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Complex coacervation, a liquid-liquid phase separation that occurs when two oppositely charged
polyelectrolytes are mixed in a solution, has the potential to be exploited for many emerging ap-
plications including wet adhesives and drug delivery vehicles. The ultra-low interfacial tension of
coacervate systems against water is critical for such applications, and it would be advantageous if
molecular models could be used to characterize how various system properties (e.g., salt concen-
tration) affect the interfacial tension. In this article we use field-theoretic simulations to character-
ize the interfacial tension between a complex coacervate and its supernatant. After demonstrating
that our model is free of ultraviolet divergences (calculated properties converge as the collocation
grid is refined), we develop two methods for calculating the interfacial tension from field-theoretic
simulations. One method relies on the mechanical interpretation of the interfacial tension as the in-
terfacial pressure, and the second method estimates the change in free energy as the area between
the two phases is changed. These are the first calculations of the interfacial tension from full field-
theoretic simulation of which we are aware, and both the magnitude and scaling behaviors of our
calculated interfacial tension agree with recent experiments. © 2012 American Institute of Physics.
[doi:10.1063/1.3674305]

I. INTRODUCTION

A variety of mature and emerging technologies depend
critically on the association of oppositely charged polymers
or particles. Such association can take the form of layer-by-
layer assembly of polymers on a charged substrate,1, 2 or it
could involve charge complexation in solution.3–5 Examples
of emerging technologies that rely on these and related phe-
nomena include wet adhesives for medical, construction, con-
sumer, and military use,6, 7 advanced biosensors, drug and
gene delivery vehicles,8–10 and responsive and switchable
surfaces.11, 12 When the association takes place in solution, de-
pending on the strength of the polyelectrolyte and the solvent
conditions, the resulting polyelectrolyte complex can either
be a solid precipitate or a polyelectrolyte-rich liquid phase
termed a “complex coacervate.” Many of the applications ex-
ploiting complex coacervation that are currently under explo-
ration depend critically on the interfacial properties of the
coacervate phase with its supernatant, notably the ultra-low
interfacial tension, yet the characterization of the interfacial
properties of these systems has been limited.5, 13

It would be advantageous to employ modeling techniques
to investigate the interfacial properties of coacervate systems,
but it is a significant challenge to simulate such phases; ac-
curate descriptions of the coacervate phase must take into
account both the long-range electrostatic effects as well as

a)Electronic mail: ghf@mrl.ucsb.edu.

maintain the short-range connectivity of the polymer chains.
Due to the long relaxation times inherent in polymers and
the expense of incorporating electrostatic interactions using
Coulomb’s law, particle-based simulations of the association
of oppositely charged polyelectrolytes has been limited to rel-
atively small systems.

An alternative approach to particle-based models is to use
polymer field theory. Complex coacervation is a phase behav-
ior that is driven by electrostatic correlations, and this has im-
portant consequences if one chooses to adopt a field-theoretic
approach to the study of coacervation. Fluctuation/correlation
effects are completely ignored in the commonly-employed
self-consistent field theory (SCFT), and this means that SCFT
is unable to capture complex coacervation. One can include
field fluctuations by using the random-phase approximation
(RPA), which incorporates fluctuations and electrostatic cor-
relations at the Gaussian level.14–18 The RPA has also recently
been used to explore the effects of chain stiffness on com-
plex coacervation,19 showing that rod-like charged polymers
can form a variety of phases, including various nematics in
addition to coacervate phases. The phase envelope between
an isotropic coacervate phase is much smaller for the rod-
like polymers than for fully flexible polymers, indicating that
chain stiffness can play a significant role in coacervation.

Several recent developments have made “field-theoretic
simulations” (FTS) tractable,20, 21 where the full fluctuations
of the fields are taken into account. Recently, such an ap-
proach has been used to study complex coacervation.22, 23 The
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phase diagram estimated from RPA was compared to the dia-
gram calculated on the full FTS treatment, and it was shown
that in the limit of high polymer concentrations, RPA does a
satisfactory job of capturing the fluctuation effects and pre-
dicts a qualitatively accurate phase diagram. However, the
RPA approach becomes inaccurate for systems with a high
charge density, because it overestimates the charge correla-
tions.

These previous studies demonstrate the promise of us-
ing field-theoretic approaches to describe coacervation. One
challenge of adopting the field-theoretic approach is that it is
a relatively new class of simulation, and therefore the tech-
niques to calculate important material properties (e.g., the in-
terfacial tension) have not yet been developed. In this study,
we extend the previous FTS of complex coacervation22, 23 by
characterizing the interfacial properties between the coacer-
vate and the solvent. Density profiles are calculated, and we
adapt two techniques from the literature on particle-based
simulations to calculate the interfacial tension from field-
theoretic simulations. The two techniques differ considerably
in their approach, and the interfacial tensions calculated from
each technique agree with each other to within our uncer-
tainty. We use our simulations to explore various scaling re-
lationships between the interfacial tension and various sys-
tem parameters (e.g., salt concentration and polymer charge
density).

The rest of this article is organized as follows. In Sec. II,
we describe our field-theoretic model in detail, our simulation
techniques, and the two methods for calculating the interfacial
tension. In Sec. III, we summarize our results for the density
profiles, phase diagrams, and interfacial tension trends as we
vary different system parameters. Sec. IV discusses our re-
sults in the context of different levels of theory and discusses
the various scaling relationships. Finally, Sec. V summarizes
our work.

II. THEORY AND METHODS

A. Polyelectrolyte model

The model considered in this work is similar to that
considered in previous field-theoretic studies of polyelec-
trolyte systems exhibiting complex coacervation22, 23 with
some modifications. For completeness and to highlight some
of the differences between our field- theoretic model and pre-
vious incarnations of the model, we will recount the model in
detail. Our systems consist of flexible polycations and polyan-
ions as well as small ions (counterions and salt). We model
our polymer molecules as continuous Gaussian chains with a
chain length of N and a uniformly distributed charge density
along their backbone; there are n+ polycations and n− polyan-
ions. The valency of each charge on the polycations is given
by Z (−Z for the polyanions), and the linear charge densities
of the polycations and polyanions are given by β+ and β−,
respectively. Such a homogeneous charge density along the
polymer backbone is valid at relatively low charge densities,
but for strongly-charged polymers, the discrete nature of the
charges is important and models with both discrete charges
and harsh repulsive (hard-core) short-ranged interactions be-

come necessary.24, 25 In addition to the polymer chains, there
are ns+ salt cations with a valency of Zs + and ns− salt anions
with a valency of Zs −. The small ions, both counterions and
salt species, are modeled as point particles.

