University of Pennsylvania

UNIVERSITY of PEN i1/ Scholarlycommons
Departmental Papers (CIS) Department of Computer & Information Science
November 2004

Variable Reuse for Efhicient Image Computation

Zijiang Yang
Western Michigan University

Rajeev Alur

University of Pennsylvania, alur@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Recommended Citation

Zijiang Yang and Rajeev Alur, "Variable Reuse for Efficient Image Computation", Lecture Notes in Computer Science: Formal Methods in
Computer-Aided Design 3312, 430-444. November 2004. http://dx.doi.org/10.1007/978-3-540-30494-4_30

From the 5th International Conference, FMCAD 2004, Austin, Texas, USA, November 15-17, 2004.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/189

For more information, please contact repository@pobox.upenn.edu.

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1007/978-3-540-30494-4_30
http://repository.upenn.edu/cis_papers/189
mailto:repository@pobox.upenn.edu

Variable Reuse for Efficient Image Computation

Abstract

Image computation, that is, computing the set of states reachable from a given set in one step, is a crucial
component in typical tools for BDD-based symbolic reachability analysis. It has been shown that the size of
the intermediate BDDs during image computation can be dramatically reduced via conjunctive partitioning of
the transition relation and ordering the conjuncts for facilitating early quantification. In this paper, we propose
to enhance the effectiveness of these techniques by reusing the quantified variables. Given an ordered set of
conjuncts, if the last conjunct that uses a variable u appears before the first conjunct that uses another variable
v, then v can be renamed to u, assuming u will be quantified immediately after its last use. In general, multiple
variables can share the same identifier so the BDD nodes that are inactive but not garbage collected may be
activated. We give a polynomial-time algorithm for generating the optimum number of variables that are
required for image computation and show how to modify the image computation accounting for variable
reuse. The savings for image computation are demonstrated on ISCAS'89 and Texas'97 benchmark models.

Comments

From the Sth International Conference, FMCAD 2004, Austin, Texas, USA, November 15-17, 2004.

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/189

http://repository.upenn.edu/cis_papers/189?utm_source=repository.upenn.edu%2Fcis_papers%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages

Variable Reuse for Efficient Image Computation

Zijiang Yang' and Rajeev Alur?

! Department of Computer Science
Western Michigan University, Kalamazoo, MI 49008
2 Department of Computer and Information Science
University of Pennsylvania, Philadelphia, PA 19104

Abstract. Image computation, that is, computing the set of states reach-
able from a given set in one step, is a crucial component in typical tools
for BDD-based symbolic reachability analysis. It has been shown that the
size of the intermediate BDDs during image computation can be dramat-
ically reduced via conjunctive partitioning of the transition relation and
ordering the conjuncts for facilitating early quantification. In this paper,
we propose to enhance the effectiveness of these techniques by reusing
the quantified variables. Given an ordered set of conjuncts, if the last
conjunct that uses a variable u appears before the first conjunct that
uses another variable v, then v can be renamed to w, assuming u will be
quantified immediately after its last use. In general, multiple variables
can share the same identifier so the BDD nodes that are inactive but
not garbage collected may be activated. We give a polynomial-time algo-
rithm for generating the optimum number of variables that are required
for image computation and show how to modify the image computation
accounting for variable reuse. The savings for image computation are
demonstrated on ISCAS’89 and Texas’97 benchmark models.

1 Introduction

In model checking, a finite-state model of a design is automatically verified with
respect to temporal requirements to reveal inconsistencies [8,10,9]. The key
step in a model checker is to compute the set of reachable states of a model.
The reachable set is usually computed by iterative applications of image com-
putation, where the image Img(S) of a set S of states contains all states that
can be reached from some state in S by executing one step of the model. In the
past decade, a lot of research has centered around improving the image com-
putation [4,5,11,18,17,16,6,7]. In particular, for BDD-based symbolic model
checkers, conjunctive partitioning and early quantification have significantly en-
hanced the applicability of model checkers. In this paper, we present a new
technique, called variable reuse, that works synergetically with conjunctive par-
titioning and early quantification, leading to further savings in computational
requirements of reachability analysis.

Consider a system M whose state can be described by n boolean variables
X = {z1,...2,}. A set S of states of M, then, can be viewed as a boolean

function of variables in X. If X' = {z], ...z}, } denotes the set of next-state vari-
ables, then the dynamics of M is captured by the transition relation T'(X,Y, X'),
where Y = {y1,...y;} is the set of auxiliary variables such as the combinational
variables and the primary inputs. The transition relation T is, thus, a boolean
function over m = 2n + [variables. The image computation can be defined as
Img(S) = [3X,Y.S(X) AT(X,Y, X[X' —» X], where [X' — X] denotes the
renaming operation of replacing each next-state variable z} by the corresponding
current-state variable x; [4,15]. A popular representation for the boolean func-
tions for the purpose of symbolic reachability analysis is ordered binary decision
diagrams [3], or its variants. For realistic designs, representing the transition re-
lation T as a monolithic BDD is not possible. Consequently, symbolic analyzers
such as COsPAN [14], SMV [15], and VIS [2], employ a partitioned representation
of T as a set {Ch1,...Cy} of transition relations such that T is the conjunction
C1 A --- A Cy. Instead of computing the conjunction T a priori, the conjunction
SACiA---ACy, which constrains T by the current set S, is computed during
each image computation [5, 15].

