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Multigrid Algorithms for Inverse Problems with Linear Parabolic PDE
Constraints

Abstract
We present a multigrid algorithm for the solution of source identification inverse problems constrained by
variable-coefficient linear parabolic partial differential equations. We consider problems in which the inversion
variable is a function of space only. We consider the case of L-2 Tikhonov regularization. The convergence rate
of our algorithm is mesh-independent-even in the case of no regularization. This feature makes the method
algorithmically robust to the value of the regularization parameter, and thus useful for the cases in which we
seek high-fidelity reconstructions. The inverse problem is formulated as a PDE-constrained optimization. We
use a reduced-space approach in which we eliminate the state and adjoint variables, and we iterate in the
inversion parameter space using conjugate gradients. We precondition the Hessian with a V-cycle multigrid
scheme. The multigrid smoother is a two-step stationary iterative solver that inexactly inverts an approximate
Hessian by iterating exclusively in the high-frequency subspace (using a high-pass filter). We analyze the
performance of the scheme for the constant coefficient case with full observations; we analytically calculate
the spectrum of the reduced Hessian and the smoothing factor for the multigrid scheme. The forward and
adjoint problems are discretized using a backward-Euler finite-difference scheme. The overall complexity of
our inversion algorithm is O(NtN + N log(2) N), where N is the number of grid points in space and N-t is the
number of time steps. We provide numerical experiments that demonstrate the effectiveness of the method
for different diffusion coefficients and values of the regularization parameter. We also provide heuristics, and
we conduct numerical experiments for the case with variable coefficients and partial observations. We observe
the same complexity as in the constant-coefficient case. Finally, we examine the effectiveness of using the
reduced-space solver as a preconditioner for a full-space solver.
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MULTIGRID ALGORITHMS FOR INVERSE PROBLEMS WITH
LINEAR PARABOLIC PDE CONSTRAINTS∗

SANTI S. ADAVANI† AND GEORGE BIROS‡

Abstract. We present a multigrid algorithm for the solution of source identification inverse
problems constrained by variable-coefficient linear parabolic partial differential equations. We con-
sider problems in which the inversion variable is a function of space only. We consider the case of L2

Tikhonov regularization. The convergence rate of our algorithm is mesh-independent—even in the
case of no regularization. This feature makes the method algorithmically robust to the value of the
regularization parameter, and thus useful for the cases in which we seek high-fidelity reconstructions.
The inverse problem is formulated as a PDE-constrained optimization. We use a reduced-space ap-
proach in which we eliminate the state and adjoint variables, and we iterate in the inversion parameter
space using conjugate gradients. We precondition the Hessian with a V-cycle multigrid scheme. The
multigrid smoother is a two-step stationary iterative solver that inexactly inverts an approximate
Hessian by iterating exclusively in the high-frequency subspace (using a high-pass filter). We analyze
the performance of the scheme for the constant coefficient case with full observations; we analytically
calculate the spectrum of the reduced Hessian and the smoothing factor for the multigrid scheme.
The forward and adjoint problems are discretized using a backward-Euler finite-difference scheme.
The overall complexity of our inversion algorithm is O(NtN + N log2 N), where N is the number
of grid points in space and Nt is the number of time steps. We provide numerical experiments
that demonstrate the effectiveness of the method for different diffusion coefficients and values of the
regularization parameter. We also provide heuristics, and we conduct numerical experiments for the
case with variable coefficients and partial observations. We observe the same complexity as in the
constant-coefficient case. Finally, we examine the effectiveness of using the reduced-space solver as
a preconditioner for a full-space solver.

Key words. inverse problems, heat equation, reaction-diffusion equations, multigrid, regular-
ization

AMS subject classifications. 34A55, 35R30, 65M55, 65M70, 35K50, 65F22, 65F10
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1. Introduction. We present multigrid algorithms for inverse problems con-
strained by parabolic partial differential equations (PDEs). As a model problem we
consider the one-dimensional (1-D) heat equation and a source identification problem,
the reconstruction of a heat source function given either full or partial observations
of the temperature. Our method is designed for problems with unknown spatial vari-
ation and known temporal variation. Our model is motivated by inverse medium
and data assimilation problems that are constrained by reaction–convection-diffusion
equations. We use a PDE-constrained optimization formulation [5].

More precisely, we seek to reconstruct an unknown function u(x) by solving the
following minimization problem:

min
y,u
J (y, u) :=

1
2
‖Qy − y∗‖2L2(Ω)×L2((0,T ]) +

β

2
‖u‖2L2(Ω)
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370 SANTI S. ADAVANI AND GEORGE BIROS

subject to

∂y(x)
∂t
−νΔy(x) = a(x, t)y(x)+b(x, t)u(x) in D, y = 0 on ∂Ω, y(x, 0) = 0 in Ω,

where Q corresponds to the observation operator and D is defined as Ω× (0, T ]. Here,
y is the state variable, u is the inversion variable, ν > 0 is the diffusion coefficient, and
β ≥ 0 is the regularization parameter. The objective is to reconstruct u by minimizing
the misfit between the observed state y∗ and the predicted state y. We assume that
both a(x, t) and b(x, t) are known, smooth, and bounded functions.1

By forming a Lagrangian, by introducing the adjoint variables λ, and by requiring
stationarity with respect to the state, inversion, and adjoint variables, we arrive at
the first-order optimality conditions:
State

∂y

∂t
− νΔy − ay − bu(x) = 0 in D, y = 0 on ∂Ω, y(x, 0) = 0 in Ω.

Adjoint

−∂λ

∂t
− νΔλ− aλ + (QT Qy −QT y∗) = 0 in D, λ = 0 on ∂Ω, λ(x, T ) = 0 in Ω.

Inversion

βu−
∫

T

bλ d t = 0 in Ω.

The above system of equations is also known as the Karush–Kuhn–Tucker optimality
system or the “KKT” system. The corresponding linear operator can be written as⎡

⎣ QT Q 0 − ∂
∂t − νΔ− a

0 βI − ∫ T

0
b

∂
∂t − νΔ− a −b 0

⎤
⎦ =

⎡
⎣ QT Q 0 JT

0 βI CT

J C 0

⎤
⎦ ,(1.1)

where J and C are the Jacobians of the constraints with respect to the state and
the inversion variables, respectively. The KKT operator corresponds to a symmetric
saddle point problem. For an excellent review on linear solvers for such problems,
we refer the reader to [6]. In this paper, we will consider two methods: the so-
called full-space and reduced-space [15]. In full-space methods, one solves directly
(1.1), for example, using a Krylov-iterative method. In reduced-space methods, one
solves for u by an iterative solver on the the Schur complement of u. To derive the
Schur complement, we first eliminate y and λ using the state and adjoint equations,
respectively, and then we substitute λ in the inversion equation. In this way, we obtain

Hu = g,(1.2)

where

H = CT J−T QT QJ−1C + βI(1.3)

is known as the “reduced Hessian” (or just “Hessian”). Since Q is positive semidefi-
nite, H is a symmetric and strictly positive definite operator. The reduced gradient

1In the following, we suppress the notation for the explicit dependence on x and t.
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g is defined by g = −CT J−T QT y∗. Each reduced Hessian matrix-vector product
(herein after, “matvec”) requires one exact forward solve and one adjoint solve which
makes it expensive to solve (1.2). We focus our attention to the design of efficient
solvers for reduced-space formulations. For completeness we include an example that
shows how we can combine full- and reduced-space approaches.

Related work. Reduced-space methods are quite popular because one can iter-
ate on the adjoint and state equation in sequence, they require less storage, and the
conjugate gradient (CG) method can be used to invert H . The KKT matrix (1.1), is
indefinite, ill-conditioned, and its size is more than twice as large as that of the forward
problem. Most implementations avoid using H and instead use some approximation,
for example, quasi-Newton. Such approaches, however, are not algorithmically scal-
able [1]. If H is to be used, direct solvers are not a viable option, since the reduced
Hessian is a nonlocal and thus, dense operator. The preconditioned conjugate gradi-
ents (PCG) algorithm requires matvecs only, and thus can be used to solve (1.2).

If we fix the regularization parameter β to a positive value we can show that H is
a compact perturbation of the identity and thus has a bounded (mesh-independent)
condition number: It scales as O(1/β). Using CG to solve a linear system involving
H requires O(1/

√
β) iterations. Therefore, the overall scheme does not scale with

vanishing β. We claim that, in mesh-refinement studies and scalability analyses for
inverse problem solvers, having a fixed value of β can lead to wrong conclusions.

There are two reasons that drive the need to solve problems in refined meshes.
The first reason is the need to resolve the forward and adjoint equations. In that case,
one can use a mixed discretization in which u is discretized in a coarser grid, or one
can use a large value for β. In the second case, which is pertinent to scalability of
the inverse problem solver, we have high-quality observations2 that allow for a high-
resolution reconstruction of u. This implies that β cannot be fixed as we refine the
mesh because we will not be able to recover the sought frequencies. There has been
little work on a mesh-independent scheme for vanishing β [27].

Returning to the reduced Hessian, we observe that the deterioration of the con-
dition number with decreasing β suggests the need for a preconditioning scheme. We
cannot use standard preconditioning techniques like incomplete factorizations or Ja-
cobi relaxations, as these methods need an assembled matrix [4]. In [7] a two-step
stationary iterative method that does not need an assembled matrix was used to
precondition the reduced Hessian.