Many field-theoretic models possess so-called ultravio-
let divergences (UV divergences); their properties can de-
pend strongly on the underlying grid spacing used to solve
the field theory equations, and certain properties diverge as
the underlying grid is refined. Such divergences do not show
up at the mean-field limit, and they are avoided for cases
where SCFT is sufficient. The divergences arise due to infinite
contact potentials such as the commonly-used Edwards delta
function potential26 or, in the case of charged systems like
those considered here, the Coulomb potential.26–28 For cal-
culations going beyond the mean-field approximation, these
divergent terms are usually managed by either ignoring the di-
vergent terms, applying a cut-off to the potential, or subtract-
ing out a known reference state. In a recent important study of
simple (non-polymeric) electrolyte solutions, Wang demon-
strated that by distributing the charges for each small ion over
a small volume (as opposed to the typical point charge model),
he could derive a field-theoretic model for electrolytes that
is free of UV divergences.27 We adopt this approach to both
the electrostatic interactions and the short-range excluded vol-
ume interactions in our model by distributing the mass and the
charge of both polymer segments and small ions over a small
volume. This effectively makes the potentials go smoothly to
finite values at small distances.

For our polymer species we consider both the mass and
the charge to have a Gaussian distribution about a central
point, and the small ions that are treated are assumed to be
massless/volumeless particles carrying a charge that has a
Gaussian spatial distribution. Treating the small ions as mass-
less/volumeless particles, we can write the density of our
polycations and polyanions as

ρ̂±(r) = N

n±∑
j

∫ 1

0
ds �[r − rj (s)], (1)

where s is the position along the j th polymer contour, and

�(r − r′) =
(

1

2π2a2

)3/2

e−|r−r′ |2/2a2
(2)

is a normalized Gaussian function that approaches a delta
function as a → 0. The parameter a controls the breadth of
the distribution of mass and charge; we choose a to be equal
to the polymer statistical segment size, as we expect the mass
and charge inside a statistical segment to be distributed over a
length comparable to a.

The polymer chains are modeled as continuous Gaussian
chains with a harmonic bond-stretching potential

βU0 = 3

2a2

n±∑
j=1

∫ 1

0
ds

∣∣∣∣drj (s)

ds

∣∣∣∣
2

. (3)

Here, a is the size of a statistical segment of the poly-
mers, β = 1/kBT, and s is the position along the contour
of the polymer chain. The polymer segments interact with a
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short-ranged, purely repulsive excluded volume potential
given by

βU1 = u0

2

∫
dr [ρ̂P (r)]2. (4)

The excluded volume parameter u0 has units of volume and
controls the strength of the repulsive interaction. The electro-
static interactions are taken through Coulomb’s law

βU2 = 1

2

∫
dr

∫
dr′ ρ̂c(r)

lB

|r − r′| ρ̂c(r′), (5)

where lB = βe2/ε is the Bjerrum length, the dielectric constant
of the medium (taken to be uniform) is ε, and e is the funda-
mental unit of charge. The Bjerrum length is the length scale
on which the energy of the electrostatic interaction between
two elementary charges is kBT in a given dielectric medium.
ρ̂c(r) is the total charge density given by

ρ̂c(r) = Zβ+ ρ̂+(r) − Zβ− ρ̂−(r) + Zs+ ρ̂s+(r) + Zs− ρ̂s−(r).

(6)

Taken together, we can write the partition function for
our system in the canonical ensemble as

Z = Z0

n+!n−!ns+!ns−!

×
∫

DrnP

∫
drns exp[−βU0 − βU1 − βU2], (7)

where nP = n+ + n− is the total number of polymer chains,
Z0 contains the thermal de Broglie wavelengths and the self-
interaction terms,

∫
Dr represents the path integral over the

polymer contours, and ns = ns + + ns − is the total number of
small ions. It is assumed that the salt ions and the counteri-
ons are indistinguishable. We are now in a position to convert
our particle model into a field-based theory through the usual
Hubbard-Stratonovich transformation,28 resulting in a field-
based partition function:

Z = Z0 V nP +ns

n+!n−!ns+!ns−! �0 �0

×
∫

Dw

∫
Dψ exp(−H [w,ψ]). (8)

H[w, ψ] is the effective Hamiltonian for our system given in
dimensionless form as

H [w,ψ] = 1

2B

∫
dr w(r)2 + 1

2E

∫
dr |∇ψ(r)|2

−C+V ln Q+
[
ω+

] − C−V ln Q−
[
ω−

]
−Cs+V ln Qs+

[
iZs+
ZN

(� ∗ ψ)

]

−Cs−V ln Qs−

[
iZs−
ZN

(� ∗ ψ)

]
. (9)

All coordinates r are scaled by the unperturbed polymer
radius of gyration, Rg = a∗√N/6. The asterisk (*) is a
shorthand for the convolution integral, �0 and �0 are
normalization constants that arise from the Gaussian integrals
employed in the Hubbard-Stratonovich transformation, and

the fields ω±(r) are the potential fields experienced by the
polyelectrolytes, given by

w±(r) = i [w(r) ± β±ψ(r)], (10)

ω±(r) = (� ∗ w±)(r). (11)

The dimensionless parameters are given by

B = u0N
2

R3
g

, E = 4πlBN2Z2

Rg

, CK = nKR3
g

V
. (12)

B is the dimensionless excluded volume parameter, E is a
dimensionless Bjerrum length, and CK is a dimensionless
concentration of species K.