During image computation, all the variables in X UY are quantified, and
since quantification normally leads to smaller BDDs, early quantification is em-
ployed, that is, variables are quantified as soon as logically possible. Let Q; be
the set variables v in X UY such that the conjunct C; depends on u, but none
of the subsequent conjuncts Cjt1,...C depend on u. Then, the image compu-
tation Img(S) can be rewritten as 3Qy - - - (IQ2(FQ1.SAC1)ACy) -][X' = X].
Thus, starting with S, at each step ¢, we take conjunction with the cluster C;
while quantifying the variables in @);. This scheme leads to significantly smaller
intermediate BDDs. The effectiveness of this scheme depends on (1) clustering,
that is, determining the clusters {C1,. .. Cy} from the original description of the
design, and (2) ordering, that is, sequencing the clusters C1,...C} so that as
many variables get quantified out as early as possible. There has been a steady
progress on good heuristics for clustering and ordering (see [11,18,17,16,6,7]
for sampling of this research).

Let us suppose that we have committed to a specific clustering as well as
specific ordering of the clusters. Consider a variable u in @;, that is to be quan-
tified at i-th step, and a variable v that does not appear in S, Ch,...C;. Then,
the variable v can be renamed to u. In general, we partition the set X UY U X'
of variables so that for every pair of variables within the same partition, the
range of clusters that the two variables belong to are disjoint (we assume that
all variables in X appear in the first cluster, and all variables in X' appear in the
last cluster). Then, only a single variable identifier is needed per partition, and
the image computation can proceed as before, but after renaming each variable
to the unique identifier for its partition.

After formulating the problem of reducing the number of variables needed for
image computation, we develop an algorithm for partitioning the variables into
minimal number of sets. Our algorithm is quadratic in the number of variables.
Our experiments with ISCAS’89 and Texas’97 benchmarks show a significant
reduction in the number of variables by 40% to 68% . In fact, the number of

variables is much closer to the number n of variables in X than to the number
m of variables in X UY U X'. Since the reduced number of variables is the
minimum necessary for image computation, we believe that the reduced number
of variables is a better measure of complexity of the design compared to the
number of state variables or the total number of variables.

After reducing the number of variables, image computation needs to be mod-
ified to account for renaming. A priori, it is difficult to estimate whether such
a modification will improve or degrade the performance. On one hand there are
clear advantages. Once a variable has been existentially quantified, the BDD
nodes that are associated with the variable become inactive. However, the nodes
are not garbage collected immediately. With variable reuse, the quantified vari-
able will be reused in a different role. Instead of creating new BDD nodes and
then increasing memory usage, the inactive nodes that are still in memory may
be actived. Variable reuse will also benefit variable reordering algorithms be-
cause there are fewer BDD variables to be considered. Finally, we expect there
is more sharing on BDD nodes because each node may take more than one roles.
On the other hand,there is a potential disadvantage. Performance of BDD rou-
tines is extremely sensitive to the global ordering of variables, and reusing the
same variable identifier in different roles can turn a good ordering into a bad
one. Indeed, in presence of dynamic reordering, the computational requirements
of image computation are very unpredictable.

We modified the image computation routine of VIS 1.4 model checker to ver-
ify the performance on ISCAS’89 and Texas’97 benchmarks. For the algorithm
for generating the minimal number of variables, in many cases we obtained sig-
nificant savings in memory and time, but in some cases, it performs worse than
VIS. Consequently, we implemented a modified version of our strategy for par-
titioning variables which avoids pairing of a current-state variable x; with a
next-state variable z; with ¢ # j. The intuition for this lies in the fact that vari-
able ordering and dynamic reordering schemes treat the variables z; and z} as a
pair, and renaming xg to x; can be expensive. The modified partitioning requires
more number of variables compared to the optimal one, but still significantly less
than the number variables used by VIS. Another modification involves ordering
of the clusters so as to reduce the number of variables required. In this greedy
scheme, we pick the next cluster which will minimize the number of partitions
of variables encountered so far, and when there are ties, we resort to the original
VIS algorithm for ordering the clusters. With these modifications, we compared
our reachability computation with time requirements for VIS 1.4. We get im-
provements in 29 out of 37 benchmarks, and in 6 cases, additional iterations of
the image computation are feasible by our strategy (see Table 2 for details).

The remaining paper is organized as follows. Section 2 describes our strategy
intuitively using an illustration. Section 3 formalizes the problem of reducing the
number of variables, shows how to modify the image computation accounting for
variable reuse, and gives algorithms for reducing the number of variables. Sec-
tion 4 reports experimental results, and we conclude in Section 5 with directions
for possible improvements.

IS == P IO ==
(a)

(b)

Fig. 1. Image computation: (a)without variable reuse, (b)with variable reuse

2 Variable Reuse Technique

Suppose we have fixed the ordering of clusters (1, ...,C and are committed to
early quantification during image computation. The support set of the cluster
C; is the set of variables that appear in the BDD of C;. The support set of S
is considered to be X. Consider a variable v € X UY such that u does not
appear in the support sets of Cj11,...Ck, and thus, u can be quantified by step
I. Consider a variable w that is not in the support sets of S, C1, ..., Cj, then all
occurrences of w in Cjyy,...,Cr can be replaced by u. Repeated applications
of such variable replacement causes a variable appear repeatedly in different
roles and get quantified repeatedly. As a result, fewer variables are involved in
BDD computation. Since size of BDD in many cases is exponential in number
of variables, variable reuse can reduce BDD size effectively by taking advantage
of already constructed BDD nodes.