Another alternative is to use multigrid methods. These methods have been devel-
oped mainly for linear systems arising from the discretization of elliptic and parabolic
PDEs. The basic idea of multigrid is to accelerate the iterative solution of a PDE by
computing corrections on a coarser grid and then interpolating them back to the origi-
nal grid. The three important steps of multigrid scheme are presmoothing, coarse-grid
correction, and postsmoothing. Smoothing is equivalent to taking a few iterations of
an iterative method (“smoother”) that should selectively remove the high-frequency
error components faster than low-frequency components. Besides the pioneering work
of [12] for differential operators, and of [19] for second-kind Fredholm integral opera-
tors, there exists significant work on multigrid methods for optimal control problems.
For example, see the work of [2] and [15] for a general discussion, and [9] and [10]
for distributed control problems constrained by parabolic PDEs. An alternative to
multigrid is domain decomposition; a promising work for problems similar to ours can

2If the data is not in the range of the inversion operator, e.g., due to noise, vanishing β will result
in blow up for u as the discretization size goes to zero.
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be found in [21]. There the author proposes a space-time Schur domain decomposi-
tion preconditioner for the KKT system. A nice feature of that method is that it can
be readily parallelized in time. The context, however, is optimal control, where the
value of the regularization parameter is relatively large because of the costs involved
in applying the control.

In our case, the unregularized reduced Hessian is a Fredholm operator of the
first kind. There has been little work on multigrid algorithms for such problems. In
[20], multilevel and domain decomposition preconditioners were proposed for integral
equations of the first kind. Multigrid solvers for Tikhonov-regularized ill-posed prob-
lems were discussed in [27]. In [26], a vanishing regularization parameter has been
discussed. Such problems were further analyzed in [24] and [25]. A multigrid precondi-
tioner based on that work was also used in [1] to solve the problems with million of in-
version parameters with a relatively small but nonvanishing value of the regularization
parameter. As we will discuss later in the paper, the methods described in [1] and [10]
do not scale well in the case of a mesh-dependent regularization parameter. In real-
time problems, the choice of a regularization parameter is driven by the magnitude of
noise in the data. In numerical studies, since we assume zero noise, a mesh-dependent
regularization parameter has to be chosen to study the scalability of the algorithm.

Contributions. Our main contribution is to derive a method for which we obtain
a mesh-independent and β-independent convergence rate—including the case of β = 0.
We design special smoothers that are used to build multigrid schemes for (1.2).

There are several challenges in designing multigrid schemes for the reduced space.
As we mentioned, we have to design a matrix-free smoother with no access to the
diagonal or off-diagonal terms of the Hessian operator. The reduced Hessian (with
β = 0) is a compact operator. Its dominant eigenvalues correspond to low-frequency
components, and for such operators standard smoothers fail. Finally, every matrix-
vector multiplication with the reduced Hessian is equivalent to a forward and an
adjoint solve; hence, it is important to design algorithms that require a minimum
number of matvecs in the fine grid.

We first propose preconditioners that can be used as smoothers in multigrid, so
that multigrid can be used as a preconditioner to an outer CG solver. This uses
an approximate filtering operator that restricts the smoother to the high-frequency
Krylov subspace. We show numerical results that indicate good behavior. The method
is easy to implement, but it cannot be extended to more general cases like variable-
coefficient problems and partial observations. For this reason we propose a second
smoother that is more expensive, but for which we can provide complexity estimates.

The main components of the proposed algorithm are: (1) a reduced Hessian that
is a composition of spectral filtering with an approximate Hessian operator based on
inexact forward and adjoint solves; and (2) a smoothing scheme that uses a stationary
second-order method targeted in the high-frequency components of u. It is crucial that
the effectiveness of the smoother in the high-frequency regime is mesh-independent;
our method fulfills this requirement. The multigrid scheme (a V-cycle) can be used as
solver or as a preconditioner for a Krylov-iterative method.

The forward and adjoint problems are discretized using a backward-Euler scheme
in time and a standard three-point Laplacian (Dirichlet BCs) in space. We conduct
numerical experiments to test (1) the effects of semicoarsening (only space coarsening)
and standard-coarsening; (2) different smoothing techniques; and (3) the effects of
using non-Galerkin coarse-grid operators. We analyze and experimentally measure
convergence factors. Also, we present results for the more general case in which
multigrid is used as a preconditioner and not as a solver. In addition, we test the
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algorithm for the case of variable coefficients (resembling reaction-diffusion equations
that admit traveling wave solutions) and partial observations. Finally, we include a
discussion on full-space methods, and we propose a multigrid scheme for (1.1) along
with numerical results that illustrate its performance.

Limitations. In this paper, we have assumed noiseless and attainable observa-
tions in all of the numerical experiments. Due to this assumption, we are allowed to
take very small regularization parameters in all of the numerical studies. The pres-
ence of noise and the choice of regularization parameter will significantly affect the
quality of reconstruction and the behavior of the solvers. However, investigations into
the error propagation due to the presence of noise and the choice of regularization
parameters are beyond the scope of this paper.

1.1. Organization of the paper. In section 2, we derive the spectral properties
of the 1-D analytic and discretized reduced Hessian for the case of constant coefficients.
In section 3, we discuss multigrid, and we give details on the coarse-grid operator.
In section 3.2, we discuss standard smoothers and present the construction of novel
smoothers based on the idea of subspace decomposition. In section 4, we present
appropriate preconditioners that can be used as smoothers in multigrid. Numerical
results on this approach are presented in section 4.1. In section 5, we present our main
contribution, a multigrid variant which is based on exact subspace projections, and
we present results for both the constant and the variable-coefficient cases. Finally, in
section 6 we discuss full-space methods.

2. Spectral properties of the reduced Hessian. We start by calculating the
spectrum of the 1-D reduced Hessian. We show that, in its general form, the source
inversion is an ill-posed problem with algebraically decaying eigenvalues. Let K be
the Green’s operator for the forward problem, so that K maps functions from the
inversion variable space to the state variable space and K corresponds to −QJ−1C
in (1.3). Using K, we can eliminate the constraint and obtain an unconstrained
variational problem for u:

min J̃ (u) =
1
2

∫
Ω

∫
T

(Ku− y∗)2 d Ωd t +
β

2

∫
Ω

u2 d Ω.(2.1)

Taking the variations of (2.1), with respect to u , we get an Euler–Lagrange equation
for u:

∂J̃
∂u

û =
∫

Ω

∫
T

KT (Ku− y∗)û d Ωd t + β

∫
Ω

uû d Ω = 0 ∀û,(2.2)

where KT is the adjoint of K. Here K corresponds to a forward solve, and KT

corresponds to an adjoint solve. Then the strong form of the optimality conditions is
given by (

KT K + βI
)
u = KT y∗ or Hu = KT y∗,(2.3)

where H is the reduced Hessian. If a = 0, then K (for homogeneous Dirichlet BCs)
is given by

y =
∫

Ω

∫ t

0

k(x− x′, t− τ)b(x′, t)u(x′) d x′d τ

= 2
∞∑

k=1

∫
Ω

∫ t

0

e−k2π2(t−τ)Sk(x)Sk(x′)b(x′, t)u(x′) d x′d τ,(2.4)
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where Sk(x) = sin(kπx). If we assume that b = 1(t), expand u(x) =
∑∞

j=1 ujSj(x),
and use orthogonality we get that

y =
∞∑

k=0

Sk(x)yk(t) with yk(t) =
∫ t

0

e−k2π2(t−τ)1(τ)uk dτ.(2.5)

The adjoint operator KT is given by

λ(x, T − t) = KT z =
∫

Ω

∫ t

0

k(x− x′, t− τ) z(x′, T − τ) d x′d τ.(2.6)

Using (2.5) and (2.6) in (2.3), and setting β = 0, the eigenvalues (σk) and eigenvectors
(vk) of the reduced Hessian (H = KT K) are given by

σk =
2k2π2T + 4e−k2π2T − 2e−2k2π2T − 3

2k6π6
and vk = Sk.(2.7)

If we discretize in space using the three-point Laplacian approximation, the cor-
responding eigenvalues and eigenvectors of the reduced Hessian (Hh) are given by

σk =
2λkT + 4e−λkT − 2e−2λkT − 3

2λ3
k

and vk = Sh
k ,(2.8)

where λk = 4νN2 sin2( kπ
2N ) is the kth eigenvalue of the discrete Laplacian and ν is

the diffusion coefficient (see Table 1). The discrete sine function is represented by Sh
k ,

with N being discretization size. If we use a backward-Euler scheme for time, the
eigenvalues of the discrete reduced Hessian (Hh) are given by

σδ
k = δ3

Nt∑
j=1

Nt−j∑
l=0

∑l+j−1
r=0

1
(1+λkδ)r

(1 + λkδ)l+1
,(2.9)

where Nt is the number of time steps and δ the time step.
From (2.7) and (2.8) it is evident that k → ∞ ⇒ σk → 0. Furthermore σmax ≈

T
(λ1)2 for a large-enough time-horizon T . If β 
= 0, then σmin = β and the condition

number of the reduced Hessian is given by κ = σmax+β
β , and it is bounded. For small

β, however, the reduced Hessian is a highly ill conditioned operator (see Figure 1).
The number of CG iterations required for convergence is proportional to the

square root of the condition number of the underlying operator. Therefore, for a mesh-
independent condition number, we obtain a mesh-independent number of iterations.
It may be the case, however, that the data fidelity allows a quite small regularization
parameter.

In Table 2, we report results from a numerical experiment in which we study
the number of CG iterations for two cases of the regularization parameter. One can
observe that, for constant β, the the number of iterations is mesh-independent. This
is not the case when β is related to the mesh size. The goal of the present work is
to use multigrid ideas to address the problem of a β-independence number of CG
iterations, at least for the source inversion problem for the heat equation.

3. Reduced-space multigrid. In this section, we summarize the algorithmic
issues related to multigrid for the reduced Hessian. Here, and in the rest of the
paper, we use the superscript h to denote the fine discretization level, and we use
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Table 1

The eigenvalues and eigenvectors of Laplacian and reduced Hessian. The kth eigenvalue and
eigenvector of the operator are represented by σk and vk, respectively. The diffusion coefficient and
total time interval are ν and T , respectively. Here Sk = sin(kπx). Discrete operators and functions
are denoted with a superscript h.