The polymer partition functions Q±[ω±] are calculated
by integrating the single chain propagators q±(r, s; [ω±]) as

Q±[ω±] = 1

V

∫
dr q±(r, 1; [ω±]) (13)

The propagators are calculated as the solution to the modified
diffusion equation

∂q±
∂s

= ∇2q± − ω±q± (14)

subject to the initial condition q±(r, 0) = 1. The polymer den-
sity operators can be calculated from the chain propagators as

ρ̃±(r) = n±N

Q±V

∫ 1

0
ds q(r, s; [ω±]) q(r, 1 − s; [ω±]). (15)

The small ion partition functions are calculated as

Qs±[ψ] = 1

V

∫
dr exp

[
− iZs±

ZN
ψ(r)

]
, (16)

and the small ion density operators are

ρs±[ψ] = ns±
V Qs±

exp

[
− iZs±

ZN
ψ(r)

]
. (17)

B. Pressure operator

We calculate the pressure tensor in our simulations by
adopting the convention that the pressure Pαβ = −ταβ , where
ταβ is the stress tensor,29 defined as

ταβ = 1

V0

(
∂F

∂εαβ

)
. (18)

The shape of our simulation box is described by a tensor h;
for a rectangular simulation box, h is diagonal with the box
lengths in each direction along the diagonal. The strain tensor
ε can be written in terms of h as30

εαβ = 1

2

[∑
γ,η

(
h0

αγ

)−1
Gγη

(
h0

ηβ

)−1 − δαβ

]
, (19)

where the superscript 0 implies a reference simulation box
shape, Gαβ is the metric tensor defined as G = hT · h, and
δαβ is the Kronecker delta function. Using βF = − lnZ , in-
serting Eq. (8) for the partition function, and noting that h is
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diagonal for a rectangular simulation box, the diagonal com-
ponents of the pressure tensor can be calculated as

Pαα = kBT Lα

V

[
nT

Lα

− M

Lα

+ 1

Lα

∑
k

k2
α

k2
−

〈
∂H

∂Lα

〉]
, (20)

where the angular brackets indicate an ensemble average over
field configurations, and the sum over k is taken over all
wavevectors consistent with the grid on which the field the-
ory is evaluated. Inside the square brackets in Eq. (20), the
first term is the ideal gas contribution, and the second and
third terms arise from the derivatives of �0 and �0.

The final step is to obtain the derivative of H[w, ψ] with
respect to the box dimensions Lα; this can be done via ex-
plicit differentiation and is detailed in Appendix A. The final
expression is(

∂H

∂Lα

)
= 1

2BLα

∫
dr w(r)2 − 1

ELα

×
∫

dr
[

(∇αψ)2 − 1

2
|∇ψ |2

]

+ 2n+
V Q+Lα

∫
dr

∫
ds q(r, s; [ω+])

×∇2
αq(r, 1 − s; [ω+])

− a2

NLα

∫
dr ρ̃+(r) · (

� ∗ ∇2
αw+

)
(r)

+ 2n−
V Q−Lα

∫
dr

∫
ds q(r, s; [ω−])

×∇2
αq(r, 1 − s; [ω−])

− a2

NLα

∫
dr ρ̃−(r) · (

� ∗ ∇2
αw−

)
(r)

− i Zs+a2

ZNLα

∫
dr ρ̃s+(r) · (

� ∗ ∇2
αψ

)
(r)

− i Zs−a2

ZNLα

∫
dr ρ̃s−(r) · (

� ∗ ∇2
αψ

)
(r). (21)

C. Calculation of the interfacial tension

To date the interfacial tension γ has not been calculated
from a field-theoretic simulation. In particle-based simula-
tions, approaches for calculating γ generally fall into two cat-
egories: those that rely on a thermodynamic interpretation of
the interfacial tension and those that rely on a mechanical in-
terpretation. Here we will follow both approaches. The me-
chanical definition of the interfacial tension in terms of the
pressure profile is given by31

γ = 1

2

∫ Lz

0
dz [PN (z) − PT (z)]. (22)

Here PN(z) and PT(z) are the components of the pressure ten-
sor that are normal and tangential to the interface, respec-
tively, and the prefactor of 1/2 arises due to the presence of
two interfaces between the coexisting phases in a canonical
ensemble simulation with periodic boundary conditions. For

reasons of mechanical stability, the normal component PN(z)
is expected to be uniform throughout, while PT(z) will con-
tain a large, negative peak at the interface due to the tension
in the plane. Even though there is substantial debate about the
precise form of the local pressure P(r),32–35 this formula has
been successfully applied to a wide variety of systems (e.g.,
Refs. 35 and 36). One can also take the integrated form of
Eq. (22) to obtain a interfacial tension estimate that only de-
pends on the components of the volume-averaged (global)
pressure tensor37 as

γ = 1

2
Lz

[
Pzz − 1

2
(Pxx + Pyy)

]
. (23)

Here we have made the substitutions PN = Pzz and
PT = 1

2 (Pxx + Pyy), which are specific to the geometry
of our simulation box, and each can be calculated using
Eqs. (20) and (21).

The thermodynamic definition of the interfacial tension
is

γ =
(

∂F

∂A

)
NV T

, (24)

and a thermodynamic estimate of the interfacial tension re-
lies on calculating the change in the free energy of a system
as the interfacial area between two phases is changed by a
small amount. Several techniques exist to calculate the in-
terfacial tension in particle-based simulations using the ther-
modynamic definition, many of which were recently com-
pared in an article by Errington and Kofke.38 However, free
energy methods are only just emerging for field-theoretic
simulations,39 and many of the approaches used in particle
simulations cannot be easily applied. In complex Langevin
sampling, individual configurations are taken from a distri-
bution that only corresponds to the equilibrium distribution
given in Eq. (8) after taking an ensemble average. This pre-
cludes the use of many flat histogram techniques that are
based on probabilities associated with individual configura-
tions. The sole free energy technique that has been devel-
oped for complex Langevin simulations is thermodynamic
integration.39

For our thermodynamic estimate of γ , we have adapted
Bennett’s method38, 40, 41 to field-theoretic simulations. The
derivation of the method as applied to a field theory is given
in Appendix B. For interfacial tension calculations, we
discretize Eq. (24) and calculate the free energy change �F
resulting from a small change in the interfacial area of our
system �A = A1 − A0. Bennett’s method requires performing
two independent simulations with interfacial area A0 and A1.
During the course of the simulation with A0 the system is
perturbed such that it has area A1 without changing the field
values, and the change in the system Hamiltonian �H01 is
calculated. The simulation then resumes with the original
interfacial area A0. Similarly, a perturbation is performed on
the simulation with interfacial area A1 such that it has A0, and
�H10 is calculated. The procedure is repeated to accumulate
statistics which are accumulated on �H01 and �H10, and we
numerically solve:

〈f (−�H01 + C)〉0 = 〈f (−�H10 − C)〉1, (25)
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for the parameter C, where f(x) is the Fermi function

f (x) = 1

1 + exp(x)
. (26)

The free energy change is calculated as

β�F = − ln

[ 〈f (−�H01 + C)〉0

〈f (−�H10 − C)〉1

]
+ C ≈ C, (27)

and we finally obtain the interfacial tension as γ

= 1
2�F/�A. As in the mechanical definition of the in-

terfacial tension, the prefactor of 1
2 arises because our

simulations in cells with periodic boundary conditions
contain two interfaces.