Figure 1 (a) shows a simple example for conventional image computation
procedure. There are four clusters Cy,Cs,Cs,Cy and five variables in which x
is the current state variable, z' is the next state variable and y, z,u are internal
variables. The following five steps are used to compute the set Img(S(x)): (1)
Si(y) = F.5(x) A Ci(z,y), (2) S2(2) := F.S1(y) A Ca(y, 2), (3) Ss(u) :=
32.582(2) A C3(z,u), (4) Si(z') := Fu.S3(u) A Cy(u,z'), and (5) Img(S(x)) :=
Sa(z)[z' — z].

However, we observe that after computing Si(y), = is no longer in scope.
Since the variable z has not been used until the computation of S; finishes,
z can be renamed to z in the cluster C3. By a similar reasoning, all of z, 2
and ' can share the same variable identifier, say =, and y and u can have the
same name, say y. As shown in Figure 1 (b), only two variables are needed in
the following image computation procedure: (1) Si(y) := Jz.5(z) A C1(z,vy),
(2) Sa(x) = Fy.5:1(y) A Caly,x), (3) Ss(y) = Fx.S2(x) A Cs(z,y), and (4)
Img(S(x)) := Jy.S3(y) A Cs(y,x). Observe that, because we rename z' to z in
cluster Cjy, the last step of replacement of the next state variable by the current
state variable is not needed. Next section discusses algorithms for partitioning
the variable set. It turns out that variable partitioning is a low-cost procedure,
and can easily be added to image computation.

By examining the modified image computation for our example, we can an-
ticipate two potential benefits. First, the same variables, namely z and y, are
involved in all four steps, and consequently, there can be more sharing, and
reuse of existing BDD nodes during the computation. Second, with less vari-
ables involved, dynamic reordering, a key step in large examples, will take less

time. There is a potential drawback, however. A lot of research has been done
to obtain a good initial variable order and dynamic reordering heuristics. With
renaming, the initial order or dynamic reorder heuristics may be no longer ef-
fective. For example, if structure of C requires x to be before y, and structure
of Cy requires y to be before z, then after renaming z to x, there is no good
ordering.

3 Variable Reuse Algorithms

For a variable u € X UY UX', let M|u,i] = 1 if variable u appears in the support
set of cluster C;. We consider S(X) as the 0-th cluster as we wish to compute
the conjunction SACi A---ACj. Since prior to the reachability computation, we
don’t know the exact set S(X) at each image computation, we assume that all
the current-state variables appear in S(X). Therefore, M[u,0] = 1for u € X. We
also let M[u,k] =1 if u € X' because next-state variables cannot be quantified
until the end of image computation. For each variable u, let u.low = min{i |
Mlu,i] = 1}, and u.high = max{i | M[u,i] = 1}. We declare the range of u to
be the interval Rng(u) = [u.low,u.high]. Two variables v and v can be renamed
to each other if Rng(u) and Rng(v) are disjoint.

Our goal is to partition the variables X UY UX' into disjoint sets py, ..., pr such
that Rng(u) N Rng(v) = @ if two variables u and v belong to the same partition
set p;. Note that all the variables in a partition set p; can have the same name,
and the number of partitions is the number of variables needed for reachability
computation. For a set p of variables, define p.high = maz{u.high | v € p},
p.low = min{u.low | u € p}, and Rng(p) = [p.low, p.high]. The problem can
be viewed as an application of constructing a maximal independent set in an
interval graph. While maximal independent sets are hard to compute for general
graphs, the problem is solvable in polynomial time for interval graphs [12].

3.1 The Minimal Gap Algorithm

Figure 2 shows an algorithm to partition the variables into disjoint sets. Let
the A be the set of all the current state, next state and auxiliary variables. We
first sort variables by their upper values. The variables with the same upper
value are ordered by their lower values. That is, for all 1 < i < j < m, either
(A[i]-high < A[j].high) or (A[i].high = A[j].high A Afi].low < A[j].low) holds.
The remaining code iterates over the sorted variables to find an existing partition
or create a new partition. A variable u can be added to an existing partition p
if Rng(u) N Rng(p) = (. There may exist several partitions that satisfies the
condition. Qur strategy is to insert u into a set p such that u and p have the
minimal “gap”. As implemented in the function get _mingap set, u can be added
to a set p if u.low — p.high > 0. This is because p.high is the maximal upper
value of a variable in p, therefore, u.low — p.high > 0 means the range of u is
disjoint from the range of any variable in p. Although u can also be inserted into
p if p.low — u.high > 0, this is not possible because all the variables in p appear

min_gap()

A=XUYUX'; set get_mingap_set(P, u)
sort A by A[i].high; result := {;
foreach variable u € A mingap := MAX;
p := getmingap set(P, u); foreach set p € P
if (p#0 gap := w.low — p.high;
p:=pU{u}; p.high := u.high; if (gap>0 && gap<mingap)
else mingap := gap; result := p;
p' = {u}; p'.high = u.high; end
P=PU{p'}; return result
end end
end

Fig. 2. Minimal gap algorithm

before u in the array ordered by their high values. If no such p disjoint from u
exists, get mingap_set returns the default (§, otherwise it returns p for which
the value u.low — p.high is the smallest.

