N of Xn with cx(0) =y determined by input trajectory
¢ : I — V there exists a state trajectory cpr - I — M of Sy with ¢y (0) = x determined
by input trajectory ¢¥ : I — V such that (cy(t),cn(t)) € F for every t € I.

As we shall see soon, this notion of bisimulation will be quite restrictive. This will motivate
more relaxed notions of bisimulation, and in particular, we shall consider an input abstract
version. This new notion relaxes the requirement that both systems have the same input
trajectories and furthermore can be easily expressed without the assumption of trivial control

bundles, being therefore, better suited for global analysis of control systems.

Definition 3.4 (Input Abstract Bisimulation of Control Systems) Let Xy, = (Ups, Fur)
and Xx = (Uy, Fy) be control systems. A relation FF C M x N is said to be an input abstract

bisimulation relation between Yy and Xy if (z,y) € F implies:

(1) for any state trajectory ey : I — M of Xy with ¢y (0) = x there exists a state trajectory
ey I — N of ¥n with cy(0) =y such that (cpr(t),en(t)) € F for every t € 1.

(2) for any state trajectory cy : I — N of ¥ with c¢y(0) =y there exists a state trajectory
ey 2 I — M of Xy with ¢y (0) = x such that (ca(t), en(t)) € F for every t € I.

We shall say that two control systems are (input abstract) bisimilar when there exists a (input

abstract) bisimulation between then.

The above introduced notions of bisimulation are also important from a systems perspective
since they allow a new type of classification of control systems. Indeed, it is not difficult to
show that the notion of bisimulation defines an equivalence relation in the class of control

systems.

Proposition 3.5 Bisimulation and input abstract bisimulation are equivalence relations on

the class of control systems.

These equivalence relations have the important characteristic of rendering equivalent, systems
of possibly different dimension. It therefore makes sense to consider as representative of each

equivalence class, the system of smallest dimension, leading to notions of minimality.



4 A Characterization of Bisimulation

For presentation purposes, all proofs of the main results in this section can be found at
Appendix A. We start by making some assumptions that will allow to provide simple charac-

terizations of bisimilar control systems:

(1) The control systems are assumed to be control affine, that is, there are local (trivializ-
ing) coordinates (z,v) where the system map Fj; takes the form Fy(z,v) = fuy(z) +
© gh(a)u
(2) The associated affine distribution Dy; = fu + Apr = far + spanf{gls, 937, - -, g%} is of
constant rank.
(3) The relation F* C M x N is induced by a smooth map f: M — N, that is (z,y) € Fiff

f(z) =y where f is a submersion, that is, T, f is surjective at every = € M.

The first two assumptions are not very restrictive since the results obtained for affine control
systems can be lifted to fully nonlinear control systems by making use of the notion of extended
control system [15]. The third assumption is more restrictive but its justified by the fact that
in [19] an algorithm has been presented for the computation of quotients of control systems
based on such a quotient map. It is therefore of extreme importance to be able to determine

when such quotients are in fact bisimilar to the original one with respect to the quotient map.

Before characterizing bisimulation we recall that given a control system X, and a subset S
of M, we say that S is invariant for ¥,, iff every trajectory of ¥, starting at a point x € S
remains in S for all time. It follows easily that S must contain the all the points reachable by
Y from S. This notion of invariance allows the characterization of bisimulation given in the

next theorem:

Theorem 4.1 (Bisimilar control affine systems) Let Xy, = (Uyr, Fir) and Xn = (Un, Fy)
be two forward complete control affine systems such that Uyy = M xV and Uy = N x V', and
f: M — N a submersion. Then, Xy s bisimilar to Xn via f iff for every x € M:

o f(M) is invariant for ¥y
o T.f(Du(z)) =Dy o f(z)
o for every X € Dy, there exists a Y € Dy such that T,f - X (x) =Y o f(x).

The above characterization shows how restrictive the notion of bisimulation is, since every vec-

tor field X in Dj; must be f-related to some vector field Y in Dy. Relaxing this condition was



the motivating factor behind the notion of input abstract bisimulation whose characterization

is now presented.

Theorem 4.2 (Input abstract bisimilar control affine systems) Let X, and Xy be two
forward compete control affine systems and f : M — N a submersion. Then, ¥y s input

abstract bistmilar to Xy via f iff for every x € M:

e f(M) is invariant for ¥y
o T f(Du(z)) = Dno f(x)

Both in Theorem 4.1 as in Theorem 4.2 we assume forward completeness. This precludes
the existence of finite explosion times and allows working with arbitrary time intervals I as
required by the definition of (input abstract) bisimulation. If forward completeness does not
hold, a weaker form of the above theorems still holds, where I is now taken as the intersection

of the time domains of trajectories cy; and cy.