D. Gaussian fluctuations

Because coacervation is driven by the strong correlations
present in charged systems, neglecting all fluctuations and
employing the the mean-field approximation results in a the-
ory that is unable to describe coacervation. Such fluctuation
effects can be considered analytically using loop expansions
of the free energy. Prior field-theoretic studies of coacervation
have shown that retaining the fluctuations to Gaussian order
captures a significant portion of the fluctuation effects; this
is the “one-loop” or random phase approximation, which is a
common approach in polymer field theory that can be used to
incorporate fluctuation effects analytically. It is instructive to
compare the RPA predictions to the results for our CL simula-
tions sampling the fully fluctuating fields. For the symmetric
case where n+ = n− = n, β+ = β− = 1, and no small ions ns +
= ns − = 0, the RPA expression for the free energy is given
by

βF = βF0 + 1

2
BC2V − 2n ln V

+ V

4π2

∫ ∞

0
dk k2[ln(1 + BC ĝD(k) �̂(k)2)

+ ln(1 + EC ĝD(k) �̂(k)2/k2)]. (28)

Theˆsymbol in the above equation denotes the Fourier trans-
form of a function, k is the wave vector, and ĝD(k) is the De-
bye function, expressed in Fourier space as

ĝD(k) = 2

k4
(e−k2 + k2 − 1). (29)

From this expression for βF, we can derive other thermody-
namic functions such as the excess chemical potential,

βμex = BC + V

4π2

∫ ∞

0
dk k2

[
B ĝD(k) �̂(k)2

1 + BC ĝD(k) �̂(k)2

+ E ĝD(k) �̂(k)2

k2 + EC ĝD(k) �̂(k)2

]
, (30)

and the pressure

βR3
gP = C + 1

2
BC2 − 1

4π2

∫ ∞

0
dk k2

×
[

ln(1 + BC ĝD(k) �̂(k)2)

+ ln(1 + EC ĝD(k) �̂(k)2/k2)

− BC ĝD(k) �̂(k)2

1 + BC ĝD(k) �̂(k)2

− EC ĝD(k) �̂(k)2

k2 + EC ĝD(k) �̂(k)2

]
. (31)

It should be noted that the integrals in the above equations are
UV-convergent because of the presence of Gaussian smearing
functions, �̂(k).

E. Numerical methods

Our theory is evaluated in real space with periodic bound-
ary conditions on a collocation grid, and the modified dif-
fusion equation (Eq. (14)) is solved for q±(r, s; [w±]) us-
ing a pseudo-spectral algorithm28, 42, 43 with the initial con-
dition q±(r, 0; [w±]) = 1. Due to the complex nature of
our field theory and the inability of the mean-field approx-
imation to capture complex coacervation, we sample our
field configurations using complex Langevin (CL) sampling
techniques.20, 28, 44, 45 CL involves extending the functional in-
tegrals of the fields in our partition function Z (Eq. (8)) over
the entire complex plane and sampling field configurations
using a Langevin dynamics scheme

∂w

∂t
= −λw

(
δH
δw

)
+ η(r, t), (32)

where η(r, t) is a Gaussian-distributed, purely real random
force acting on the field with the statistics

〈η(r, t)〉 = 0, (33)

〈η(r, t) η(r′, t ′)〉 = 2λw δ(r − r′) δ(t − t ′). (34)

To perform a CL simulation, Eq. (32) is discretized in t and
iterated to evolve the field configurations w(r) and ψ(r) with
λw = λψ = 0.025 and time step δt = 1. To affect the time inte-
gration of Eq. (32), we employ the exponential time differenc-
ing algorithm of Ref. 46, which exhibits remarkable stability
and accuracy even for relatively large time steps compared to
other semi-implicit approaches.21 We emphasize that t does
not represent a physical time variable, and the evolution of
our fields according to Eq. (32) do not yield realistic dynam-
ics of our system.

Unless otherwise noted, all calculations were performed
in a simulation box of dimensions Lx = Ly = 3Rg, Lz

= 45Rg, using numbers of grid points Nx = Ny = 15,
and Nz = 225, and the polymer chains were discretized
into Ns = 81 contour points. Each trajectory continued un-
til average properties stopped changing to within 5%–10%,
which typically required ∼5 × 105 time steps. All simu-
lations are performed in triplicate and averaged over the
three independent simulation trajectories, and the error bars
are the standard error of the calculations amongst the three
trajectories.
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FIG. 1. UV convergence of the dimensionless pressure βPR3
g (a) and the excess chemical potential of the polycations (b) at C± = 0.5, B = 1.0, and Cs ±

= 0; at these conditions, the system exists as a homogeneous phase. The x-axis in both cases is the grid spacing divided by the parameter a. Systems both with
electrostatics (E = 1000 in red) and without electrostatic interactions (E = 0 in black) are shown. The solid horizontal lines show the RPA predictions for the
model while the dashed lines show the results from the CL simulations that numerically sample the fully fluctuating fields. Each property was calculated in a
cubic simulation box with periodic boundary conditions and Lα = 3.0Rg.