Finally the partition P is modified in the function min_gap. If there exists an
appropriate set p that u can be added to, u is inserted in p, and the value p.high
is updated with u.high (note in this case u.high is guaranteed to be greater than
p.high). If u cannot be inserted in any existing set, a new set is created for u,
and its high field is set to u.high (note that the algorithm does not actually need
to keep track of low fields for the partitions).

Theorem 1. Given a set of variables u with specified ranges [u.low,u.high], the
algorithm min_gap shown in Figure 2 creates minimal number of sets such that
variables in the same set have pair-wise disjoint ranges.

Proof: For i =1...m, let P; be the (partial) partition created by our algorithm
after processing the variables A[1] ... A[i]. Let us say that P; is (partially) correct
if P; can be extended to obtain a partition with optimal number of sets. Let ¢
be the smallest index such that P;y; is not correct (if no such 4 exists, the final
partition has optimum number of sets, and we are done). Let u = A[i + 1]. Thus,
A[i] is extensible to an optimal partition, say Py, but the algorithm makes a
mistake while processing .

First, suppose Rng(p) overlaps Rng(u) for every p in P;. In this case, P11
is obtained by adding a new set {u} to P;. Since Py extends P;, it must extend
P; 1, also, a contradiction.

Now suppose our algorithm decides to add u to an existing set p. Note that
since the array is sorted, u.high is the smallest among all unprocessed (i.e. not
already in P;) variables. Consequently, the left neighbor of w in the optimal
partition Py is a processed variable (the case that u has no left neighbor in P is
similar). Suppose the left neighbor of u in Py belongs to the set p’ # pin P;. Both
p and p' cannot overlap with u: p.high > u.low and p'.high > u.low. The way
the algorithm get_mingap_set chooses p, the gap between p and u is less than

(or equal to) the gap between p’ and u: p'.high < p.high. Consider P}, ; obtained
by adding u to p' in P;. The only relevant information about a partial partition,
for possible ways of adding the unprocessed variables to it, is the sequence of
high end-points of the sets in the partition. If we compare the high end-points
of the sets in P;;; and P;_,, they are {p'.high, u.high} U{p".high | p" € P;,p" #
p,p" # p'} for Ppiq, and {p.high, u.high} U {p".high | p" € P;,p" # p,p" # p'}
for Pj, ;. Thus, P;y; extends less to the right. It is straightforward to show that
P;1, is also extensible, a contradiction. B

As far as time complexity of the algorithm is concerned, observe that the
number of partitions is at most m, where m is the total number of variables.
Consequently, get mingap_set is O(m). As a result, the complexity of min_gap
is O(m?).

3.2 Modifying the Image Computation

Let P = {p1, ..., pr} be the partition sets created by our algorithm. Let I; be the
leading variable in p; to which all the other variables appearing in the same set
will be renamed. Let L be a mapping function such that L(u) = I; if u € p;. The
mapping L naturally extends to sets of variables.

A common strategy for partitioning and ordering of the transition rela-
tions proceeds in two steps: obtain clusters of transition relations from the de-
sign description usually by combining the BDDs for fine-grain transition re-
lations for the atomic blocks, and then order clusters with a quantification
schedule to allow for maximum early quantification. Assume after the second
step, we have a sequence of clusters C1,...,C) and a sequence of variable sets
Q1,---,Qy for quantification. The standard image computation algorithm fol-
lows: 3Qk - - IHQ2(3Q1.S A C1) A Ca)--][X' — X]. We need to introduce a
renaming step before the image computation step starts.

Let T; be the support set of C;. We compute a BDD C} by substituting
the variables appearing in C; with L(T3), i.e, C; = C;[T; — L(T};)]. Similarly,
for Q; C T;, we obtain a new set @} = L(Q;) C L(T;). The revised image
computation is: 3Q}, - -- (QL(3Q1.S" A C) ACY) ---][A — B].

Note that the substitution at the end of image computation becomes [A — B]
instead of [X' — X], where A and B are obtained as discussed below.

Although any variable in a partition set can be a lead variable, picking the
right one leads to more efficient strategy. Following rules are followed in our
implementation while choosing a lead variable.

1. Choose current state variables first.
If there exists a current state variable xz; € X in a partition set, we always
choose z; as the lead variable. Note that two current state variables cannot
be in the same partition because z;.low = z;.low = 0, and thus Rng(z;) N
Rng(z;) # 0, for ¢ # j. Such renaming has the benefit that if the matching
next state variable z} belongs to the same partition, the substitution [z} —
x;] at the end of image computation is not necessary.

2. Choose next state variable if no current state variable exists.
A next state variable ' € X' should not be renamed to an internal variable
y € Y. This is because at the end of image computation we need to convert
next state variables to current state variables by [X' — X]. For this reason,
we always rename all the internal variables to the next state variable ' in
a partition p. Note a partition can have at most one next state variable
because for any z},z}; € X', z}.high = z’;.high.

3. Choose any variable if no state variable exists.
If there are no current state or next state variables in a partition, any variable
can be chosen as a lead variable.

