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SodaJack: an architecture for agents that
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Content Areas: planning, Al architectures

Abstract

This paper presents an architecture for agents that search for and
manipulate objects. It is demonstrated in the SODAJACK system,
a system that animates a human working at a soda fountain. The
system is constructed as a set of three interacting planners. Two
of these planners are special-purpose modules which contribute
context-specific plans for the tasks of searching for and manipu-
lating objects. The search planner is used to convert knowledge
acquisition goals into goals of searching locations. An object spe-
cific reasoner is used to build object sensitive plans for manipulat-
ing specific objects. Finally, an incremental hierarchical planner
is used to integrate these two special purpose planners into a
complete system which interleaves planning and acting.

1 Introduction

Suppose that you had a personal robot assistant. Many of the commands
you might give would require it go find an X and do Y with it. For example,
the command Get a scoop and scoop the ice cream implicitly means,
go find a scoop and use it to scoop the icecream. This suggests that if we
are going to design robotic agents to assist us, they must be able to locate
objects and manipulate them.

For many planning systems, the issue of searching for objects never arises.
For example, [1, 5, 12, 17] work under the simplifying assumption that the
agent knows all of the objects in the world and their locations, and every
object in a plan uniquely refers to an object in the world. Thus when the
robot is given the command Get a scoop, the command actually refers to a
unique scoop; the assistant knows this, and will go and get it!.

1This is not to suggest only one scoop is available, but rather that the agent does not
consider getting some other scoop.



Much of the work in planning [2, 5, 10, 12, 13, 18] has also abstracted away
crucial details of how to carry out low-level object manipulation. Questions
such as where to grasp objects, how many hands to use, and what to do if
the surface is too slippery for the agent to grasp firmly remain unanswered
by these systems.

This work confronts these issues by addressing two major problems: (1)
locating objects to manipulate and (2) performing the low-level reasoning re-
quired to actually manipulate them. This paper will present the SODAJACK
system that embodies an architecture for autonomous agents that are able
to search for and manipulate objects. The following section provides some
background on SODAJACK followed by two sections that present an overview
of the system and a trace of an example. Sections 5 and 6 describe in more
detail the search planning algorithm and the reasoner used to plan object
manipulation. We will close with a discussion of related work.

2 Background

The SODAJACK system and architecture are an attempt to develop realistic
animations of human figures carrying out tasks specified by high-level goals.
These animations are created using the Jack animation system [3]. We have
named the system SODAJACK after its first domain, the counter of a soda
fountain (Figure 1).

SODAJACK accepts as input an ordered set of goals to be achieved. Its
task is to develop and monitor the execution of a plan for the agent to achieve
these goals. Jack accepts as input low-level motion directives [4] providing
a simple interface to the animated agent. Such motion directives are the
output of SODAJACK.

It is important to recognize that since we are working with an animated
agent, many of the problems associated with perception in real agents are
not significant for us. While all of the modules of SODAJACK use sensing
operations to acquire information about the state of the world, all of the
needed information is contained within, or derivable from, the databases
used in the Jack system. Thus, our current system is not confronted with
the problems of scene or object recognition that it might otherwise face.

However, this does not mean that we have ignored all of the problems of
vision. For example, our task of finding objects would be trivial if our model



Figure 1: The Soda Fountain

did not allow for containers that the agent cannot see into. To this end, we
have limited the agent’s perception to only those objects in containers that
are open. Thus the agent will be forced to open containers to find objects.

3 SODAJACK Architecture

At its core, SODAJACK is a set of three interacting planners. A hierarchical
planner (ITPLANS) uses two special purpose planners, a search planner and
an object specific reasoner, as experts for planning search and object manipu-
lation. We have adopted a hierarchical planning architecture for SODAJACK,
since it directly supports the different levels of abstraction used for search
planning and object manipulation. Figure 2 shows a system diagram for
SODAJACK. The communication between its components will be described
in Section 4.

ITPLANS [6] uses a simple goal expansion method to perform its hierar-
chical planning. It selects an expansion for an unsatisfied goal from a library
of possible expansions, using the world state as a guide. This process is
repeated down to the level of primitives actions. ITPLANS then calls on a
series of experts to verify that the plan will in fact achieve its goals. How-
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Figure 2: System Diagram

ever, in planning for locating objects and for reasoning below the level of
primitive actions, we have found it more efficient to create new plans than
to use ITPLANS’ standard planning method. Therefore, a search planning
module and an object specific reasoner contribute new, context-sensitive and
object-sensitive plans. In short, the ITPLANS chooses from among known
plans in a context sensitive manner, but relies on the search planner and the
OSR to generate new plans for known goals in specific situations.