III. RESULTS

A. UV convergence

We begin by demonstrating the UV convergence of our
model through the inclusion of the Gaussian “smearing” func-
tions �(r − r′) that distribute the mass and the charge over
a small volume characterized by the parameter a. Figure 1
shows how two properties, the dimensionless pressure P and
the excess chemical potential μex change as we refine the
collocation grid employed in our field-theoretic simulations
for polymer solutions both with and without electrostatic in-
teractions. Once the grid spacing δx becomes comparable to
a (δx � 1.7a), the properties from the field-theoretic simu-
lations cease changing as δx is refined, confirming that our
model is UV-convergent. It is interesting to note that the
UV-divergences are significantly weaker in the system with-
out electrostatics (E = 0). RPA also does an excellent job
of predicting μex and P for the system without electrostat-
ics at this polymer concentration, but we do not see quanti-
tative agreement between RPA and the full field theory for
the system with electrostatic interactions. All subsequent cal-
culations were performed at grid spacings where δx/a ≤ 1.5,
ensuring UV-convergence of our results.

B. Density Profiles

Figure 2 plots the density profiles of the polymer and
the small ions for the case where a symmetric salt is used
(Fig. 2(a)) and where an asymmetric salt is employed
(Fig. 2(b)) at the same polymer concentration C± = 1.5 and
electrostatic strength E = 20 000. In both cases, the segrega-
tion is strong and all of the polymer is in the coacervate phase.
The concentration of the small salt ions is slightly enriched in
the coacervate phase, consistent with prior results obtained for
rodlike polyelectrolytes using the RPA.19 For the asymmetric
salts, the small cations carry a charge of +2 while the anions
carry −1. Although it appears in Fig. 2(b) that there is a small
difference in the two profiles after they are scaled to lie on the
same axis, the net charge throughout the system is zero. The
reader should note that there are no harsh repulsive interac-
tions in our model to saturate ion binding/bridging caused by
multi-valent counterions. Thus, the example of Fig. 2(b) is a
hypothetical, but illustrative case.

Another means for breaking the symmetry of the
coacervate-forming systems is to change the amount of charge
arising from one of the two polyelectrolyte components. This
is explored in two ways: first, we decrease the linear charge
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FIG. 2. Density profiles of the polymer (left axis) and the small ions (right axis) for a system with E = 20000, B = 0.05, and C± = 1.5. a) The density profile
for a case with symmetric salt (Zs ± = ±1) and Cs ± = 25. The curves for the polycations and polyanions lie directly on top of each other; similarly, the profiles
for the small cations and anions overlap. b) The density profiles for a system with an asymmetric salt with Zs + = 2, Zs − = −1, Cs + = 10, and Cs − = 20. The
density profile for the small cations has been scaled so that it lies on the same y-axis as the anions.
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FIG. 3. Polymer chain concentration profiles of the polycations (ρ+) and the polyanions (ρ−) at E = 20000 and B = 0.05 for two cases where the charge
arising from the two polyelectrolytes is asymmetric. (a) C+ = C− = 1.5, β+ = 1.0, and β− = 0.9. (b) β+ = β− = 1.0, C+ = 1.5, and C− = 1.35. In both
cases, overall charge neutrality is maintained by adding Cs − = 15, and Z is fixed at ±1 for both species.

density along the polymer backbone by setting β− = 0.9
while keeping the concentration of the two polyelectrolytes
equal, and second, we decrease the concentration of the
polyanions to C− = 0.9C+ while keeping the linear charge
densities of the two polymer species equal. In both cases,
the net charge neutrality was maintained by adding an excess
number of small anions (Cs − = 15). The plots of the resulting
density profiles are shown in Fig. 3. Whether we break the
symmetry by reducing the linear charge density or the con-
centration of polyanions, all of the polyanions segregate to the
coacervate phase. Meanwhile, some of the polycations, which
carry more charge than the polyanions, are forced into the so-
lution phase. It is interesting that when the linear charge den-
sity is decreased, the concentration of the polyanions in the
coacervate phase is higher than that of the polycations while
the reverse is true when the concentration of the polyanions is
decreased. In all cases, local charge neutrality is upheld.

C. Interfacial tension and phase behavior

Figure 4 demonstrates how the polycation concentration
in the coacervate phase and the interfacial tension change

as the strength of the electrostatics (E) is changed. As E is
decreased, the driving force for phase separation decreases,
the polymer concentration in the coacervate phase decreases,
and the interfacial tension between the coacervate and the
solvent-rich supernatent phase decreases. Figure 4(b) com-
pares the two methods for calculating the interfacial tension,
and we find excellent agreement between the pressure ten-
sor approach and Bennett’s method; each point agrees within
our uncertainty. The magnitudes of our interfacial tensions are
also in good agreement with experimental values; our dimen-
sionless interfacial tension γ is related to the interfacial ten-
sion in laboratory units (γ *) through γ = βγ ∗R2

g . By taking
β = 1/kBT at T = 300 K and R2

g = Na2/6 with a = 1.5 nm,
we find that γ = 1 corresponds to γ * ≈ 100 μN/m, in good
agreement with recent experimental measurements.13

In Fig. 5(a) we plot the change in the polycation concen-
tration in the coacervate phase as the excluded volume pa-
rameter B is increased compared to the binodal and spinodal
phase boundaries calculated from RPA. Qualitatively, RPA
does an excellent job of representing the full field theory, and
the concentrations calculated from the field-theoretic simula-
tions are approximately 50% higher than those predicted by
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FIG. 4. (a) Polycation concentration in the coacervate phase and (b) interfacial tension as a function of the dimensionless Bjerrum length E. In (a), the circular
points are the results of our CL simulations, and the solid and dashed lines are the binodal and spinodal predictions of the RPA, respectively. In (b), red circles
are calculated using the pressure tensor method and the blue diamonds are calculated using Bennett’s method; the solid line represents the γ ∝ (E − Ecr)0.52,
with Ecr ≈ 1490. All calculations represented in these figures were with B = 0.05, β+ = β− = 1, Z = ±1, Cs ± = 0, and the total polymer concentration was
adjusted so that the coacervate phase occupied approximately half of the simulation box.
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FIG. 5. Log-log plot of the polycation concentration in the coacervate phase (a) and the interfacial tension (b) as the excluded volume parameter B is increased.
In (a), the solid and dashed lines represent the binodal and spinodal coexistence curves calculated using the RPA. The estimates of γ in (b) were obtained using
Bennett’s method. All calculations in these figures were performed with E = 20000, β+ = β− = 1, Z = ±1, Cs ± = 0, and the total polymer concentration was
adjusted so that the coacervate phase occupied approximately half of the simulation box.

the RPA binodal. Figure 5(b) shows how the interfacial ten-
sion decreases as the excluded volume parameter is increased,
and the changes are relatively small, particularly for small B.
As B increases and a critical point is approached, γ drops off
sharply.