The above rules specify how to choose the lead variables in each partition, and
thus, how to fix the renaming map L. Finally, consider the substitution [X' — X]
at the end of image computation. If 2} is renamed to z; by L, where i # j, we
cannot use [X' — X] as it is. We first need to rename z; to x;, followed by the
standard renaming [X' — X]. A better method is to combine the two conversion
steps into one step [A C (X U X') - B C X]. The two arrays are defined as
follows: for each state variable x; € X, if L(z}) = x; with j # ¢, then A[i] = z;
and B[i] = x;, else A[i] = z} and B[i] = ;. It should be noted that BDD
packages perform such renaming in parallel.

3.3 The Least Effort Algorithm

Although Minimal Gap Algorithm creates minimal number of partitions, it re-
quires extra effort to get the substitution arrays of A and B, and the sub-
stitution [A — B] can be expensive. This section presents a greedy algorithm
least_effort that has additional constraints in renaming. In particular, it treats
the next-state variables specially since variable ordering and dynamic reordering
try to keep the variables z; and z} together as a pair. The strategy least_effort
uses more variables than min_gap, but no changes are needed for the substitution
step [X' — X]. Therefore, we only need to change variable names in clusters and
quantification arrays before reachability computation starts and no modification
is required in existing image computation code.

The algorithm least_effort is the same as min_gap except that the func-
tion call to get mingap_set is replaced by get_constrained mingap_set shown
in Figure 3. Note that unlike get mingap_set, get_constrained mingap._set
treats next state variables differently. For each z' € X', it first tries to obtain
a set that satisfies two constraints: (1) it contains the matching current state
variable z, and (2) p.high < z'.low. The first constraint gives priority to a set
such that z' can be renamed to its matching current state variable. The second
constraint ensures that =’ can be added to the set.

If the second constraint cannot be satisfied (note that the first constraint can
always be met), it tries to find any set p that (p.high < z'.low) and pN X = 0.
The constraint of p N X = () ensures that 2’ will not be in the same set with
a non-matching current state variable. If such a set cannot be found, it returns
empty set, and z’ will be put in a new partition by itself.

set get_constrained mingap_set (P, u)
if ue X'
choose v such that v € X and v matches u;
choose p such that v € p and p.high < u.low;
ifp=0
choose p such that p.high < u.low and (pNX = 0);
else
p := get_mingap set(P, u);
return p
end

Fig. 3. Get disjoint partition with constraints

For any auxiliary and current state variables, it uses get_mingap_set shown
in Figure 2 to get the appropriate set. Note that the algorithm prevents the
case that a current state variable is added to a set containing a non-matching
next state variable. This is because the variables are sorted by first their high
end-points and then their low values. Since z'.high = k, 2'.low > 0, z.high < k,
and z.low = 0, we have all current-state variables appearing before all next-
state variables in the sorted order. Therefore, all the current-state variables have
been allocated to some partition sets before any of the next-state variables are
handled.

With the constraint that a next state variable cannot be renamed to a non-
matching current state variable, we don’t need to adjust existing image compu-
tation algorithm. Image computation can use the formula [3Q), - - - 3(Q5(3Q1.SA
CHANCY) - [X' = X].

3.4 The Greedy Algorithm for Ordering Clusters and Partitioning
Variables

The previous algorithms partition variables assuming a given fixed ordering of
clusters. The greedy algorithm presented in this section orders the clusters so as
to favor minimal number of partitions at each step.

The function greedy_partition in Figure 4 shows the algorithm with the set
of clusters C' as the input. Initially the sorted cluster array S is empty. The first
step is to initialize the range values for variables by function call init_var range.
As explained earlier, current-state variables have a common lower bound 0 and
next-state variables have a common upper bound |C|. The lower and upper
bounds of internal variables, as well as the upper bounds of current-state vari-
ables and lower bounds of next-state variables, are UNKNOWN. The initial
partition set P consists of | X| singleton sets each containing a distinct current-
state variable. The iteration of while picks a cluster from C' and adds it to the
sorted cluster array S in each step. The partition P is then modified accord-
ingly. The function modify partition uses the same code as the lines 6 to 10 in
min_gap in Figure 2. To decide which cluster to pick, the loop of foreach goes

greedy_partition(C) int compute_cost(S,C;,C,P)

init_var_range(); foreach v € support_set(C;)
P={{z}l z€X }; if v.low == UNKNOWN
while C # 0 vlow = |S|+1;
foreach C; € C if v & support_set(U;-;C;
cost=compute_cost(S,C;,C,P); v.high = |S|+1;
if cost<MIN if 3P;|P;.high < v.low
picked = C;; MIN = cost; P;.high = v.high;
end else
S = S U {picked};C = C — {picked}; num new_partitions ++;
modify_partitions (P, picked) end
end return num new_partitions;
end end

Fig. 4. The greedy algorithm to order clusters and partition variables

through all the remaining clusters and calculate the effect if the variables from a
cluster were added to the existing partitions. The one with the least cost is cho-
sen. Finally the existing partitions are modified by incorporating the variables
from newly selected clusters. Since the position of the selected cluster in sorted
array is known, the ranges of partitions and variables can be updated.