Operator σk vk

−νΔ λk = νk2π2 Sk

−νΔh λh
k = 4νN2 sin( kπ

2N
) Sh

k

H σk = 2λkT+4e−λkT −2e−2λkT −3

2λ3
k

Sk

Hh σk =
2λh

kT+4e
−λh

k
T −2e

−2λh
k

T −3

2(λh
k
)3

Sh
k

Hh,δ σδ
k = δ3

∑Nt
j=1

∑Nt−j
l=0

∑ l+j−1
r=0

1
(1+λkδ)r

(1+λkδ)l+1 Sh
k
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Fig. 1. The effect of regularization on the spectrum of the reduced Hessian. Here we report
the spectrum of the eigenvalues (σ) of the reduced Hessian H for ν = 1.0 and T = 1. Three cases
of regularization parameter β = σmin, 256σmin, and 4096σmin are plotted. The right plot shows the
spectrum of H for three different diffusion coefficients ν = 1, 0.01, and 0.0001.

Table 2

CG mesh-dependence. Here we report the performance of CG as a function of the mesh size
and the value of the regularization parameter. The number of CG iterations does not change with
an increase in the problem size N ; β is the regularization parameter, and in parentheses the number
of recovered frequencies; Iters corresponds to the number of CG iterations for a relative residual
reduction ‖r‖/‖r0‖ ≤ 10−12; a maximum number of iterations is 2N . Two cases of the regularization
parameter are considered: β = σ20 and β = σ100. Additional parameters used in this numerical
experiment are ν = 1 and T = 1. One observes that the number of CG iterations are mesh-
independent only in the case of constant β.

N β (σ > β) Iters
512 6e-08 (19) 1e-10 (99) 69 725
1024 6e-08 (19) 1e-10 (99) 70 781
2048 6e-08 (19) 1e-10 (99) 68 763
4096 6e-08 (19) 1e-10 (99) 71 713

2h to denote the coarse level—in the case of a two-grid scheme. For example, we
denote the discrete reduced Hessian at resolution h by Hh. The key steps of a multi-
grid algorithm for Hhuh = gh are given in Algorithm 1. In the presmoothing and
postsmoothing steps, high-frequency error components are attenuated, whereas the
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Algorithm 1 Multigrid (MG).

1: Presmoothing: Smoother iterations on Hhuh = gh;
2: Restriction: rh = gh −Hhuh and r2h = I2h

h rh;
3: Coarse-grid correction: Solve H2he2h = r2h;
4: Prolongation: eh = Ih

2he2h;
5: Update: uh ← uh + eh;
6: Postsmoothing: Smoother iterations on Hhuh = gh.

Table 3

The spectral properties of the restriction and prolongation operators. Let sk = sin2(kπx
2

),

ck = cos2(kπx
2

), and Sk = sin(kπx) for 1 ≤ k ≤ N − 1. I2h
h : Ωh → Ω2h, Ih

2h: Ω2h → Ωh, and

I− Ih
2hI2h

h : V h → W 2h, where V h is the fine space and W 2h is the space containing high-frequency

components. Sh
k and S2h

k are the eigenfunctions of the discrete Laplacian and the reduced Hessian

in Ωh and Ω2h, respectively. 1 ≤ k ≤ N
2

for all the rows in the table.

Operator Input function Output function

I2h
h Sh

k ckS2h
k

I2h
h Sh

N−k −skS2h
k

Ih
2h S2h

k ckSh
k − skSh

N−k

I− Ih
2hI2h

h Sh
k (1 − c2k)Sh

k + ckskSh
N−k

I− Ih
2hI2h

h Sh
N−k (1 − s2

k)Sh
N−k + ckskSh

k

coarse-grid correction acts on low-frequency error components. We refer the reader
to [29] for an excellent introduction to multigrid. The restriction (I2h

h ), prolongation
(Ih

2h), coarse-grid (H2h) operators, and the smoother are important components that
determine the performance of the algorithm. In Table 3, we summarize the spectra
of several restriction and prolongation-based operators. Key in a multigrid scheme
is that for each grid level the majority of the work is in removing errors associated
with high frequencies (at the specific grid level). In addition, as we move into the
grid hierarchy, errors should not be reintroduced or amplified. The problems we are
discussing here are pretty regular, so prolongation and restriction do not present par-
ticular challenges. Below we first discuss the coarse-grid operator representation, and
then we discuss smoothing techniques.

3.1. Coarse-grid operator. There are two main ways to define the coarse-
grid operator, given a grid hierarchy, the Galerkin, and the direct discretization.
Using a variational principle and provided that I2h

h = cIh
2h

T , the “Galerkin” coarse-
grid operator operator is defined by

H2h
G = I2h

h HhIh
2h,

where H2h
G and Hh are the Galerkin coarse-grid operator and fine grid operators,

respectively [13]. Another way of defining the coarse-grid operator is by discretizing
directly the forward and adjoint problems in the coarse grid:

H2h = (CT J−T )2h(QT Q)2h(J−1C)2h.

In the classical multigrid theory, the finite-difference Laplacian operator on regular
grids using standard restriction and prolongation operators3 with constant-coefficients
there is no difference between the two coarse-grid operators. In the case of reduced

3Using a full-weighting restriction operator and bilinear interpolation operator.
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Fig. 2. The spectrum of the coarse-grid reduced Hessian. Here we depict the difference between
the Galerkin I2h

h Hh Ih
2hand the direct discretization of the reduced Hessian operators. We observe

that H2h does not satisfy the Galerkin condition, and thus inverting it will not eliminate the low-
frequency components of the error. Due to this fact we use multigrid as a CG preconditioner.

Hessian, however, they are quite different—especially in the high-frequency region of
the coarse space (Figure 2). The difference in the spectra can be explained from the
scaling of the eigenvalues of Hh due to the eigenstructure of the standard restriction
and prolongation operators (Table 3). Therefore, the error components in certain
intermediate eigenvector directions of the fine grid spectrum cannot be recovered if we
use H2h. So it is preferable to use the Galerkin coarse-grid operator for robustness and
easily provable convergence. On the other hand every Galerkin coarse-grid matvec
requires a fine-grid reduced Hessian matvec, which involves an exact forward and
adjoint solve at h. Whereas, H2h matvec requires an exact forward and adjoint solve
at 2h. This makes the Galerkin operator computationally more expensive. Therefore,
we avoid using H2h

G and use H2h.

3.2. Smoothers. Classical smoothing schemes for the elliptic PDEs include it-
erative methods like Jacobi, Gauss–Seidel, and CG. A common characteristic of these
methods is that they remove error components corresponding to large eigenvalues
faster than error components corresponding to small eigenvalues.4 This property
makes these methods favorable for elliptic operators that have large eigenvalues for
high-frequency eigenvectors. In our case, the (unregularized) reduced Hessian is a
compact operator and behaves quite differently. As shown in Figure 1, the large
eigenvalues of the reduced Hessian are associated with smooth eigenfunctions, and
small eigenvalues are associated with rough or oscillatory eigenfunctions. Therefore,
the above smoothing methods act as roughers. In addition, we do not have direct
access to the entries of the reduced Hessian matrix, so there is no cheap way to apply
smoothers like Jacobi or Gauss–Seidel.

We discuss in a greater detail why CG cannot be used as a smoother. Using (2.7)
we will show that CG cannot be used as a smoother for this problem, as it acts on
the high-energy (large eigenvalues) smooth components and acts as rougher instead.
We neglect the exponential terms as they go to zero very fast. Let β = 0 and T = π4,
then the kth eigenvalue of the reduced Hessian is σk = 1

k4 . At the ith iteration, CG

4CG works on both ends of the spectrum, but this is not so important in our context.
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constructs an (i − 1)th-degree polynomial to minimize ‖e(i)‖H . Therefore the error
at the ith iteration can be expressed as e(i) = Pi(σ)e(0), where Pi(σ) is the (i− 1)th-
degree polynomial, e(0) is the initial error, and e(i) is the error at ith iteration. Pi(σ)
is given by Chebyshev polynomials, where the Chebyshev polynomial Ti(ω) of degree
i is Ti(ω) = 1

2

[
(ω +

√
ω2 − 1)i + (ω −√ω2 − 1)i

]
; see [28]. The polynomial Pi(σ) is

given by

Pi(σ) =
Ti

(
σmax+σmin−2σ

σmax−σmin

)
Ti

(
σmax+σmin
σmax−σmin

) .

We have already seen that the reduced Hessian is a compact operator. Thus,
neglecting σmin (σmin � σmax) gives Pi(σk) = Ti

(
1− 2

k4

)
. Without loss of generality,

we can assume that the initial guess has error components in all of the eigenvector
directions. Notice that Pi(σk) is the amount of attenuation of the kth eigenvector
at the ith CG iteration. For high-frequency error components, Pi(σk) ≈ Ti(1) = 1;
for small k ≈ Pi(σk) = 0.5. Thus, the amplitude reduction of low-frequency error
components is greater than that of high-frequency error components: CG can not be
used as a smoother in the present problem.

This motivates a modification of the Hessian operator so that the low-frequency
spectrum is screened out from CG. In this regard, we discuss the construction of
smoothers based on the idea of decomposing the finite-dimensional space into rela-
tively high-frequency and low-frequency subspaces given in [27] and [26]. This idea
was further studied in [24] and [25]. Similar ideas of using the subspace decomposition
are also used in the construction of efficient preconditioners in [18].

Our preconditioners will be based on a fine-coarse grid decomposition of the
reduced Hessian. The “coarse” space V 2h is embedded into the “fine” space V h.
By P h : V h → V 2h we denote the L2-orthogonal projection, and by I − P h : V h →
W 2h the projection to high-frequency functions W 2h. We decompose v ∈ V h into
a smooth component vs ∈ V 2h and an oscillatory component wo ∈ W 2h. Then
Hhv = Hhvs +Hhwo. If in addition, we assume that P h coincides with the projection
onto the subspace spanned by the eigenvectors of the reduced Hessian (as it is in the
case of constant coefficients), we can write Hh as

(3.1) (I − P h + P h)Hh(I − P h + P h) = (I − P h)Hh(I − P h) + P hHhP h

assuming that P h is the exact orthogonal projection operator i.e.,

(3.2) (I − P h)HhP hu = P hHh(I − P h)u = 0 ∀u ∈ V h.