Figure 6 shows the influence of added salt on the polymer
concentration in the coacervate and the interfacial tension be-
tween the supernatent and the coacervate. The range of salt
concentration that is accessible is limited by the sizes of the
systems that we can simulate; as we increase the salt concen-
tration the electrostatics are screened, and both the concen-
tration of the polymers in the coacervate phase and the inter-
facial tension decrease. This causes the coacervate phase to
occupy more of our simulation box, and eventually the coac-
ervate phase “sees” itself through the periodic boundaries. At
this point, we either artificially observe a single phase or cal-
culate inaccurate concentrations and interfacial tensions. Nev-
ertheless, we are able to probe salt concentrations where the
interfacial tension becomes relatively small.

IV. DISCUSSION

A. Interfacial tension calculations

We have developed two distinctly different approaches
for calculating the interfacial tension from field-theoretic

simulations. One approach is based on a mechanical interpre-
tation of interfacial tension where a line of tension maintains
the interface between the two phases, and a second is based
on the thermodynamic definition where we numerically
estimate the partial derivative γ = (∂F/∂A)NVT. For many con-
ditions, the computational burden for each method is approxi-
mately the same. To obtain satisfactory statistics, the pressure
tensor requires simulations that are approximately twice
as long as Bennett’s method. However, Bennett’s method
requires performing two separate simulations, and each esti-
mate of �Hij in Bennett’s method carries the same computa-
tional burden as an evaluation of the pressure tensor. A single
evaluation of either the pressure tensor or �Hij requires
the evaluation with the computational cost that scales NsM
log (M), where M is the total number of grid points. Bennett’s
method is more straightforward to implement, because it only
requires perturbing the shape of the simulation box and calcu-
lating H while the pressure tensor method requires deriving
and evaluating the derivative given in Eqs. (20) and (21).

B. Scaling relationships

With the parameter space covered by Cs, B, and E,
we are in a position to examine the scaling relationships
between a variety of our system parameters and the calculated
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FIG. 6. (a) Changes in the polycation concentration in the coacervate phase and (b) the interfacial tension as the salt concentration is increased. In (a), the solid
line is simply a guide to the eye, while in (b), the solid line represents the scaling γ ∝ (Cs, crit − Cs)3/2 with Cs, crit ≈ 110. All calculations in these figures were
performed with E = 20000, B = 0.05, C = 1.5, β± = 1 and Z = ±1.
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interfacial tension between the coacervate and supernatant
phases. Spruijt and co-workers13 find that the interfacial
tension of a coacervate comprised of strong polyelectrolytes
scales with the concentration of added salt as γ ∝ (Cs, crit

− Cs)3/2; they rationalize this scaling based on a mean-
field argument with an effective χ parameter χeff = χ

+ 2π
3

lBκ−1σ 2

l3 , where κ−1 is the Debye screening length. As
shown above in Fig. 6, we find a similar scaling in our simu-
lations, although it is clear that the finite tension and the very
existence of coacervation are intrinsically non-mean-field
phenomena. We should note that careful experiments exam-
ining changes in the interfacial tension of phase-separated
simple electrolytes where the two phases have a difference in
dielectric constants have found that the interfacial tension has
a non-monotonic dependence on salt concentration47, 48 (the
so-called “Jones-Ray effect”) whereby γ decreases at small
salt concentrations before increasing at larger concentrations.
This effect is not yet well-understood, but is believed to be
due to differences in solvation effects of the salt ions in the
two dielectric media.49 Such effects are not incorporated into
our field-theoretic model as we adopt a uniform dielectric;
this remains an interesting area for future developments.

The previous work by Lee and co-workers22 found that
the polymer concentration in the coacervate phase in the ab-
sence of salt scaled approximately as C ∝ B−0.64, where C
is the concentration of polymer in the coacervate phase; in
Fig. 5 above in our results from our RPA curves or the coexis-
tence points measured from the CL simulations, we find that
the change in C with B is weaker than the exponent observed
by Lee et al. The RPA expressions employed by Lee et al. are
in the concentrated limit of BC � 1, and this may account for
those differences. It is interesting that the interfacial tension
appears to plateau for small values of B and drops off sharply
as the critical point is approached.

From a Widom-type scaling picture, one may expect that
the interfacial tension should scale as γ ∝ kBT/ξ 2, where ξ

∼ Rg(EC)−1/4 is the electrostatic screening length that
emerges from the RPA for polyelectrolytes in the concen-
trated, no-salt limit. This scaling is tested in Fig. 7, and it
appears to hold for all but the smallest value of (CE), which
departs significantly from this trend. A similar scaling rela-
tionship has been derived in θ -solvent conditions using scal-
ing arguments50 and RPA51, where γ ∝ E4/9. In addition, Ru-
binstein and co-workers have developed scaling relationships
for the polymer concentration inside of globules of collapsed
diblock polyelectrolytes,50, 52 finding that the concentra-
tion inside the globule should scale as C ∝ (lB f)(3ν − 1)/(2 − ν)

∝ E∼0.541, where the last proportionality substituted in for ν ≈
0.588 for the good solvent case studied here. This scaling cap-
tures most of our data plotted in Fig. 4(a); however, it is clear
from the data in Fig. 4(a) that we do not have simple power-
law scaling between C and E. The scaling exponent is higher
for small values of E and decreases as E becomes larger.

C. Comparison with RPA

Generally speaking, RPA does a good job of describ-
ing the symmetric systems that we have considered here.
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FIG. 7. Scaling of the interfacial tension in the absence of salt with the prod-
uct CE, where C is the concentration of the polyelectrolytes in the coacervate
phase. The solid line represents γ ∝ (CE)1/2. These data are taken from the
simulations that are summarized in Fig. 4 where B was held constant and E
was systematically varied.