The function compute_cost in Figure 4 shows how to calculate the number
of partitions if variables from cluster C; were added to partitions. There are
four parameters: S, the sorted cluster array; C;, the cluster under consideration;
C, the clusters not sorted yet; P, the current variable partitions. Initially the
number of new partitions is 0. If C; is appended to the sorted cluster array, the
index of C; will be |S| + 1. We may set the ranges of the variables based on
the location of C;. The function compute_cost tries to set the lower and upper
bounds for variables in the support set of C; . The lower bound of the variable v
is |S]+1 if v.low is UNKNOWN. This is because C; must be the first occurrence
of v in the sorted cluster array. If v does not appear in the supports of clusters
C — C;, C; would be the last occurrence of v in S. Therefore, the upper bound
of v should be |S| + 1. After a variable has been assigned upper (possibly still
UNKNOWN) and lower bound, the function looks for a partition P; such that
P;.high < v.low. Note that partitions with open upper bound value UNKNOWN
does not satisfy P;.high < v.low. If such partition exists, the upper bound of P;
is increased to the upper bound of v (may be UNKNOWN) because we consider
v is to be added to P;; otherwise, a new partition has to be created. Therefore,
number of partitions is increased by 1. However, we do not need to really allocate
a new partition because we only need to know how many new partitions have to
be created, and no two variables from C; may reside in the same partition, which
makes the knowledge of upper and lower bounds of new partitions unnecessary.

The function compute_cost considers the cost to be the number of new parti-
tions created. In the implementation, we distinguish between open partitions and
close partitions. The partitions with unknown upper bound are close partitions;

otherwise they are open partitions. Since open partitions do not accept any new
variables, we prefer close partitions. In this case, the cost to add a new cluster
¢ becomes cost = num_close_partitions + weight * num_close_partitions where
weight > 1. We also consider the number of variables Vy,,teq that have been as-
signed to a partition set so far. In such case, the cost becomes num_partitions/|Vsorted-

4 Experimental Results

4.1 Reduction in the Number of Variables

In order to evaluate the effectiveness of our variable renaming algorithms, we ran
experiments on ISCAS’89 and Texas’97 benchmarks. All experiments were done
on a 800MHz Pentium III processor machine running the Linux operating system
with 512MB of main memory. In all the experiments, we used the default VIS
options (partition threshold=5000, frontier method for building partition BDDs,
and image cluster size=5000).

The performance metric we measured in this section are the number of vari-
ables required for reachability computation. Table 1 shows experimental results
with the first column indicating circuit names. The second column shows the
number of latches in the circuits. Since the current state variables have to be
in distinct partitions, the number of latches is the lower bound on the number
variables for any of the strategies. The third column indicates the number of
clusters. Finally, the last four columns provide the number of variables required
for different algorithms.

Column “VIS” lists the number of variables by using original VIS-1.4 code.
Columns “MG”, “LE” and “GD” report the number of variables by min_gap,
least_effort and greedy algorithms, respectively. The last column shows the
minimal number of variables for one of our renaming algorithms compared with
VIS. We can see that only 40%-74% of VIS variables are actually required for
reachability computation.

4.2 Savings during Reachability Computation

As discussed in the introduction, it is difficult to predict the impact of our strat-
egy on memory and time requirements during image computation, and can be
estimated only by experiments with benchmarks. We integrated our modifica-
tions within VIS. For these experiments, we invoke dynamic variable reordering
in the CUDD package (see http://vlsi.colorado.edu/~fabio/CUDD/ for in-
formation). A time limit of one hour was used for all experiments. The results are
reported in Table 2. It compares VIS 1.4 with the best results obtained from ei-
ther the modification MG with min_gap, the modification LE with least_effort
or the modification GD with greedy. For each algorithm the table lists, the num-
ber of steps of image computation, the number of states (this is only to verify
that actual reachable sets are identical), and time required.

Of the 37 benchmarks tested, variable renaming optimization performs better
than VIS on 29 examples, while VIS does better on 8 examples. The last col-
umn indicates the comparison. If the value ¢ is greater than 1, our modification
achieves a speedup of tx (e.g., on three processor_bin, reachability computa-
tion after variable renaming speeds up by 3.61). If the value ¢ is in the format of
+ts, variable rename algorithm can do ¢ steps further than VIS (e.g., on s1423,
reachability computation after variable renaming can do one more step). On the
other hand, If the value in the last column is less than 1 or in the format of -ts,
VIS without variable rename is better. Given the non-robust nature of compu-
tational requirements of BDD packages, particularly due to dynamic reordering,
we consider these results to be promising.

5 Conclusion

In this paper, we have proposed a technique for reducing the number of auxil-
iary variables required for image computation in symbolic reachability analysis.
This idea complements the previous research on conjunctive partitioning and
early quantification. Unlike typical optimization problems in design automation,
reducing the number of variables optimally turns out to have a polynomial-time
solution. Our experiments concerning reducing the number of variables indicate
that the number of auxiliary variables necessary for image computation is quite
small compared to the number of state variables. In terms of savings in time,
our heuristic improves on the state-of-the-art model checker VIS 1.4 on many
benchmarks, sometimes leading to a speed up of 7.61 , and sometimes allowing
extra iterations of image computation. There is little effort needed to compute
the renaming, and our strategy can be incorporated in other model checkers with
minimal effort.