We also note that since the relation F* C M x N is defined by a map f : M — N, the
first condition on the definition of input abstract bisimulation can be refrased as: for every
trajectory cyr of Yy, f(ear) must be a trajectory of Y. This was the basic definition of
abstraction introduced in [18], so that it is natural that the characterization of (input abstract)
bisimulation is a stronger version of the concept of f-related control systems, which is the
algebraic characterization of abstractions. It is also interesting to note that the characterization
of input abstract bisimilarity, given in Theorem 4.2 distinguishes these systems from general
abstractions at the level of the structure of the control bundle as discussed in [21]. In fact, when
a control system is bisimilar to its abstraction, no new inputs will appear on the abstraction,

a phenomenon that does not occur for general abstracted systems [18].

We now clarify how different can (input abstract) bisimilar control systems be if they have
different dimensions. For this we will assume that dim(M) > dim(N), and recall the notions

of invariant and controlled invariant distributions:

Definition 4.3 (Invariant and Controlled Invariant Distributions) Let ¥, be a con-
trol affine system and let £ be a reqular and involutive distribution on M. Distribution £ is
said to be invariant for X, when:

[Dum,E]CE
Distribution & is said locally controlled invariant if there exist a local feedback transformation

around each x € M, such that £ is invariant for the feedback transformed system.



Locally controlled invariant distributions also admit the following characterization:

Theorem 4.4 (Adapted from [4]) Let Xy, be a control affine system and € a regular and

involutive distribution on M. The distribution £ s locally controlled invariant for Xy iff:
Dy, E] CE+ A

where Ay = Span{g}w, 912\4, . 7954}-

Equipped with the notions of invariant and controlled invariant distributions we can now

understand the relationship between (input abstract) bisimilar systems of different dimensions.

Theorem 4.5 Let Yy = (Up, Fy) and Xy = (Un, Fx) be forward complete control affine
systems such that Uyy = M x V., Uy = N x V, dim(M) > dim(N) and let f : M — N be a
surjective submersion with connected fibers. Then Xy is bisimilar to Xy via f iff ker(Tf) is

wvariant for Xy and Xy is defined by the affine distribution:

Dyof(x)= U Twf(Du(a))
a'ef~Llof(x)

For input abstract bisimulation we recover local controlled invariance:

Theorem 4.6 Let Xy, and Xy be forward complete control affine systems such that dim (M) >
dim(N) and f : M — N a surjective subimmersion with connected fibers. Then ¥y is input

abstract bisimilar to X via f iff ker(Tf) is locally controlled invariant for ¥y and Xy is

defined by the affine distribution:

Dyof(x)= U Twf(Du(a))
a'ef~lof(x)

As in Theorems 4.1 and 4.2, in the absence of forward completeness a weaker form of Theo-

rems 4.5 and 4.6 obtained by restricting I still holds.

The previous characterization of (input abstract) bisimulation shows that although dimension
is not constant on the equivalence classes of this equivalence, two control systems ¥, and Xy
of different dimensions are in the same equivalence class if and only if it is possible to obtain one
from the other by factoring out (controlled) invariant distributions. As an immediate corollary

of the previous results we have that factoring out symmetries also produces bisimilar systems:

Corollary 4.7 Let ¥y be an affine control system and 0 : G x M — M be a free and proper

10



action of a Lie group G such that for every X € Dy we have 0, X = X for every g € G. Then
Y is bisimilar via m to ¥y /G defined by:

Dyorn(zx)= |J Tum(Du(a'))

z'en—lom(z)

For input abstract bisimilar systems it is still the case that factoring out symmetries implies
input abstract bisimilarity but we allow a larger class of symmetries (partial symmetries in
the context of [14]):

Corollary 4.8 Let ¥y be an affine control system and 0 : G x M — M be a free and proper
action of a Lie group G such that for every X € Dy we have 0;X € Dy for every g € G,
Then ¥y is input abstract bisimilar via © to Xy /G defined by:

Dyom(z)= |J Tum(Du(a')

z'en—lom(z)

We have not explicitly discussed the quotient system 3,;/G control bundle geometry. We
defer the reader to the reference [21] where these issues are addressed for general quotients
and to [5,14] where symmetries are modeled by group actions acting on the control bundle as

well.

It is clear that the equivalence relation defined by bisimulation is strictly finer (in the sense
that it distinguishes more control systems) then the equivalence relation defined by input
abstract bisimulation. However, locally, every two input abstract bisimilar control systems are
bisimilar up to a feedback transformation. This fact is a simple consequence of Theorem 4.4.

This proves the following result:

Proposition 4.9 Let ¥y, and Xy be affine control systems input abstract bisimilar via f : M
— N. Then, locally, there exists a feedback transformation for Yy, rendering it bisimilar to
v via f.