The RPA binodal and spinodal phase boundaries are included
above in Figures 4(a) and 5(a). As the dimensionless Bjer-
rum length E is reduced, the difference between RPA and the
CL predictions of the phase boundary grows slightly, although
RPA does a reliable job of qualitatively capturing the coexis-
tence. The trends of the polymer concentration in the coac-
ervate phase as the excluded volume parameter B is changed
agree very well, although the agreement is not quantitative.
The difference between the RPA phase boundary and the one
predicted from CL simulations is relatively small and con-
stant over the range of B investigated. In addition, the strong
segregation predicted here where the polymer concentration
is exceptionally small in the solvent-rich phase has also been
predicted from RPA in θ -solvent conditions.53

V. SUMMARY

In this work we have further developed a field-theoretic
model that exhibits complex coacervation. The model was
evaluated by numerically sampling the fully-fluctuating field
theory, and we compared our results in some cases to the
random-phase approximation. Following the work of Wang,27

we also demonstrated a regularization procedure for our
model such that it is free of ultraviolet divergences, and we
have developed two methods for calculating the interfacial
energy from a full field-theoretic simulation. The first method
relies on the mechanical interpretation of the interfacial ten-
sion and examines the pressure differences in the plane of the
interface compared to normal to the interface, while the sec-
ond method estimates the change in free energy after the inter-
facial area is changed by a small amount. We believe these to
be the first calculations of the interfacial tension in a field-
theoretic simulation, and we explored the scaling relation-
ships between the interfacial tension and various parameters
of the model relating to electrostatic strength, salt concentra-
tion, and solvent quality.
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APPENDIX A: DERIVATIVE OF H WITH RESPECT TO
BOX DIMENSIONS

In this Appendix we derive the expressions for the deriva-
tive of the Hamiltonian H[w,ψ] with respect to the box di-
mensions. First, we re-write our partition function Z and the
interaction potentials in scaled coordinates to isolate the de-
pendence on the box dimensions

Z = z0 V nT

n+!n−!ns+!ns−!

∫
Dx(s)n++n−

×
∫

dxnT exp[−βU0 − βU1 − βU2], (A1)

βU0 = 1

4

n±∑
j=1

∫ 1

0
ds

(
dxj (s)

ds

)
· G ·

(
dxj (s)

ds

)
, (A2)

βU1 = u0

2V

∫
dx [ρ̂P (x)]2, (A3)

βU2 = 1

2V

∫
dx

∫
dx′ ρ̂c(x)

lB

|h · (x − x′)| ρ̂c(x′). (A4)

Tracing through the Hubbard-Stratonovich transformation
leads to the Hamiltonian in scaled coordinates given by

H [w,ψ] = V

2B

∫
dx w(x)2 + V

2E

×
∫

dx [h−1 · ∇xψ(x)] · [h−1 · ∇xψ(x)]

−C+V ln Q+
[
ω+

] − C−V ln Q−
[
ω−

]
−Cs+V ln Qs+

[
iZs+
ZN

� ∗ ψ

]

−Cs−V ln Qs−

[
iZs−
ZN

� ∗ ψ

]
. (A5)

Here, h is the tensor that describes the shape of the simula-
tion box, and for rectangular simulation boxes hαβ = Lαδαβ ,
where α is one of the Cartesian directions and Lα is the length
of the simulation box in the α-direction.29 The scaled coordi-
nates x = h−1 · r represent the positions of ions and polymer
segments scaled such that xα ∈ [0:1]. The derivatives of the
terms involving the fields w(x) and ψ(x) are straightforward,
and the derivatives of the polymer partition functions Q± and
the small-ion partition functions Qs ± are detailed below. The
Gaussian smearing functions in scaled coordinates are given
by

�(r − r′) =
(

1

2π2a2

)3/2

e−(x−x′)·G·(x−x′)/2a2
. (A6)

In Eq. (A6), we have isolated the dependence of �(r) on
the box dimensions by writing the dot product in terms of
the metric tensor G, which is defined as G = hT h and h
is the tensor that describes the shape of the simulation box.

The derivative of the polymer partition functions closely
follows that detailed in Appendix A of Ref. 54. In
scaled coordinates, the single-chain partition functions are
given by

Q±[ω±] =
∫
Dx(s) exp[−βU0 − ∫ 1

0 ds ω±(x)]∫
Dx(s) exp(−βU0)

, (A7)

where ω±(x) is given by Eq. (10). The path integrals over the
chain contours in Eq. (A7) can be discretized as Ns + 1 inte-
grals over particle positions with Ns discrete bonds separating
them to yield

Q±[ω±] =
∫

dxNs+1 e−�sω±(xNs )

×�(xNs
− xNs−1) e−�sω±(xNs−1)

×�(xNs−1 − xNs−2)...e−�sω±(x1)

×�(x1 − x0) e−�sω±(x0). (A8)

The function �(xi − xi−1) is the normalized bond transition
probability for a Gaussian chain and is given by

�(xi − xi−1) =
(

1

π�s

)3/2

exp

[
− 1

�s

∑
α,β

(xi,α − xi−1,α)

×Gαβ (xi,β − xi−1,β )

]
. (A9)

The derivatives of Q±[ω±] with respect to the box dimensions
yield two terms that contribute to ∂H

∂Lα
: the first arises from the

derivative of �(xi − xi−1) and is detailed in Ref. 54, and the
second arises from the derivative of the convolution of the
fields with the Gaussian “smearing” functions ( ∂�

∂Lα
). Recall-

ing that ω±(r) = (� ∗ w±)(r) convolution of � with the fields
given in Eq. (10) can be discretized and written in Fourier
space as

ω±(x) = i

N

∑
k

eik·x exp

⎡
⎣−a2

2

∑
α,β

kαG−1
αβ kβ

⎤
⎦ ŵ±(k),

(A10)

where the hats indicate Fourier transformed functions. Re-
stricting ourselves to purely rectangular boxes (Gαβ = 0 for α

�= β) and taking the derivative of ω±(x) leads to

∂ω±(x)

∂Lα

= − ia2

NLα

∑
k

eik·x

× exp

⎡
⎣−a2

2

∑
α,β

kαG−1
αβ kβ

⎤
⎦ k2

α ŵ±(k),

(A11)