The benefits of the proposed heuristic can potentially be improved in many
ways. First, the techniques for generating clusters and ordering clusters can be
modified to account for variable renaming strategy. In fact, there seems to be no
need to assign variable identifiers for all the variables right from the beginning,
but to combine all of these preprocessing steps. Second, and possibly more im-
portantly, the heuristics for choosing the initial order and dynamic reordering
during image computation need to be examined carefully in light of our strategy.
In particular, the fact that a variable appears in multiple roles can be taken into
account while choosing the ordering, and the pairing of a current-state variable
with next-state variable can be non-essential in our setting. Finally, similar ideas
can be explored in conjunction with recent efforts on bounded model checking
using SAT solvers [1,13].

References
1. A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu. Symbolic model checking

using SAT procedures instead of BDDs. In Proceedings of the 86th ACM/IEEE
Design Automation Conference, pages 317-320, 1999.

N

11.

12.

13.

14.

15.

16.

17.

18.

R. Brayton, G. Hachtel, A. Sangiovanni-Vincentell, F. Somenzi, A. Aziz, S. Cheng,
S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer, R. Ranjan, S. Sarwary,
T. Shiple, G. Swamy, and T. Villa. VIS: A system for verification and synthesis.
In Proceedings of the Eighth International Conference on Computer Aided Verifi-
cation, LNCS 1102, pages 428-432. Springer-Verlag, 1996.

R.E. Bryant. Graph-based algorithms for boolean-function manipulation. IEEE
Transactions on Computers, C-35(8), 1986.

J.R. Burch, E.M. Clarke, D.L. Dill, L.J. Hwang, and K.L. McMillan. Symbolic
model checking: 10%° states and beyond. Information and Computation, 98(2):142—
170, 1992.

J.R. Burch, E.M. Clarke, and D.E. Long. Symbolic model checking with partitioned
transition relations. In Proceedings of the IFIP International Conference on Very
Large Scale Integration: VLSI’91, pages 49-58, 1991.

P. Chauhan, E. Clarke, S. Jha, J. Kukula, H. Veith, and D. Wang. Using
combinatorial optimization methods for quantifier scheduling. In Proceedings of
CHARME’01, LNCS 2144, pages 293-309, 2001.

P. Chauhan, E.M. Clarke, S. Jha, J. Kukula, T. Shiple, H. Veith, and D. Wong.
Non-linear quantification scheduling in image computation. In Proceedings of the
International Conference on Computer Aided Design: ICCAD’01, 2001.

E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In Proc. Workshop on Logic of Programs,
LNCS 131, pages 52-71. Springer-Verlag, 1981.

E.M. Clarke, O. Grumberg, and D.A. Peled. Model checking. MIT Press, 2000.

. E.M. Clarke and R.P. Kurshan. Computer-aided verification. IEEE Spectrum,

33(6):61-67, 1996.

D. Geist and I. Beer. Efficient model checking by automated ordering of transition
relation partitions. In Computer Aided Verification, Proc. 6th Int. Conference,
LNCS 818, pages 299-310. Springer-Verlag, 1994.

M. Golumbic. Algorithmic Graph Theory and Perfect Graph. Academic Press,
1980.

A. Gupta, Z. Yang, P. Ashar, and A. Gupta. SAT-based image computation with
applications in reachability analysis. In Proceedings of the Third International
Workshop on Formal Methods in Computer-Aided Design, LNCS 1954, pages 354—
371. Springer, 2000.

R. Hardin, Z. Har’El, and R.P. Kurshan. COSPAN. In Proceedings of the Eighth
International Conference on Computer Aided Verification, LNCS 1102, pages 423—
427. Springer-Verlag, 1996.

K. McMillan. Symbolic model checking: an approach to the state explosion problem.
Kluwer Academic Publishers, 1993.

I-H. Moon, J.H. Kukula, K. Ravi, and F. Somenzi. To split or to conjoin: the
question in image computation. In Proceedings of the 37th Design Automation
Conference, pages 2628, 2000.

I.-H. Moon and F. Somenzi. Border-block traingular form and conjunction schedule
in image computation. In Proceedings of the Third International Workshop on
Formal Methods in Computer-Aided Design, LNCS 1954, pages 73-90. Springer,
2000.

R. Ranjan, A. Aziz, B. Plessier, C. Pixley, and R. Brayton. Efficient BDD al-
gorithms for FSM synthesis and verification. In Proceedings of the IEEE/ACM
International Workshop on Logic Synthesis, 1995.