4 SODAJACK Implementation

Having given a brief overview of the system, we now illustrate the workings
of SODAJACK with an example. Consider the goal Get a scoop. This would
be specified as get(X) with the added constraint that type(X) = scoop.
ITPLANS expands this goal into the subgoals: goto(X) and pickup(X)
(Figure 3).

ITPLANS considers the action goto(X) to be primitive but underspecified
since the variable X is not bound to a particular object. In order to bind the
variable, the search planner must be called to generate a plan for locating
a scoop. To this end, ITPLANS adds to the plan a find node and calls the
search planner to instantiate a search plan (Figure 4).

The search planner reasons from a knowledge acquisition goal, in this case
locating a scoop, to the goal of exploring locations where a scoop might be.

4



get (X)
type (X) =scoop

goto (X) pickup (X)
Figure 3: Simple decomposition of get(X)

get (X)
type (X) =scoop

goto (X) pickup (X)

find (X)

Figure 4: Addition of the find node

Satisfying this goal requires physically searching through possible locations.

ITPLANS asks the search planner to expand the find node. Each time a
find node is expanded, the search planner first examines the Jack environment
to determine if the object is visible to the agent. If no object is found, the
search planner selects a location to explore next, generates a goal to explore
that location, and adds it to the plan (Figure 5). This goal is then further
expanded by ITPLANS (Figure 6.)

get (X)

/////A\\\\\\\type(x)=scoop

goto (X) pickup (X)

find (X)

explore (closet23)

Figure 5: Establishing the first site

In our example, having noticed that the scoop is not visible in the envi-



get (X)
type (X) =scoop

goto (X) pickup (X)

find (X)

explore (closet23)

T

goto(closet23) open(closet23)

Figure 6: Searching the first site

ronment, the find node is expanded down to the primitive action of going to
the closet. Since all of the arguments in the action are bound to specific ob-
jects, the OSR can now be consulted to verify that the action can be carried
out. If the action were not feasible, it would fall to ITPLANS to find another
way to explore the closet.

In this case, the OSR reports that the action is feasible, and ITPLANS
commits to its performance. ITPLANS then invokes the OSR to generate
an appropriate series of motion directives, situated in context, to be given
to Jack for animation. This process is repeated for the task of opening the
closet door. Since committing to an action results in the motion directives
being given to Jack for animation, planning and execution are interleaved in
our system.

After the closet is explored, ITPLANS considers whether to expand the
find node again. Using the search planner to evaluate the progress of the
search, the world is examined for objects having the property of being a
scoop. If one is located, the search is considered successful. If not, a new
location is selected for exploration and the searching process repeats until
there are no more locations to explore. If this occurs, the search is considered
unsuccessful, and SODAJACK must give up.

Suppose the search terminates successfully, finding a scoop in the closet.
The system still has not achieved the goal of getting the scoop. However,
having bound the variable X to a specific scoop, ITPLANS is in a position to



get (scoopb)

goto (scoopé6) pickup (scoopé6)

Figure 7: Plan after search

call the OSR to consider the action of going to the scoop, and subsequently
picking it up (Figure 7). We now turn our attention to how the search planner
and OSR work in more detail.

5 How Search Planning Works

In planning to find objects, a planner is confronted with a specific case of a
very general problem, planning to act to acquire knowledge. That is, general
knowledge acquisition goals must be converted to actions, so that an agent
can act to acquire the desired information. Our approach is to isolate this
reasoning in a specialized module. In the case of our specific problem, the
search planner translates information acquisition goals to high-level physical
goals for the exploration of the environment.

There are a number of desiderata that must be satisfied by planning
systems that want to build search plans. First, as Haas points out [9], any
plan for acquiring information must rest on what the agent knows about the
environment. That is, an agent must know the locations that an object could
be at, in order to search for it. In our architecture, the search planner selects
a single location from among the places the agent is considering for future
exploration.