Therefore we can write Hhu = g as

(3.3) (I − P h)Hh(I − P h)u + P hHhP hu = (I − P h)g + P hg.

Hence P hHhvs = P hg, and

(3.4) (I − P h)Hhwo = (I − P h)g.

Since we are interested in removing the high-frequency error components while smooth-
ing we solve (3.4). However, since in general, P h will not correspond to the high-
frequency spectrum of the Hessian, we can use it as an approximate projection. An
alternative approach is to use Chebyshev-iterative methods and work on the spectrum
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of interest, provided that we have eigenvalue estimates [3]. In principle, this method
is quite similar to our approach (it is used for an entirely different problem.) It uses
a number of reduced Hessian matvec operations and computes an exact decomposi-
tion. In the present case, we would like to avoid spectra calculations, if possible, as
our main goal is to minimize the number of matrix-vector multiplications with the
reduced Hessian. (For our smoother in section 5 we need only the spectra range,
and not all of the eigenvalues.) Instead we approximate I − P h either by standard
interpolation-restriction operators or by using Fourier transforms.

Based on these decompositions we present preconditioners that approximate Hh

and I2h
h Ih

2has an approximation to P h (section 4). The advantage of this scheme is
its straightforward implementation. However, it is hard to analyze its convergence
for reasons that we will discuss in the following sections. We also present a second
smoother in which we use a two-step stationary solver that acts exclusively on the
high-frequency spectrum using exact frequency truncations for P h (section 5).

4. Preconditioner as smoother and restriction-prolongation projection.
We will consider V-cycle multigrid as a preconditioner for CG, since we are not using
a Galerkin coarse-grid operator. In the multigrid preconditioner, we will use one
application of the preconditioner described in this section as a smoothing step within
multigrid. Our contribution here is the design of appropriate preconditioners for the
smoothing step within multigrid. The preconditioner will be based on an inexact
inversion of the (I − P h)Hh. To that end we need to approximate P h and Hh; P h

will be approximated by I2h
h Ih

2h since this approach generalizes to arbitrary meshes,
and it is easy to implement. For Hh we will explore two approaches: one based on a
level-dependent parameter (King preconditioner (K-CG)), and one based on inexact
forward and adjoint solves (pointwise preconditioner).

King preconditioner. This approach was proposed by King in [26], where a multi-
grid method for the first kind of integral operator equations were developed. From
Figure 1, we can see that if the regularization parameter β is sufficiently large, it
can approximate most of the high-frequency spectrum. Therefore, the eigenvalues
corresponding to the high-frequency eigenvectors will be β so that β(I − P h)I ≈
(I − P h)Hh. Substituting this in the (3.4) we get a single-level preconditioner of the
form β−1(I −P h). In an additional approximation step, we substitute the orthogonal
projection by standard interpolation-restriction operators. Therefore the single-level
K-CG is given by β−1(I − Ih

2hI2h
h ). In a more general case when β is not sufficiently

large and when the eigenvalue distribution is compeletely known, β−1 is replaced by
a level-dependent parameter ξj [27], which is defined as

ξj =
0.9

σN+1
2

,(4.1)

where σN+1
2

is the N+1
2 th eigenvalue, j is the level, and N is the number of grid points.

In Table 3, we summarize the spectral properties of the restriction operator I2h
h ,

prolongation operators Ih
2h, and the orthogonal decomposition operator I− Ih

2hI2h
h .

Pointwise preconditioner. The pointwise preconditioner is based on a pointwise
approximation of the reduced Hessian, combined with the high-frequency filtering
described in the previous section. The approximate reduced Hessian H̃h should ap-
proximate well the high-frequency of the true Hessian (for β = 0) and should be easy
to compute. Here we propose a simple waveform-Jacobi relaxation in time [22]. If
we discretize in space using the standard three-point stencil for the Laplacian on a
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uniform grid and introduce a space-Jacobi splitting a matrix-vector multiplication
with the reduced Hessian (in the frequency domain) is given by

∂y

∂t
+

2ν

N2
y − 2ν

N2
cos

kπ

N
y = u, solve for y,

∂λ

∂t
+

2ν

N2
λ− 2ν

N2
cos

kπ

N
λ + y(T − t) = 0, solve for λ,

v =
∫

λ, v = Hu.

Here k is the wavenumber, and y, λ, and u represent the magnitude of the kth eigen-
vector. The approximate waveform-Jacobi relaxation is given by

∂yi

∂t
+

2ν

N2
yi − 2ν

N2
cos

kπ

N
yi−1 = u, i = 1 . . .M,

∂λi

∂t
+

2ν

N2
λi − 2ν

N2
cos

kπ

N
λi−1 + yM (T − t) = 0, i = 1 . . .M,

v =
∫

λM , v = H̃u.

The number of iterations M determines the quality of the preconditioner. So far we
have only discretized in space. We use a backward-Euler scheme to discretize in time.
The number of time steps equals the number of discretization points in space. We
term this preconditioner “PFH” for projected Fourier Hessian.

4.1. Numerical experiments for preconditioner as smoother. We report
numerical experiments in which we compare the the effectiveness of a V-cycle multigrid
preconditioner for (1.2) (Table 4), since we are not using an exact coarse-grid operator.
The V-cycle uses linear finite element-based interpolation and restriction operators,
and the preconditioners described above as smoothers. Two cases of regularization
parameter are considered:5 β = 10−3h2

ν , 10−2h2

ν . We also study the effect of the
diffusion coefficient. We consider two cases of diffusion coefficient: ν = 1 and 0.01 are
considered in the spectral domain. In all of the experiments, H̃ is constructed using 20
waveform-Jacobi iterations for the adjoint and forward problems. In Table 4, results
are given for the number of PCG iterations with a V-cycle multigrid preconditioner.
The pointwise preconditioner as smoother converges in a few iterations in all cases,
whereas the K-CG takes an increasingly larger number of iterations in the case of
β = 10−3h2/ν. The pointwise preconditioner is faster than the K-CG in both the
cases. In Figure 3, the decrease in the relative residual is compared for these two
preconditioners as smoothers in the multigrid preconditioner for a PCG solver.

The pointwise preconditioner explicitly approximates the high-frequency spec-
trum using inexact forward and adjoint solves. Whereas, the K-CG uses a single eigen-
value, which is the mesh-dependent parameter ξj to approximate the high-frequency
spectrum. Since the high-frequency spectrum has a wide distribution of eigenvalues,
the pointwise preconditioner performs better than the K-CG, which uses just a single

5The regularization parameter is chosen to trade-off stability and fidelity to the data. In the
present problem, the discretization error is of O(h2) and acts as a noise to the problem. In these
synthetic experiments (in which we commit several “inverse crimes”, [14]) we know that the exact
spectrum of the reduced Hessian, the level of noise, and our reconstructed solution is expected to be
smooth. So the choice regularization is not an issue. In the general case, the choice of regularization
is of paramount importance. But this is beyond the scope of this paper.
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Table 4

The performance of a PCG as a solver with a multigrid preconditioner, with a preconditioner
as a smoother in multigrid. N is the size of the problem, K-PCG corresponds to the PCG iterations
with multigrid preconditioner V (1, 1), with a K-CG as smoother. A mesh-dependent parameter ξj

as defined (4.1) is used in the K-CG. PF-PCG corresponds to the number of PCG iterations with
multigrid preconditioner V (1, 1), with a pointwise preconditioner as the smoother. Stopping criterion
for PCG is ‖r‖/‖r0‖ ≤ 10−12. Two cases of the regularization parameter are considered: Case 1 is
β = 10−3h2/ν, and Case 2 is β = 10−2h2/ν. Coarsest level is 16. Parameters used are ν = 1 and
ν = 0.01, with T = 1, Nt = Ns, and L = 1.

ν = 1

N β(σ > β) K-PCG PF-PCG
512 4e-09 (40) 4e-08 (22) 6 3 4 3
1024 1e-09 (57) 1e-08 (32) 9 3 4 3
2048 2e-10 (81) 2e-09 (45) 13 4 4 3
4096 6e-11 (114) 6e-10 (64) 16 6 4 3

ν = 0.01

N β(σ > β) K-PCG PF-PCG
512 4e-07 (131) 4e-06 (72) 11 5 4 4
1024 1e-07 (183) 1e-06 (102) 15 5 4 4
2048 2e-08 (257) 2e-07 (144) 35 5 4 4
4096 6e-09 (363) 6e-08 (203) 24 7 5 4
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Fig. 3. PCG residual w.r.t. the regularization parameter. The relative residual vs. iteration
number for two cases of a regularization parameter is shown. In this figure, we compare the rate
at which the residual decreases for different preconditioners used as smoothers within the multigrid
preconditioner. Two cases of regularization parameters are considered. Case 1: β = 10−3h2 is
shown on the left, and β = 10−2h2 is shown on the right, where h = 1/4096. King’s preconditioner
(K-CG) converges slower than the pointwise preconditioner in both of the cases. K-CG approximates
the high-frequency spectrum using one eigenvalue, whereas the pointwise preconditioner approximates
the whole distribution of eigenvalues in the high-frequency spectrum, which results in the faster
convergence of the pointwise preconditioner.

eigenvalue to approximate the high-frequency spectrum. Using both the precondition-
ers, we can solve the problem in O(1) iterations as shown in the numerical results.
This is equivalent to solving the forward and adjoint problems a constant number of
times independent of the mesh size and the regularization parameter.

The K-CG has negligible computational cost when compared to the actual re-
duced Hessian matvec. In the case of a pointwise preconditioner, there is an overhead
associated in computing H̃−1 every iteration. For a given residual reduction, it takes
a constant number of CG iterations to invert H̃h. Since the residual reduction is
close to machine accuracy, (H̃h)−1 is a linear operator and creates no convergence
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problems in the smoother. The computational cost of evaluating H̃−1, however, is
much higher than the cost associated with applying the K-CG. When the regulariza-
tion parameter is large, the pointwise preconditioner is not necessary. However, the
pointwise preconditioner approximates the high-frequency spectrum better than the
K-CG. As seen from the numerical results, the pointwise preconditioner converges in
fewer iterations for different cases of regularization parameters and diffusion coeffi-
cients than the K-CG. Therefore, the pointwise preconditioner can be used in cases
where the regularization parameter is too small, though it has more computational
overhead than the K-CG.