Circuit Latches|Clusters|Number of variables| min
Name VIS]MG| LE] GD| %
three_processor_bin |62 10 142| 89| 111| 100|{63%
three_processor 62 12 142 90| 115 95(63%
IFetchControll 59 5 146 90| 113| 99(62%
IFetchControl2 59 5 145| 91| 114| 91(63%
TWO 64 9 204| 93| 122| 99(46%
PClabnorm 295 23 617|355 588| 359(58%
PClInorm 295 31 612| 355 588| 342(56%
test4 153 16 315|189| 314| 213|60%
timestamp 79 7 168|114| 168| 128|68%
multi_master 382 24 781|479| 764| 441(63%
p62_L_L_VO01 308 34 618| 374| 598| 397(61%
p62_L_S_V02 308 34 618| 369| 595| 396(60%
p62_ND_S_V02 308 35 622 362| 597| 405(58%
p62_L_L_V02 308 34 618| 374| 598| 397(61%
p62_.S_.S_V01 308 34 618| 374| 598| 397|61%
p62_LS_LS_V01 308 34 618| 374| 598| 397(61%
p62_.S_.S_V02 308 34 618| 374| 598| 397(61%
p62_LS_LS_V02 308 34 618| 374| 598| 397(61%
p62_LS_L_V01 308 34 618| 369| 595| 396(60%
p62_V_LS_ V02 308 34 622| 369| 595| 396(59%
p62_LS_L_V02 308 34 618| 369| 595| 396(60%
p62_ND_ND_V01 |308 35 622|395 599| 405(64%
p62_-V_S_ V01 308 34 622| 369| 595| 396(59%
p62_LS_S_V01 308 34 618| 369| 595| 396(60%
p62_ND_ND_V02 |308 35 622| 395 599| 405(64%
p62_-V_S_V02 308 34 622|369 595| 396(59%
p62_LS_S_V02 308 34 618| 369| 595| 396(60%
p62_ND_ND_V 308 34 622|395 599| 405(64%
p62_L_S_V01 308 34 618| 369| 595| 396(60%
p62_ND_S_V01 308 35 622|375 597| 405/60%
$1269 37 8 92| 64| 70| 58|63%
s1512 57 4 143| 95| 114| 95|66%
51423 74 7 165| 122| 151| 134|74%
s4863 104 33 263|112 132| 105[40%
59234 211 23 461| 253| 387| 267|55%
$13207 638 42 1339| 6381001 710(48%
s15850 522 51 1147| 6651014 706|58%

Table 1. Number of variables

Circuit VIS RENAME

Name #step| #states| Time| #step| #states] Time||Speedup
three_processor_bin 32(3.6e+08| 145.23 32|3.6e+08| 40.25 3.61
three_processor 32|3.6e+08| 98.02 32|3.6e+08| 26.96 3.64
IFetchControll 27|4.3e+08 4.69 27|4.3e+08| 10.48 0.45
IFetchControl2 27(2.5e+08 2.25 27(2.5e+08 1.70 1.32
TWO 21(1.3e+14| 42.76 21(1.3e+14| 43.76 0.98
PClabnorm 35|2.6e+06| 23.09 35(2.6e+06 9.78 2.36
PClInorm 30| 86528 1.15 30| 86528 0.99 1.16
test4 17|4.0e+18(1677.67 18|7.8e+20(3121.66 +1s
timestamp 26(3.2e+22| 21.75 26(3.2e+22 9.33 2.33
multi_master 41|1.1e4+06| 20.56 41|1.1e+06 3.27 6.29
p62_L_L_V01 48 2445| 46.09 48 2445| 15.11 3.05
p62_L_S_V02 73 1327| 13.52 73 1327| 15.09 0.90
p62_ND_S_V02 106| 143788| 316.05|| 106| 143788| 260.00 1.22
p62_L_L_V02 71 2398| 54.30 71 2398| 29.53 1.84
p62_-S.S_ V01 45 437| 45.07 45 437 5.92 7.61
p62_LS_LS_V01 61 2823| 123.81 61 2823 39.24 3.16
p62_S_S_V02 42 317 2.82 42 317 2.41 1.17
p62_LS_LS_V02 58 1045 41.57 58 1045| 12.37 3.36
p62_LS_L_VO01 61 2743| 77.27 61 2743| 38.57 2.00
p62_V_LS_V02 125 93185| 385.94|| 125/ 93185| 381.38 1.01
p62_LS_1L._V02 66 1124] 12.78 66 1124 11.31 1.13
p62_ND_ND_V01 25| 310073|1178.86 32(1.3e+06|2209.86 +7s
p62_.V_S_V01 121| 59667 374.39|| 121| 59667| 386.23 0.97
p62_LS_S_V01 61 2743| 77.51 61 2743| 38.48 2.01
p62_ND_ND_V02 36(1.1e+06|1674.22 40/2.3e+06|2138.61 +4s
p62_-V_S_V02 106 22309| 142.28|| 106 22309| 128.63 1.11
p62_LS_S_V02 66 1124| 12.84 66 1124 11.34 1.10
p62_ND_ND_V 25| 310073|1181.82 32|1.3e+06|2206.98 +7s
p62_L_S_ V01 85 3637| 79.04 85 3637| 46.06 1.72
p62_ND_S_V01 55| 378695(1263.28 68|1.6e+06|2742.20 +13s
s1269 9|1.1e+09(2460.04 9|1.1e+09|2668.87 0.92
s1512 1023|1.6e+12{1292.22|| 1023|1.6e+12| 954.87 1.35
$1423 10|1.6e+09(1120.93 11|7.9e+09|2811.42 +1s
s4863 4|2.1e+19| 675.58 4|2.1e+19| 454.04 1.49
$9234 8|1.3e+14(1137.86 8|1.3e+14(1285.95 0.88
s13207 10|6.6e+26(2976.30 6/8.1e+22(1970.93 -4s
s15850 2|7.4e+12| 595.92 2|7.4e+12| 895.19 0.67

Table 2. Reachability Computation

	University of Pennsylvania
	ScholarlyCommons
	November 2004

	Variable Reuse for Efficient Image Computation
	Zijiang Yang
	Rajeev Alur
	Recommended Citation

	Variable Reuse for Efficient Image Computation
	Abstract
	Comments

	tmp.1118092732.pdf.9x6Py