Second, planning for searches requires conditional selection of actions to
decide whether to continue exploring locations. This requires building condi-
tional plans, however conditional planners such as [16, 19] do not distinguish
between what the agent knows about the environment from what is true in
it. This makes them unacceptable choices for planning searches.

This distinction between what the agent knows and what is true in the
world is important for limiting the conditions that are placed in search plans.
These conditions should be restricted so that an agent only tests its knowledge
of the environment when deciding which branch of conditional to execute.



If the agent tests the environment directly, it could be involved in arbitrary
amounts of acting and reasoning. This constraint amounts to requiring the
system to plan to acquire information before a conditional branch is reached.

As mentioned above, in SODAJACK, perception is blocked by obstacles
such as walls and closed containers. The search planner uses this fact to
infer a goal of opening a closed container from a goal of acquiring knowledge
about an object. Extending this inference is discussed in Section 6.3.

Searches are planned by first identifying currently known locations where
an object may be located and systematically exploring this space. A plan is
developed for exploring each location in turn. After such an exploration plan
is executed, the environment is observed to determine whether the agent can
see an object with the desired properties. During this observation phase,
new potential locations may be seen by the agent. These new locations are
considered for future exploration as needed.

Searches terminate successfully when a referent object is seen in the en-
vironment. They terminate unsuccesstully when there are no more locations
to explore or if the environment changes in a way that obviates the search.
For example, if the goal that the search is a part of is dropped the search
will be terminated. In the case where a search terminates successfully in
an environment containing many objects which satisfy the description, an
ordered set of these candidate objects is made available.

Sequential planners can be used to generate search behavior. (A sequen-
tial planneris any planner in which the plans produced are simply sequences
of actions.) Our approach to search planning relies on producing and exe-
cuting a sequential plan as a subroutine in a heuristic search algorithm [14].
The heuristic search has as its goal finding the container which contains the
desired object. The heuristic search currently uses only distance from the
agent to order locations for exploration. Two lists of locations are maintained
by the search algorithm, an open list of locations yet to be explored and a
closed list of locations which have been explored.

In one iteration of the search, the closest open location is selected to be
explored. ITPLANS is used to generate a sequential plan for exploring the
selected location. After that plan is executed, the resulting world is observed
to determine if the desired object has been located. New locations observed
during the action are added to the open list at this time.



6 How the OSR Works

The Object Specific Reasoner (OSR) expands existing goals generated by
ITPLANS and passes these plans to Jack for animation. Basic actions con-
cerning object manipulation, or task-actions, are the primary input to the
OSR. Given this input, the OSR can perform two functions: (1) it can de-
termine if a primitive action is feasible, i.e., could be performed by the agent
in the given context, (2) it can construct a set of motion directives to execute
the task-action. The following two subsections will consider these functions
separately.

6.1 Checking Action Feasibility

Checking the feasibility of a task-action is performed in four steps: select-
ing an action outline, conditionally expanding all steps of the outline, using
details of the object of the current task-action to refine the outline, and ver-
ifying that the agent can perform this specific action on this specific object.
It an outline can be found and tailored to the details of the agent and the
object, the task-action is judged to be feasible.

In the first step, the task-action and the type of the object are used to
select an action outline from a library of outlines. This library is indexed by
both the task-action and a taxonomy of object types. For each task-action,
there may be separate action outlines for each type of object that can appear
as an argument. An action outline is defined as a set of conditional steps,
with the conditions being used to determine if the step is necessary for the
given object.

The second step expands all the conditionals in the action outline. Each
conditional step is either another action outline or a motion directive. Steps
are selected for inclusion if their associated condition is true. This process
continues until all action outlines have been replaced by motion directives.
The original outline may specify a partial order on the resulting set of motion
directives.

The third step binds parameters of the motion directives based on in-
formation about the specific object. Each motion is defined in terms of the
agent resources and the object attributes on which it depends. Adding the
values which describe the specific object refines the motion directive to the
exact context in which it is being used.



The fourth step involves checking dependencies between the agent re-
sources and attributes. Each motion directive includes a predicate which
specifies those pairs of resources and attributes to be checked. For example,
the OSR might check whether the agent’s hand is large enough to grip the
handle of a scoop. If all the dependencies for all the motions in this outline
are within tolerance, the OSR reports that the task-action is feasible.