Solving the forward and adjoint problems has a computational complexity6 of
O(N2) using multigrid algorithms to solve the linear algebraic system of equations
at each time step in the case of linear problems, where N is the number of grid
points. The pointwise preconditioner has an additional complexity of inverting an
approximate reduced Hessian, which requires a few inexact forward and adjoint solves.
In the worst case, this is equivalent to an additional reduced Hessian matvec at every
pointwise preconditioner operation which has an O(N2) computational cost. This
would change the constants in the overall computational complexity of solving the
problem.

The estimates of the eigenvalue distribution, in general, are computationally ex-
pensive. In such cases, we might have to use the regularization parameter for different
levels. The pointwise preconditioner has a similar effect on the reduced Hessian at all
of the levels for different regularization parameters. From Figure 4 for β = 10−3h2 and
for β = 10−2h2, PFH has a significant clustering of eigenvalues near high-frequency
eigenvectors. Whereas, for the K-CG, if we use the regularization parameter, there
is little clustering of eigenvalues at coarser levels. Hence, using the regularization
parameter instead of the level-dependent parameter would affect the performance of
the K-CG.

5. Two-step stationary scheme as smoother and FFT filtering. As dis-
cussed above, the K-CG is slower than the pointwise preconditioner for smaller regu-
larization parameters. Though the pointwise preconditioner is faster than the K-CG it
has an overhead of computing the inverse of the approximate reduced Hessian at every
iteration. The combination of multigrid with PCG and the pointwise preconditioner
performs well, at least for the simple model. Our target application ultimately will in-
volve variable-coefficient problems and partial observations. In those cases, we expect
a higher number of iterations. Although we can use multigrid as a solver, it would
be preferable to combine it with an outer-PCG acceleration. In the above multigrid
preconditioner, there is no explicit iterative scheme working as a smoother. Therefore,
this cannot be used as a robust preconditioner in variable-coefficient problems and
partial observations.

As an alternative we propose to use an iterative two-step stationary scheme [16]
(Algorithm 2) as a smoother. Then, in the constant coefficient case, one can de-
rive exact smoothing factors. As in classical multigrid theory [12, 19], the analysis
becomes approximate in the case of variable coefficients. One disadvantage of the two-
step solver is that it requires estimates of extreme eigenvalues. To avoid computing
eigenvalues we use a spectral cutoff and analytic spectrum estimates. In this manner,
the smoother is forced to iterate on the high-frequency regime. In the following, we
present the algorithm in detail, analyze its convergence factor, and conduct numerical
experiments to test our hypothesis.

6Nt = O(N).
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Fig. 4. A comparison of the spectrum of the preconditioned reduced Hessian. We report the
discrete spectrum of the preconditioned reduced Hessian with King preconditioner (KH) and point-
wise (PFH) preconditioner in spectral domain for the finest level and different coarser levels. The
PFH preconditioner has a similar clustering of eigenvalues at a high-frequency region at finer and
coarser levels for different values of the regularization parameter. KH does not show a similar trend
at finer and coarser levels for different values of regularization parameter. This would result in the
better performance of PFH than KH for smaller regularization parameters if we use regularization
parameter in the King preconditioner.

Algorithm 2 Standard two-step stationary iterative scheme (Solve AdT = din).
1: σ1 = σmin(A) and σn = σmax(A)
2: ρ = 1−σ1/σn

1+σ1/σn
, α = 2

1+(1−ρ2)1/2 , ξ0 = 2
σ1+σn

, ξ = 2α
σ1+σn

,
3: r = −din, d0 = 0, d1 = ξ0r
4: for i = 1 . . . L do
5: r = Ad1 − din

6: d = αd1 + (1 − α)d0 − ξr
7: d0 = d1, d1 = d
8: end for

Since we are interested in removing the high-frequency error components while
smoothing, we iterate on (3.4) in the smoothing step. In (3.4), the projection oper-
ator I − P h can be defined as a filter which removes the eigenvector components
corresponding to small wave numbers. Let us denote the filtering operation by
W = I − P h. In the present problem, the eigenvectors are sines. Therefore, we can
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Algorithm 3 Projection using Sine Transform.
1: Let u be the input vector, and let v = Wu.
2: û = DST(u) transform into spectral domain.
3: ûk = 0 1 < k < N−1

2 filtering in spectral domain.
4: v = IDST(û) transform back to spatial domain.
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Fig. 5. Eigenvalues for the spectrally filtered reduced Hessian. Here we report the magnitude
of the eigenvalues of the reduced Hessian. Here the W operator represents an exact high-pass filter.
During multigrid smoothing, the composite operator WH is inexactly inverted using a two-step
stationary iterative solver.

use discrete sine transforms to filter the low-frequency components of an input vector
(Algorithm 3).7

The problem that we solve during the smoothing iterations is

(5.1) WHhu = Wg.

Since the null space of W is nontrivial, (5.1) is singular. However, it is proved that
a positive semidefinite system of the form (5.1) can be solved by PCG as long as
the right-hand side is consistent [23]. The two-step iterative scheme (see Figure 5)
requires that all of the eigenvalues of the matrix (WHh) be positive (see section 5.2.3
in [4]). Let W = ZZT , where Z = [vN+1

2
, . . . , vN−1] in which vk correspond to the

kth eigenvector of Hh. The subspace spanned by the eigenvectors [v1, . . . , vN−1
2

] is
invariant and does not influence the convergence rate of the two-step iterative solver.

We define one smoothing step as one iteration of the two-step scheme. In case of
a nonzero initial guess, the error el after l smoothing iterations is given by

(5.2) el =
((

α− 2αWH

σ1 + σn

) (
1− 2WH

σ1 + σn

)
+ (1− α)

)l

e0,

where e0 is the initial error and α is defined in Algorithm 2; σ1 and σn in (5.2)
are defined later. Let e0 = ΣN−1

k=1 mkvk, where vk are the eigenvectors of H and
mk are the corresponding error magnitudes. Assuming that W results in an exact
decomposition (3.2) eigenvalues of WH are σ(WH) = {0, 0, . . . , σN+1/2, . . . , σN−1},
where σk correspond to the kth eigenvalue of the reduced Hessian H . Substitute e0 in
(5.2) and take one smoothing iteration, we get e1

k = mkvk ∀ 1 < k < N−1
2 , where e1

k

is the error component in the kth eigenvector direction after one smoothing iteration.
7This is true only in the present case.
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Fig. 6. Residual reduction in multigrid. Relative residual and error vs. the number of two-level
V (2, 2) cycles for ν = 1 and level six and using H2h

G as the coarse-grid operator.

Similarly,

e1
k =

((
α− 2ασk

σ1 + σn

) (
1− 2σk

σ1 + σn

)
+ (1− α)

)
︸ ︷︷ ︸

μk

mkvk ∀ N + 1
2

< k < N − 1.

Here μk is the amplification factor of the error component in the kth eigenvector di-
rection. The eigenvalues σ1, . . . , σN−1/2 do not affect the iteration. The smoothing
factor μ is given by maxk(μk). To estimate μ we need estimates of σ1 and σn, respec-
tively. For the constant coefficient case we have computed these values analytically
by (2.9): We fix the values of σ1 and σn to be σN and σ(N+1)/2, respectively. Then,
since σ1 ≤ σk ≤ σn, we have μk < 1 ∀ N+1

2 < k < N − 1. Using the exact spectrum
we can also show that the ratio σ1/σn = 1/4, and it is mesh-independent (for β = 0).
In the variable-coefficient case, we use a heuristic. We estimate the σn of the unregu-
larized Hessian using a Krylov method on the reduced Hessian. Then, guided by the
constant coefficient case, we set σ1 = σn/4. For this ratio the smoothing factor μ is
0.288 for ν = 1, 0.01. In Figure 6, we can see that relative residual drops suddenly in
the first V-cycle and maintains a constant ratio thereafter. The reduction in the error
is constant, which is expected. The sudden drop in the relative residual is because of
the coarse-grid correction where the low-frequency error components are removed.

According to the spectrum of Hh low-frequency error components correspond to
large eigenvalues and since r = He, there is a sudden drop in the residual. After the
first V-cycle, the reduction in the residual is less than the first V-cycle. We report
the number of V-cycles to get a relative residual of 10−8 in Table 5 for different mesh
sizes and two diffusion coefficients ν = 1, 0.01. The number of V-cycles is mesh-
independent.

5.1. Multigrid preconditioner. As we have mentioned, one difficulty in de-
signing a multigrid scheme for the reduced Hessian operator is the choice of the
coarse-grid operator. If we use H2h instead H2h

G , we cannot remove certain error
components that belong to the intermediate frequency range (of the fine-grid). These
error components are removed neither by the two-step scheme nor by the coarse-grid
correction. To obtain a working scheme we use PCG as the primary solver and use the
multigrid algorithm as a preconditioner. In this way, we can guarantee error removal
in all frequencies.

We denote the multigrid preconditioner by M−1 (Algorithm 4), and the smooth-
ing operator by S(A, f, u), where A, f , and u, are the matvec operator, the right-hand
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Table 5

Convergence for zero regularization parameter. Here we report the number of V (2, 2)-cycles
(two levels) to reduce the residual by eight orders of magnitude; V1 and V0.01 correspond to experi-
ments with diffusion coefficients ν = 1 and ν = 0.01, respectively. All tests are given for the β = 0
case. The size of the problem is 2level. The initial guess u0 = u∗ + Σk sin(kπx), where u∗ is the
exact solution. The theoretical smoothing factor is 0.288, and the numerical is 0.29. The smoothing
factor is mesh-independent.