Note that the previous result does not assert that X,, is bisimilar to ¥y since the feedback

transformation is not a bisimulation relation.

11



5

Conclusions

Motivated by notions of equivalence in computer science and hybrid systems, we have intro-

duced the notion of (input abstract) bisimulation for nonlinear control systems. A differential

algebraic characterization was given for the introduced notions which can be seen as a strength-

ening of the notion of f-related control systems of [18]. Although this notion constitutes an

equivalence relation on the class of control systems which does not require the dimension of

the systems to be an invariant, it was shown that bisimilar systems of different dimensions

must be related in a special way. In fact, one of the systems must be obtained from the other

by factoring out (controlled) invariant distributions.
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Appendix A - Proofs

Proof of Theorem 4.2.

(Necessity)

Since the relation F'is defined by a map f : M — N, the first condition of bisimilarity implies
that for every trajectory cp(t) of s, f(car(t)) must be a trajectory of ¥y. This, in turn,

implies:
T:f(Du(z)) € Dy o f(z) (5.1)

as was shown in [18]. The second condition for bisimilarity implies that for every trajectory
cy of ¥y such that y = ¢y (0) belongs to the range of f, there exists a trajectory ¢y of Xp,
for every z € f~'(cn(0)) satisfying cpr(0) = z and f(cy) = cn. Let X = £ t*OCM(t) and

Y = % t:OCN(t)' The equality f(cp) = ey implies T,.f - X =Y, and as ¢y is any trajectory

originating at y, Y is any vector belonging to Dy (y). As such, we must have:

Dn(y) =Dno f(x) € Tof (Du(x)) (5.2)

for every x € M. Combining (5.1) with (5.2) gives:

T..f(Du(x)) = Dy o f(x) (5.3)

for every x € M. Furthermore, f(M) must be invariant under ¥y, otherwise for any trajectory

cy of Xy starting in f(M) and leaving f (M), there would be no trajectory cy; of ¥y, satisfying

flem) = en.
(Sufficiency)
Condition T, f (Dp(x)) = Do f(x) implies T, f (Dar(x)) € Dyo f(x) from which follows that,

for every trajectory ¢y of Xy, f(car) is a trajectory of ¥y, as proved in [18]. This shows that

the first condition of input abstract bisimulation is satisfied.

The second condition requires more work. Let ¢y be a trajectory of ¥y such that cy(0)
belongs to the range of f. Consider the graph I' C I x N of ¢y which is a submanifold of
N =1 x N as cy is a smooth map. On I' we define the following vector field Y : I' — TT,
Y(t,en(t)) = (&, Tien - 2). Note that the integral curve of this vector field is precisely the

graph of cy. Consider now the manifold M = I x M with local coordinates (t,z), where x
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are coordinates for M and ¢ coordinates for R. On this manifold we introduce a new control
system defined by the affine distribution Dyy = {X € TM : X = X2 +2 for X € Dy}.
We will now restrict this control system so as to project on Y. To do so, we consider the
map f = id; x f : M — N which being a submersion, since f is a submersion, allows to
define the submanifold IT = 771(11) of M. The set II is a submanifold since f is transversal
to the submanifold T' [1]. Denoting by (T,f)! the set valued inverse of T,f, we restrict
Dy to obtain a new affine distribution Dy (z) = (T,f)~ (Y o f(z)). Distribution Dy (x) is
affine since it can be locally written as X + ker(7f) for some locally defined vector field X
satisfying Tf - X = Y o f. We note that such vector field X exists in virtue of the equality
Tf(Dy) = Dy o f which holds by assumption. Furthermore, Dy is regular since f is a
submersion. It then follows from this construction that D, satisfies Tf(@) =Y o f but, as
shown in [18], this condition implies that every trajectory of the control system defined by
1/)]\\/1 is mapped by f to a trajectory of the trivial control system defined by Y. Furthermore,
as 23]\\4 C Dy we also know that trajectories of 751\\4 are also trajectories of Dj;. Finally, by
realizing that trajectories of the control system defined by D), are simply the graph of (some)
trajectories of Xy, we conclude that for every x € f~1(y) there exist a trajectory cy; of Xy,
satisfying ¢y (0) = z and f(ea(t)) = en(t) for every for every I C Rf and any ¢ € I since

f(M) is invariant for ¥y and both ), and Xy are forward invariant. O

Proof of Theorem 4.1.
(Necessity)

As bisimilar control systems are input abstract bisimilar we only have to show that the vector
fields in Dy, are f-related to the vector fields in Dy. Let cV(t) = (ui(t) ... wug(t)) =
(1 0 ... 0)bean input trajectory defining trajectory ¢y of ¥y. Since for the same input
there must exist trajectories cy; of ¥ for every z € f~'(cn(0)) such that ¢y (0) = z and

f(eamr) = ey, it follows by differentiation that:

Tof (Fra(@) + gr(@) - 1+ g3y (2) - 0+ ..+ gy (2) - 0) = fv o fla) + gy o f(z)  (54)

This means that fy; + g1, is f-related to fy + gk. By choosing other constant inputs one

similarly shows that every vector field in D), is f-related to some vector field in Dy.