= ia2

NL3
α

(
� ∗ ∇2

x,αw±
)
(x). (A12)
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Inserting this expression for the derivative of ω±(x) and
the expression from Ref. 54 for the terms that arise from the
derivatives of �(xi − xi−1), we arrive at

∂Q±[ω±]

∂Lα

=
Ns∑

n=0

[ ∫
dxNs+1

n−1∏
i=0

e−�s ω±(xNs−i )

×�(xNs−i − xNs−i−1)

× e−�s ω±(xNs−n)

(
−2�s

L3
α

)

×∇2
xα

�(xNs−n − xNs−n−1) e�s ω±(xNs−n−1)

×
Ns−1∏

j=n+1

�(xNs−j − xNs−j−1)e−�s ω±(xNs−j−1)

]

+
Ns∑

j=1

[ ∫
dxNs+1

j−1∏
i=0

e−�s ω±(xNs−i )

×�(xNs−i − xNs−i−1)

× e−�s ω±(xNs−j )

{
−�s

(
∂ω±
∂Lα

)}
×�(xNs−j − xNs−j−1)

×
Ns∏

i=j+1

e−�s ω±(xNs−i )�(xNs−i − xNs−i−1)

]
.

(A13)

Inserting Eq. (A12) and restoring the continuum limit leads to

∂Q±[ω±]

∂Lα

= − 2

L3
α

∫
dx

∫
ds q±(x, s; [ω±])

×∇2
xα

q†(x, 1 − s; [ω±])

− ia2

NL3
α

∫
dx

∫
ds q(x, s; [ω±])

× q†(x, 1 − s; [ω±])
(
� ∗ ∇2

xα
w±

)
(x),

(A14)

= − 2

L3
α

∫
dx

∫
ds q±(x, s; [ω±])

×∇2
xα

q†(x, 1 − s; [ω±])

− ia2Q±[ω±]

Nn±L3
α

∫
dx ρ̃±(x; [ω±])

× (
� ∗ ∇2

xα
w±

)
(x). (A15)

where the definition of the density operator has been inserted
into Eq. (A15). Reverting to the unscaled (r) coordinates
yields the appropriate terms in Eq. (20) above.

The final contributions to the derivative of H arise from
the derivatives of the small ion partition functions Qs± given
in Eq. (16). Similar to the result for the derivative of the poly-
mer partition function, there is a contribution to this deriva-
tive arising from the derivative of �(r − r′). Tracing the same
steps for the small-ion partition function leads to the final

result

∂Qs±
∂Lα

= iZs±V

ZNLα

∫
dx ρ̃s±(x) (� ∗ ψ)(x). (A16)

APPENDIX B: BENNETT’S FREE ENERGY
DIFFERENCE METHOD

Bennett’s method begins by noting that the free energy
difference between two states 0 and 1 can be trivially ex-
pressed as a ratio of two partition functions as

β�F10 = β(F1 − F0) = ln
Z0

Z1
. (B1)

Here, we will employ a generic field-theoretic partition func-
tion

Z0 = z0

∫
Dw e−H[w], (B2)

where z0 contains all of the prefactors, including the thermal
de Broglie wavelengths, factors of 1/n!, and the numerical
pre-factors that arise from the Gaussian integrals employed
in the Hubbard-Stratonovich transformation. The ratio of par-
tition functions in Eq. (B1) can be re-written as

Z0

Z1
= Z0

Z1

∫
Dw W exp(−H0 − H1)∫
Dw W exp(−H0 − H1)

= 〈W exp(−H0)〉1

〈W exp(−H1)〉0
,

(B3)

where the angular brackets 〈...〉0 denote averages in the canon-
ical ensemble following the Hamiltonian H0 (or H1 for 〈...〉1),
and W is an unspecified weighting function. It is important to
note that the configuration space covered by the functional in-
tegrals

∫
Dw in Eq. (B3) must be the same for state 0 and 1.

Since the two states of interest when calculating the interfa-
cial tension are states of equal volume but different shapes,
this requirement can be satisfied by writing the partition func-
tion in scaled coordinates as done in Appendix A. The pref-
actors of volume will cancel since the volume is equal in the
two states, thus giving a numerical estimate of �F as the in-
terfacial area is changed by �A = A1 − A0. This method can
be used for a generic free energy difference; in our case, the
two states 0 and 1 are two states with different interfacial ar-
eas between the coacervate and the supernatant but with the
same total system volume.

The next step in Bennett’s approach is to determine the
form of the weighting function, W. One assumes that the er-
ror in the estimate of the free energy change obeys Gaussian
statistics and minimizes the error (�Fest − �F)2. This leads
to the working equation of Bennett’s method,55

Z0

Z1
= 〈f (H0 − H1 + C)〉1

〈f (H1 − H0 − C)〉0
exp(C) (B4)

= 〈f (�H01 + C)〉1

〈f (�H10 − C)〉0
exp(C), (B5)

where �Hij = Hi − Hj , and f(x) = [1 + exp (x)]−1 is the
Fermi function. The optimal value of C satisfies the equation

〈f (�H01 + C)〉1 = 〈f (�H10 − C)〉0. (B6)
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To solve for C in Eq. (B6), one must first obtain sufficient
statistics on �H01 when sampling according to H1 and �H10

when sampling according to H0. These changes in H are ob-
tained by occasionally perturbing into the second state and
calculating the change in H. In the present case where we are
interested in calculating the interfacial tension, the two states
0 and 1 correspond to states with the same volume but differ-
ent interfacial areas between the coacervate and the solvent,
A0 and A1. To calculate �H01 when sampling according to
H1, we occasionally scale our simulation box so that it has
the same shape as the system sampling according to H0, cal-
culate the new value of H to get �H01, then return to the
original A1 box shape and resume our simulation.

It is important to note that the configuration space cov-
ered by the functional integrals

∫
Dw in Eq. (B3) must be

the same for state 0 and 1. Since the two states of interest
when calculating the interfacial tension are states of equal vol-
ume but different shapes, this requirement can be satisfied by
writing the partition function in scaled coordinates as done
in Appendix A. The prefactors of volume will cancel since
the volume is equal in the two states, thus giving a numeri-
cal estimate of �F as the interfacial area is changed by �A
= A1 − A0.
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