Level V1 V0.01

4 16 22
5 22 27
6 25 32
7 26 34
8 24 33

Algorithm 4 Two-level Exact Multigrid Preconditioner (uh = M−1fh).

1: uh = S(WHh, Wfh, 0) presmoothing with Hh.
2: rh = fh −Huh residual evaluation.
3: r2h = I2h

h rh restriction.
4: e2h = (H2h)−1r2h coarse-grid correction.
5: eh = Ih

2heh prolongation.
6: uh = uh + eh correction.
7: uh = S(WHh, Wfh, uh) postsmoothing with Hh.

side, and the initial guess, respectively. We denote the inexact multigrid precondi-
tioner by M̃−1. We term it “inexact” because, in the smoother, we replace the exact
reduced Hessian Hh by an approximation H̃h; H̃h is obtained by replacing exact
forward and adjoint solves to do one reduced Hessian matvec by inexact forward
and adjoint solves. In order to do this, we use a fixed number of Jacobi-waveform
relaxation iterations [30]. The number of waveform relaxation steps have to be in-
creased (with increasing problem size) in order to get a good preconditioner due to
the convergence properties of the Jacobi-waveform relaxation method.

In the Jacobi-waveform relaxation, we solve ordinary differential equations at
every spatial grid point, thus removing the spatial-coupling that arises from the dis-
cretization of the Laplacian operator. This is different from the standard spatial-
weighted Jacobi scheme. The (high-frequency) convergence factors of the weighted-
Jacobi method are mesh-independent—unlike the Jacobi-waveform relaxation that
gives rise to a mesh-dependent convergence factor [30].8

5.2. Results and discussion. In this section, we present results for the con-
stant and variable-coefficient case, as well as the case in which we have partial ob-
servations. We report PCG iterations with multigrid preconditioners M−1 and M̃−1.
We also show the sensitivity of the number of Jacobi-waveform relaxation steps on the
number of PCG iterations. We present numerical results that interrogate the sensi-
tivity of the scheme on the diffusion coefficient, the number of waveform relaxations,
and the coarsening strategy (semicoarsening or space only vs. standard space-time
coarsening).

8One could use standard time-marching schemes in which the exact inversions of the spatial
operator can be replaced by an inexact solve, like weighted-Jacobi.
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Table 6

PCG convergence using the exact high-frequency spectrum of the reduced Hessian. The num-
ber of PCG iterations with the two-level multigrid preconditioner with exact reduced Hessian in
the smoother M−1 and inexact reduced Hessian in the smoother M̃−1. Semicoarsening in space
(subscript sec) and standard coarsening (subscript stc) in space and time are considered. CG is ter-
minated when ‖r‖/‖r0‖ < 10−8 or when the number of iterations is 2N , where N is the size of the
problem. The values in the brackets are the number of eigenvectors not filtered by the regularization.
Here, 16 Jacobi-waveform relaxation sweeps are performed for forward and adjoint solves to do one
matrix-vector operation of H̃.

ν = 1

N β M−1
sec M̃−1

sec M−1
stc M̃−1

stc

31 5e-07 (31) 10 10 10 10
63 1e-07 (44) 9 9 9 9
127 3e-08 (63) 6 6 7 7
255 7e-09 (89) 4 4 4 4

ν = 0.01

N β M−1
sec M̃−1

sec M−1
stc M̃−1

stc

31 5e-03 (31) 14 14 13 13
63 1e-03 (44) 13 13 13 13
127 3e-04 (63 10 10 10 10
255 7e-05 (89) 7 7 7 7

5.2.1. Constant coefficients case. Results for two cases of diffusion coeffi-
cients ν = 1 and 0.01 are given in Table 6. The convergence of PCG is mesh-
independent. We are reporting results for both two-level and multiple V-cycle pre-
conditioners. The condition number of Hh is κ = O(N4), where N is the size of
the problem. Therefore, without a preconditioner the number of CG iterations will
be O(N2). With the multigrid preconditioner, the number of CG iterations becomes
mesh-independent O(1). Using backward-Euler time-stepping (combined with a fast
elliptic solver) for the forward and adjoint problems, the amount of work done for
each reduced Hessian matvec is O(NNt +N log2 N), where the first term comes from
the forward and adjoint solve with Nt time steps, and the second part comes from the
multigrid sweeps (the square in the logarithm is related to the fast sine transforms).
Therefore, the total amount of work done to solve the system is brought down from
O(N4) to O(N2). Therefore, the solution of the inverse problem requires solving the
forward problem Q times, but Q is independent of the regularization parameter and
the mesh size.

5.2.2. Nonconstant coefficient case. We extend the above ideas to solve in-
verse problems in parabolic problems with nonconstant coefficients:

∂y

∂t
−Δy = ay + bu in D, y = 0 on ∂Ω, y(Ω, 0) = 0 in Ω.

Equations of this kind are obtained when a nonlinear reaction-diffusion equation is
linearized. In this case, sines are not the eigenvectors of the reduced Hessian. We
assume that a and b are smooth and bounded. Therefore, the Fourier coefficients of
a and b decay to zero relatively fast. From this assumption, the contribution of a
and b to the spectrum of the forward problem in the high-frequency region is negli-
gible. Using this observation and considering the computational cost of constructing
the exact high-frequency eigenspace of the reduced Hessian, we use sine transforms
to decompose the finite-dimensional space to get acceptable convergence. The nu-
merical results that we next discuss indicate that our assumption is reasonable. The
reconstructed source is depicted in Figure 8.
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Table 7

Convergence comparisons for PCG using inexact approximations of the reduced Hessian. We
report the number of PCG iterations using a multigrid preconditioner that employs (in the smoother)
either an exact reduced Hessian M−1 or an inexact reduced Hessian M̃−1. Semicoarsening in space
(subscript sec) and standard coarsening (subscript stc) in space and time are considered. PCG is
terminated when ‖r‖/‖r0‖ < 10−8. The values in the brackets in the column β are the number of
reconstructed eigenvectors (not filtered by the regularization). The size of the coarsest level problem
is 15. Here 16 Jacobi-waveform relaxation steps are done for forward and adjoint solves to do one
matrix-vector operation of H̃.

ν = 1.0

N β M−1
sec M̃−1

sec M−1
stc M̃−1

stc

31 5e-07 (31) 10 10 10 10
63 1e-07 (44) 13 13 13 17
127 3e-08 (63) 13 14 14 16
255 7e-09 (89) 13 19 13 16
511 2e-09 (127) 15 18 15 17
1023 5e-10 (180) 15 17 15 17

ν = 0.01

N β M−1
sec M̃−1

sec M−1
stc M̃−1

stc

31 5e-03 (31) 14 14 13 13
63 1e-03 (44) 17 17 17 17
127 3e-04 (63) 20 20 19 21
255 7e-05 (89) 23 24 21 23
511 2e-05 (127) 24 26 24 27
1023 5e-06 (180) 25 28 25 30

Two cases of coarsening strategies are implemented: (1) semicoarsening in space
and (2) standard-coarsening is space and time. The mesh-independent convergence
of PCG with a multigrid preconditioner is observed in the case of M−1, whereas
the performance of M̃−1 slightly deteriorates with mesh size. Standard coarsening
does not perform as well as semicoarsening. This can be explained by the fact that
the convergence factors of the Jacobi-waveform relaxation are mesh dependent, given
by 1 −O(h2), and the convergence factors using standard-coarsening are worse than
semicoarsening [22]. If we increase the number of Jacobi-waveform relaxation steps
with the mesh size, then we could observe that the number of PCG iterations with a
M̃−1 preconditioner will tend to the number of iterations taken by M−1. The results
of PCG with multigrid preconditioners is shown in (Tables 7 and 8). The sensitivity
of number of PCG iterations with increasing number of Jacobi-waveform relaxation
steps is reported in Table 9. The number of PCG iterations taken by M̃−1 decrease
with an increase in Jacobi-waveform relaxation steps. A lower bound to the number
of iterations taken by M̃−1 is the number of iterations taken by M−1. The overall
computational complexity in using M−1 and M̃−1 differs only by a constant if we use
a sufficient number of Jacobi-waveform relaxation steps in M̃−1.

In Table 10, we report the number of PCG iterations when the data is given at
seven equally spaced points in space at all of the time steps. An exact multigrid
preconditioner with a standard-coarsening of the exact reduced Hessian and an ap-
proximate multigrid preconditioner with semicoarsening of the approximate reduced
Hessian are considered. Results in Table 10 show that the multigrid preconditioners
presented here are robust even in practical situations when the data is sparse.

6. Full-space methods. A disadvantage of a reduced-space approach is the
need to solve the forward and adjoint problems far from the optimum. In this section,
we discuss full-space methods where the optimality system is solved for state, adjoint,
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Table 8

Multigrid performance for the variable coefficient case. The number of CG iterations for the
two-level preconditioner with exact reduced Hessian in the smoother M−1 and inexact reduced Hes-
sian in the smoother M̃−1. Semicoarsening in space (subscript sec) and standard coarsening (sub-
script stc) in space and time are considered. CG is terminated when ‖r‖/‖r0‖ < 10−8 or when the
number of iterations is 2N , where N is the size of the problem. Case I has a = û and b = ŷ, and
Case II has a = 2ŷû and b = ŷ2, where ŷ is a traveling wave with a Gaussian shape (Figure 7) and
û = Gaussian(0.2) + sin(πx) (0.2 is the center of the Gaussian). Here 8 Jacobi-waveform relaxation
sweeps are performed in all of the cases in M̃−1.