(Sufficiency)

By Theorem 4.2 control systems ¥, and ¥ are input abstract bisimilar via f. It remains to
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show that for any trajectory cy of Xy generated by input trajectory ¢V and such that cy(0)
belongs to the range of f there exists trajectories ¢y, of ¥, generated by the same input
trajectory c¥ for every x € f!(cy(0)) such that ¢y (0) = x and f(cp) = cn. However this
follows at once from the discussion in the necessity part since every vector field X in D),
is f-related to its projection Tf - X =Y o f and Y o f € Do f in virtue of the equality
Tf(Dy)=Do f. O

The proof of Theorem 4.6 requires the following lemma:

Lemma 5.1 Let ¢ : M — N be a surjective submersion with connected fibers and D = X +A
an affine distribution on M. Distribution D satisfies Tp(D(x)) = T (D(2)) for any x, 2" € M
such that ¢(x) = ¢(a') iff [D,ker(Tp)] C A + ker(T¢p).

Proof of Lemma 5.1

We reduce the proof of this lemma to the equivalence TK;(€) = £ o K iff [€, ker(T'¢)] C Ag
shown in [19] for an affine distribution £ =Y + Ag on M and the flow K, of any vector field
K € ker(T¢).

Assume that T,¢(D(x)) = T, (D(2")) holds for any z,z’ € M such that ¢(z) = ¢(2') and
define £ as € = D+ ker(T¢) = X + Ag, Ag = A+ ker(T'¢). In particular we will assume that
x' € M is such that there exists a flow K, of a vector field K € ker(T'¢) satisfying K;(x) = 2’
Note that ¢(x) = ¢(2') = ¢ o K;(z) implies that:

T,(z) = Ty do T, K, (5.5)

and this allows to rewrite T,¢(D(z)) = T p(D(z')) as:

=3 Tth(c‘f) =Do Ki(x) + ker(Ty ) = € o Ki(x)
From Proposition 5.1 in [19] now follows:
(€, ker(T¢)] C Ag

This inclusion can be written as:
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[D + ker(T¢), ker(T'p)] C A + ker(T'¢)
= [D,ker(T¢)] + [ker(T¢), ker(T'¢)] C A + ker(T'¢)
= [D,ker(T¢)] C A +ker(T'¢p) — [ker(T'¢), ker(1T'¢)]
= [D,ker(T9)]C A+ ker(T'¢) — ker(T¢) = A + ker(T¢p)

which shows the desired inclusion. The converse is similarly proved since by connectedness of
the fibers of ¢ any two points z,2" € M such that ¢(x) = ¢(z’) can be connected by local
flows of vector fields in ker(T'¢). O

Proof of Theorem 4.6.

Assume that ¥, and ¥ are input abstract bisimilar via f. Then by Theorem 4.2 we have:

T.f(Dn) =Dy o f() (5.6)

for every x € M. This means that for every 2’ € f~' o f(x) the equality:
T:(Dy(w)) = To [ (Du (")) (5.7)

holds and by Lemma 5.1 we have [Dyy, ker(T f)] C ker(T f)+Ay,. Furthermore, by Theorem 4.4
we have controlled invariance since f being a submersion ensures that ker(7 f) is regular and

involutive. In addition, we also have:

U Twf(Du(a")=Tof(Du())
a'ef~tof(x)

where the first equality holds by (5.7) and the second equality holds by Theorem 4.2.

Assume now that ker(T'f) is controlled invariant for 3,,, then the equality T,(Dy(x)) =
Ty f(Dy(z')) holds for every 2’ € f~' o f(x) in virtue of Theorem 4.4 and Lemma 5.1.
Therefore, since Dy is defined by:

Dyof(x)= U Twf(Dula)) (5.9)
a'€f~tof(x)

it follows that T, f(Dy(z)) = Dy o f(x) for every x € M. Recalling that f is surjective we
also have that N = F(M) is invariant for Xy, so the result now follows from Theorem 4.2.
O

Proof of Theorem 4.5.
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The proof is similar to the proof of Theorem 4.6, except we now use the fact that ker(7'f) is

invariant for ¥, iff every vector field in D), is f-related to its projection on N. O
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