If the agent and object attributes fail the tolerance test, then control is
returned to ITPLANS along with a record, called a discrepancy list, of those
resource/attribute pairs that are out of tolerance. How this list can be used
is discussed in Section 6.3.

6.2 Action Execution

The feasibility check described above produces a set of motion directives.
When called upon to output the set to Jack, the OSR must first provide
a start time and an approximate duration for each motion. Durations are
calculated from a temporal database which contains both rules to generate
times for parameterized motions (such as a reach) and fixed values for other
actions. When the temporal information is added, task-action refinement is
finished, and the motion directives are sent to Jack for animation. Frrors
may occur during this animation, and the OSR relays these errors back to
ITPLANS for replanning.

6.3 Extending the OSR

We noted that the OSR signals failure when the agent and object attributes
for a motion directive are not in tolerance. The OSR places any attribute
pairs which are out of tolerance on a discrepancy list, which is returned to
ITPLANS. A failure of this type can be corrected by allowing the agent to
employ a tool to bring the attributes within tolerance. The information on
the discrepancy provides the attributes for the needed tool. We are working
to allow ITPLANS to use the discrepancy list as input to an extended search
planner in order to find a tool to mediate the task-action. If such a tool is
found, ITPLANS would have the option of using it to accomplish its task.
The OSR’s ability to discriminate task-actions by object type allows
ITPLANS to use a single task-action without having to consider its particular
object. In addition, the reasoning process that refines a motion directive to its
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specific contextual use, allows the OSR to make discriminations using a finite
number of action outlines. Instantiating the current parameters provides a
robust low-level planning system, without enumerating each possible plan
variation.

7 Related Work

We are not aware of other systems that integrate the kind of search planning
and manipulation of objects that we have outlined here. Thus, the compar-
isons that will be made here are at an abstract level or concern only one facet
of our system.

Haas [9] has presented an architecture for a reactive system which en-
gages in search. He argues that there is a conflict between classical planning
and the strong representation languages required for reasoning about infor-
mation acquisition, a claim which we dispute. Our approach is to isolate
reasoning about knowledge in the search planner. This allows the complex
reasoning about knowledge to take place in a rich descriptive language while
allowing the incremental planning method of ITPLANS to effectively control
the expansion of the goals produced for the search.

Some of the work on searching graphs and trees is also relevant to our
problems in planning searches: specifically any of the work based on searching
partially known graphs and trees. For example, Korf [11] has examined
application of heuristic search when the entire search tree is not known before
a node must be selected. Pemberton and Korf [15] present algorithms for
heuristic search on graph spaces, and where only a portion of the graph is
available before the agent must commit to an action.

The most obvious work to compare the SODAJACK system to might be
Georgeff’s work on PRS [7, 8]. SODAJACK and PRS both interleave planning
and action. However while PRS provides a rich formalism for the design of
agents, it does not provide solutions for specific problems. In this work we
have identified where various problems occur in attempting to build a system
to work in our domain, and given concrete solutions for these problems. Thus,
while our work could be built on top of the PRS framework, doing so would
not change the structure of the system or the general solution methods for
the problems we have looked at.

A more interesting parallel is that of the work in case-based planning [10].
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While we have presented this work as a hierarchical planner it could be viewed
from the case-based perspective as well. As described here, ITPLANS is, in
effect, doing nothing more than selecting previously learned plans from a
library. While there is no mechanism to repair these plans, the OSR and
search planner do provide a method for building plans that are not in the
plan library (within their limited context). Thus, while case-based planners
have a plan library and a plan repair system, SODAJACK has a plan library
and experts for building context-sensitive plans.

8 Conclusions

This paper has presented an architecture for agents that need to engage in
search and manipulation in their environments. Any system that wishes to
perform this task will have to face three significant problems: (1) planning
for action, (2) developing goals for the acquisition of knowledge, and (3)
tailoring general low-level actions to specific objects.

In SODAJACK this has been achieved by augmenting a hierarchical plan-
ner with two special purpose planners. The hierarchical planner appeals to
the special purpose planners to generate situation and object-specific plans
upon demand. We believe that breaking these tasks into separate compo-
nents allows these problems to be solved in an efficient manner, and the
integration of these modules allows the system as a whole to solve problems
that any one of the systems working alone would be unable to achieve.
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