CASE I : a = û, b = ŷ

N β M−1
sec M̃−1

sec M−1
stc M̃−1

stc

31 2e-06 12 15 13 16
63 5e-07 11 11 13 13
127 1e-07 10 10 12 12
255 3e-08 8 9 10 10

CASE II : a = 2ŷû, b = ŷ2

N β M−1
sec M̃−1

sec M−1
stc M̃−1

stc
31 2e-06 13 15 14 15
63 5e-07 11 12 15 15
127 1e-07 11 11 11 11
255 3e-08 9 9 10 10
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Fig. 7. Parabolic PDE with variable coefficients. We have constructed a traveling wave solution
to emulate solutions to reaction-diffusion equations. The function ŷ(x, t) is used to evaluate a(x, t)
and b(x, t), which are then used in numerical experiments. The inversion parameter u is depicted
on the left panel.

and inversion variables in one shot. The main advantage of a full-space method is
that we can avoid solving the forward and adjoint problems at each reduced Hessian
matrix-vector multiplication. On the other hand, the size of the KKT system is more
than twice as big as the size of the forward problem. Furthermore, the KKT system is
ill-conditioned and indefinite. For such systems, Krylov solvers are slow to converge.
Therefore, a good preconditioner is required to make the full-space method efficient.
A Lagrange–Newton–Krylov–Schur preconditioner (LNKS) has been proposed in [7]
and [8] in the context of solving optimal control problems with elliptic PDE con-
straints. Space-time multigrid methods for a parabolic PDE have been considered
in literature [22]. In the present problem, we have two coupled PDEs with opposite
time orientation, something that poses a significant challenge to a multigrid scheme.
These issues have been considered, and to a great extend addressed, in [9] in which
a new time-split collective Gauss–Seidel method (TS-CGS) was introduced. In [9],
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Fig. 8. Reconstructed source. Here we show the reconstructed curves in the real (left column)
and frequency domains (right column) for N = 64 and two values of the regularization parameter.

Table 9

Dependence on the fidelity of the reduced Hessian approximation. The number of CG iterations
for a multilevel preconditioner with exact reduced Hessian in the smoother M−1 and inexact reduced
Hessian in the smoother M̃−1. Semicoarsening in space (subscript sec) and standard coarsening
(subscript stc) in space and time are considered. CG is terminated when ‖r‖/‖r0‖ < 10−8 or when
the number of iterations is 2N , where N is the size of the problem. Case I has the a = û and
b = ŷ, and Case II has a = 2ŷû and b = ŷ2, where ŷ is a traveling wave with a Gaussian shape
(Figure 7) and û = Gaussian(0.2) + sin(πx) (0.2 is the center of the Gaussian). The number of
Jacobi-waveform relaxation steps used in M̃−1 is given in brackets.

CASE I : a = û, b = ŷ

N β M−1
sec M̃−1

sec (8) M̃−1
sec (16) M̃−1

sec (32) M−1
stc M̃−1

stc (8) M̃−1
stc (16) M̃−1

stc (32)

31 2e-06 12 15 14 15 13 16 15 15

63 5e-07 13 16 15 14 14 16 16 16

127 1e-07 14 27 24 18 17 40 30 30

255 3e-08 18 52 37 26 23 - - -

CASE II : a = 2ŷû, b = ŷ2

N β M−1
sec M̃−1

sec (8) M̃−1
sec (16) M̃−1

sec (32) M−1
stc M̃−1

stc (8) M̃−1
stc (16) M̃−1

stc (32)

31 2e-06 13 15 15 15 14 15 15 15

63 5e-07 14 16 16 16 16 21 21 20

127 1e-07 16 27 28 21 18 - 30 23

255 3e-08 19 140 60 32 20 - - -

a space-time control variable was used, penalized by an L2 term. The optimality
condition with respect to the controls is simply a scalar relation between the control
and Lagrange multipliers. In our case, the control equation is an algebraic-integral
equation.

In the following, we discuss LNKS and TS-CGS for our setting. We follow the
notation in [9].



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MULTIGRID FOR INVERSE PROBLEMS WITH PARABOLIC PDEs 391

Table 10

Variable coefficients and partial observations. The number of PCG iterations for a multilevel
preconditioner for seven observations on the spatial grid. Semicoarsening in space is represented
by subscript sec and standard coarsening is represented by subscript stc. CG is terminated when
‖r‖/‖r0‖ < 10−8. Case I has the a = û and b = ŷ, and Case II has a = 2ŷû and b = ŷ2, where ŷ
is a traveling wave with a Gaussian shape (Figure 7) and û = Gaussian(0.2) + sin(πx) (0.2 is the
center of the Gaussian).

CASE I : a = û, b = ŷ

N β M−1
stc M̃−1

sec (32)
31 2e-04 13 13
63 5e-05 15 15
127 1e-05 18 22
255 3e-06 19 23

CASE II : a = 2ŷû, b = ŷ2

N β M−1
stc M̃−1

sec (32)
31 2e-04 13 13
63 5e-05 15 15
127 1e-05 18 21
255 3e-06 18 23

6.1. Lagrange–Newton–Krylov–Schur method (LNKS). First, we briefly
discuss the LNKS method proposed in [7] and [8]. The LNKS method is based on the
block factorization of the KKT system which is shown below. (Please refer to [7] for
further details.)

K =

⎡
⎣ I 0 JT

0 βI CT

J C 0

⎤
⎦ =

⎡
⎣ J−1 0 I

0 I CT J−T

I 0 0

⎤
⎦

⎡
⎣ J C 0

0 H 0
0 −J−1C JT

⎤
⎦ .(6.1)

The KKT preconditioner P is then defined as

P̃ =

⎡
⎣ 0 0 I

0 I CT J̃−T

I 0 0

⎤
⎦

⎡
⎣ J̃ C 0

0 B 0
0 0 J̃T

⎤
⎦ .(6.2)

In P̃ , exact forward J−1 and adjoint solves J−T are replaced by inexact solves J̃−1

and J̃−T , respectively. The preconditioned KKT matrix is P̃−1K, where

P̃−1 =

⎡
⎣ J̃−1 −J̃−1CB−1 0

0 B−1 0
0 0 J̃−T

⎤
⎦

⎡
⎣ 0 0 I

−CT J̃−T I 0
I 0 0

⎤
⎦ .(6.3)

An outline of applying the LNKS preconditioner as a smoother to a vector is given
in Algorithm 5. This preconditioner can be used as an accelerator for an iterative
solver for liner systems. A popular method for solving large symmetric indefinite
systems is MINRES [4]. One major disadvantage of MINRES is that it requires a
symmetric positive definite preconditioner, despite the fact that the KKT is indefinite.

Algorithm 5 LNKS smoother.
1: Given y, u, λ, and f = [fy, fu, fλ].
2: Evaluate f̃y = y + JT λ− fy, f̃u = u + CT λ− fu, f̃λ = c− fλ,
3: where c = Jy + Cu
4: H̃pu = f̃u H̃ : pointwise preconditioner.
5: J̃py = f̃y − Cpu Inexact forward solve.
6: J̃T pλ = f̃λ − py Inexact adjoint solve.
7: y = y − py, u = u− pu, and λ = λ− pλ. Update.
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Alternatively, the symmetric quasi-minimum residual method (SQMR) can be used
with indefinite preconditioners but it requires two matvecs per Krylov iteration, and
it does not take advantage of the fact that the KKT system is symmetric [17]. In all
of the numerical experiments with LNKS we use SQMR.

We now discuss a multigrid scheme for the full KKT matrix. We use a V-cycle,
with standard restriction and prolongation, and one application P̃ as smoother. The
goal is to remove high-frequency error components in the state, adjoint, and inversion
variables in each step of the smoother without doing exact forward or adjoint solves.
Therefore, we use the waveform-Jacobi method. To update the inversion variables we
use the pointwise preconditioner discussed in section 4.

6.2. Time-split Collective Gauss–Seidel (TS-CGS). In this method, we
eliminate the inversion variables using the inversion equation (6.4),

(6.4) βu −
∫

T

λd t = 0 in Ω.

(This cannot be done for β = 0.)
Therefore, we can rewrite the KKT system as follows:

∂y

∂t
−Δy =

1
β

∫
T

λd t, y(Ω, 0) = y0, y(∂Ω, t) = 0,

−∂λ

∂t
−Δλ = −(y − y∗), λ(Ω, 0) = 0, λ(∂Ω, t) = 0.(6.5)

Using finite differences for the Laplacian and backward-Euler scheme in time (6.5),
the above system can be written as

[1 + 2γ]yim − γ[yi−1m + yi+1m]− yim−1 =
δt2

β

Nt∑
k=1

λik(6.6)

[1 + 2γ]λim − γ[λi−1m + λi+1m]− λim+1 = −δt(yim − y∗
im),(6.7)

where γ = δt
h2 and i, m represent the spatial and temporal indices of the variables,

respectively. In the case of a collective Gauss–Seidel iteration, let us denote the
variables as φk = (yk, λk) at each grid point. We can write (6.6), (6.7) as E(φim) =
[f − A(φim)] = 0 at the grid point im. Let E′ be the Jacobian of E with respect
to (yk, λk). One step of the collective Gauss–Seidel scheme is given by φ1

im = φ0
im −

[E′(φ0
im)]−1E(φ0

im). This scheme performs well for steady state problems [11], but it
diverges in the case of an optimal control of a parabolic PDE because of the opposite
time orientation of the state and adjoint equations. In order to overcome this problem,
TS-CGS iteration was proposed in [9] (Algorithm 6). Following [9], we use Fourier
mode analysis to analyze the convergence properties of the two-grid version of the
inverse solver. Let the smoothing operator be Sk, and let the coarse-grid correction
be given by CGk−1

k . Fourier symbols are represented with a hat. On the fine grid
consider the Fourier components φ(j, θ) = eij·θ, where i is the imaginary unit, j =
(jx, jt) ∈ Z ×Z, θ = (θx, θt) ∈ [π, π)2, and j · θ = jxθx + jtθt. The frequency domain
is spanned by θ(0,0) := (θx, θt) and θ(1,0) := (θ̄x, θt) (θx, θt) ∈ ([−π/2, π/2)× [−π, π)),
and θ̄x = θx − sign(θx)π. Let Eθ

k = span[φk(·, θα) : α ∈ {(0, 0), (1, 0)}. Assuming
all multigrid components are linear and that A−1

k−1 exists, the Fourier symbol of the
two-grid operator TGk−1

k on the space Eθ
k × Eθ

k is given by
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Algorithm 6 Time-split Collective Gauss–Seidel Method (TS-CGS).

1: Set φ0 = φ̃
2: for m = 1, ..., Nt do
3: for i in lexicographic order do
4: y1

im = y0
im − [E′(φim)]−1E(φim)|y

5: λ1
iNt−m = λ0

iNt−m − [E′(φim)]−1E(φim)|λ
6: end for
7: end for

(6.8) ˆTG
k−1

k (θ) = Ŝk(θ)m2ĈG
k−1

k (θ)Ŝk(θ)m1 ,

where m1 and m2 are the number of presmoothing and postsmoothing iterations,
respectively. Using (6.6) and (6.7), the Fourier symbol of the smoothing operator is
given by

Ŝ(θ) = diag{σ(θ(0,0)), σ(θ(1,0)), σ(θ(0,0)), σ(θ(1,0))},
where

σ(θ(p,q)) =
βγ(2γ + 1)eiθp

x

δt3
∑Nt

k=1 ei(k−m)θq
t + β(2γ + 1)[1 + 2γ − γe−iθp

x − e−iθq
t ]

.

The smoothing property of the operator Sk is analyzed assuming a perfect coarse-
grid correction that removes all of the low-frequency error components and leaves the
high-frequency error components unchanged. The smoothing property of Sk is defined
by

μ = max{r(P̂ k−1
k (θ)Sk(θ)) : θ ∈ ([−π/2, π/2)× [−π, π))},

where r is the spectral radius and P k−1
k is the projection operator defined on Eθ

k by

P k−1
k φ(θ, ·) =

{
0 if θ = θ(0,0),

φ(·, θ) if θ = θ(1,0).

The Fourier symbol for a full-weighting restriction operator is given by

Îk−1
k =

1
2

[
1 + cos(θx) 1− cos(θx) 0 0

0 0 1 + cos(θx) 1− cos(θx)

]
,

and the linear prolongation operator is given by Îk
k−1(θ) = Îk−1

k (θ)T . The symbol of
the fine grid operator is

Âk(θ) =

⎡
⎢⎢⎢⎣

ay(θ(0,0)) 0 −δt2/β 0
0 ay(θ(1,0)) 0 −δt2/β

δt 0 ap(θ(0,0)) 0
0 δt 0 ap(θ(1,0))

⎤
⎥⎥⎥⎦ ,

where

ay(θ(p,q)) = 2γ cos(θp
x)− e−iθq

t − 2γ − 1 and ap(θ(p,q)) = 2γ cos(θp
x)− eiθq

t − 2γ − 1,
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Fig. 9. Convergence factors for TS-GCS. Convergence factor as a function of β and γ when
(left) the source term is u [9] and (right) for inverse problem when the source term is u. When the
source term is a function of space, convergence factors are greater than 1 for a certain range of β
and γ.

and the coarse-grid correction factor is given by

Âk−1(θ) =

[
by(θ(0,0)) −δt2/β

δt bp(θ(0,0))

]
,

where

by(θ(p,q)) = γ cos(2θp
x)/2−e−iθq

t −γ/2−1 and bp(θ(p,q)) = γ cos(2θp
x)/2−eiθq

t −γ/2−1.

Using (6.8) for the definition of the two-grid operator we can evaluate the con-
vergence factor by

(6.9) η(TGk−1
k ) = sup{r( ˆTG

k−1

k (θ)) : θ ∈ ([−π/2, π/2)× [−π, π))}.
In [9], Fourier mode analysis was carried for a spatiotemporal course time, and

the convergence factors were less sensitive to γ and β. In the present problem, this is
not the case: for small values of β the method fails to converge (Figure 9).

6.3. Numerical results. In Table 11, we report SQMR iterations using LNKS
preconditioner P and the multigrid preconditioner MG with P̃ as a smoother for three
values of the regularization parameter. SQMR converges to the required tolerance in
constant iterations using P and MG. SQMR with MG preconditioner takes less
iterations than with P preconditioner. In P , one exact forward and adjoint solve are
performed during each application of P . In MG, only inexact forward and adjoint
solves are done at every iteration at different levels of multigrid. One major advantage
of solving the problem in full space and using the multigrid preconditioner, is that we
avoid any forward or adjoint solves which are inevitable in reduced-space methods.
Even in this case, the computational complexity is O(N2), as we need to do a KKT
matvec at every iteration.

In Table 12, convergence factors and residuals of the multigrid solver using TS-
CGS smoother are given. The multigrid solver converges for β = 10−2, 10−4 and
diverges in the case of β = 10−6. This agrees with the convergence factors estimates
obtained from Fourier mode analysis, which show that the multigrid solver using TS-
CGS smoother has convergence factors greater than 1 for certain combination of β
and γ.
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Table 11

LNKS preconditioner. The performance of the preconditioned SQMR solver for a constant
regularization parameter. Here P represents the number of SQMR iterations with the single-grid
version of the LNKS preconditioner; MG corresponds to SQMR iterations using a multigrid LNKS
preconditioner with P̃ as smoother. The stopping criterion for SQMR is ‖r‖/‖r0‖ ≤ 10−8 in all
cases. Three cases of regularization are considered, β = 10−2, 10−4, and 10−6, respectively.

N × Nt β P
17 x 8 1e-02 1e-04 1e-06 10 21 36
33 x 16 1e-02 1e-04 1e-06 13 21 51
65 x 32 1e-02 1e-04 1e-06 14 21 54
129 x 64 1e-02 1e-04 1e-06 14 21 56

N × Nt β MG
17 x 8 1e-02 1e-04 1e-06 5 7 12
33 x 16 1e-02 1e-04 1e-06 7 8 16
65 x 32 1e-02 1e-04 1e-06 10 10 17
129 x 64 1e-02 1e-04 1e-06 12 12 17

Table 12

TS-CGS results for inverse problem. We observe that the convergence is not sensitive to a
decrease in the regularization parameter for a larger regularization parameter. For a smaller regu-
larization parameter, the multigrid solver diverged (β < 10−4), which agrees with the Fourier mode
analysis (see Figure 9).

N × Nt β ρ ry rλ

17 x 8 1e-02 0.091 5e-10 1e-10
33 x 16 1e-02 0.101 3e-10 1e-10
65 x 32 1e-02 0.127 4e-09 5e-10
129 x 64 1e-02 0.130 5e-09 7e-10
17 x 8 1e-04 0.127 5e-08 3e-10
33 x 16 1e-04 0.134 2e-08 1e-10
65 x 32 1e-04 0.130 1e-08 7e-11
129 x 64 1e-04 0.131 2e-08 1e-10

7. Conclusions. In this paper, we presented multigrid algorithms for inverse
problems with linear parabolic PDE constraints. Our algorithms are designed for the
case in which the inversion variable depends only in space. Although there is prior
work on multigrid for optimization problems, there is limited work on algorithms for
vanishing regularization parameters. Assuming that we have sufficient information
in the data and we need accurate reconstructions, most existing schemes will fail to
deliver mesh-independent convergence rates. In this paper, our aim is to construct
and analyze schemes that are robust to the vanishing regularization parameter and
allow fast high-fidelity reconstructions. Our work is an extension of the work discussed
in [26] and [24].

The novel component in our multigrid scheme is the smoother. We use a high-
pass filter that allows an iterative solver to work exclusively in the high-frequency
regime. A second novel component is the acceleration of the computation by using
appropriate inexact versions of the reduced Hessian. By using an exact high-pass
filter and a two-step stationary iterative solver as a preconditioner, we were able to
analyze the behavior of the algorithm. The overall scheme uses a V-cycle multigrid
to accelerate a CG solver that iterates in the reduced space. In addition, we proposed
alternative smoothing strategies that use cheaper high-pass filters, and we conducted
numerical experiments to examine the effects of the diffusion, and the effect of the
coarse-grid operator. The high-frequency projections are preferable but are limited
to the cases in which Fourier-type expansions can be carried through fast transforms.
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Our numerical experiments gave promising results and justified the extension
of our scheme to problems with variable-coefficient PDE constraints. Finally, we
combined the reduced space with a full-space solver so that we avoid solving a forward
and an adjoint problem at each optimization iteration. We also tested the method
using partial measurements, but the 1-D problem may hide difficulties (associated
with partial observations) that appear in higher dimensions.

All of the implementations were in MATLAB, and no effort was made to optimize the
code. We refrained from reporting wall-clock times. We should emphasize, however,
that, although the method has optimal complexity, the associated constants can be
high. In fact, if the number of the sought frequencies in the reconstructed field is
small, then the regularization parameter should be set to a relatively large value. In
that case, one can use much cheaper solvers; for example, schemes based on the K-CG
and inexact L2 projections.

We would like to caution the reader that we have committed several “inverse
crimes” by choosing attainable observations, the simplest possible regularization, and
zero noise (besides the discretization error). These parameters significantly change
the quality of the reconstruction and can potentially alter the behavior of the solvers.
These topics, however, are beyond the scope of the present paper.

Spectral properties for the reduced Hessian and restriction and prolongation oper-
ators can be derived for higher dimensions using a tensorial notation. Algorithms 1, 4,
and K-CG can be extended to higher dimensions by using the two-dimensional (2-D)
or three-dimensional (3-D) analogue of the intergrid transfer operators presented in 3.
Algorithms 2, 5, and 6 can be directly applied for higher dimensions. For Algorithm
3, 2-D and 3-D fast Fourier transforms have to be used to perform spectral filter-
ing. Hence, different algorithms can be extended to higher dimensions though the
implementation is not straightforward. We are currently working on parallel imple-
mentation in higher dimensions. Further complexity analysis and algorithmic tuning
are required to implement an efficient and parallelizable scheme. Most important, an
optimal method is highly problem dependent. For example, in the case of sparse par-
tial observations, the full-space method has much higher storage requirements than
the reduced-space approach (this is a reason we pursued reduced-space methods). Our
method can be used for nonlinear problems, for example, within a Newton multigrid
context. Alternatively, nonlinear multigrid methods can be considered.
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