Spring 2001

Actun Nak Beh and Cahal Uitz Na: Analysis and Interpretation for Sacred Geography and Regional Lattice

Daniel Renwick Hodgman

University of Pennsylvania

Follow this and additional works at: http://repository.upenn.edu/anthro_seniortheses

Part of the Anthropology Commons

Recommended Citation

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/anthro_seniortheses/13

For more information, please contact repository@pobox.upenn.edu.
Actun Nak Beh and Cahal Uitz Na: Analysis and Interpretation for Sacred Geography and Regional Lattice

Disciplines
Anthropology

This thesis or dissertation is available at ScholarlyCommons: http://repository.upenn.edu/anthro_seniortheses/13
Actun Nak Beh and Cahal Uitz Na:
Analysis and Interpretation for Sacred Geography and Regional Lattice

By

Daniel Renwick Hodgman

Submitted in the partial fulfillment of the requirements for Anthropology 300, advisor Robert J. Sharer, at the University of Pennsylvania, Philadelphia, PA.
Table of Contents

I. Abstract... 1

II. Introduction... 2

III. Caves, Cosmology, and the Maya... 4

IV. Survey and Excavation Reports: Actun Nak Beh.. 11

V. Discussion: Wider Comparisons... 22

VI. Conclusions... 34

VII. Notes... 39

VIII. References Cited.. 40
Abstract

Actun Nak Beh ("Cave at the End of the Road") and Cahal Uitz Na, a medium-sized surface site in the Roaring Creek Valley of Belize, have a relationship plainly seen either on a sketch map or at the site itself; 230-meter causeway stretches almost due south from the largest temple at Uitz Na to the entrance of a cave (Awe and Helmke, 1998). The Ancient Maya people considered the cave a sacred entrance to the underworld imbued with massive ritual significance, so much that this cave served as an elite burial ground and as a basis for the layout, location, and orientation of monumental architecture. In an adjacent tributary’s valley, the site of Pacbitun has a monumental layout strikingly similar to that of Cahal Uitz Na. Similar location of ballcourts, palacial range structures, and tripartite temples all point to similar regional preferences in site layout. Most compelling, Pacbitun too has a 230-meter causeway leading to a largely unsurveyed ritually charged place, in this case a monumental structure, called Structure 10. Excavations done in Actun Nak Beh suggest large amounts of ritual usage by the Maya of Cahal Uitz Na, and based upon the similarity between the site layouts, I posit that the Maya at Pacbitun used Structure 10 in a similar fashion. Also, I will address the authority, from which these preferences were derived, weighing the possibility of a large polity within the Belize Valley versus that of a more power influence from beyond the Roaring Creek Valley.
Introduction

The “Maya area,” a term that frequently will appear in the following text, encompasses a vast number of geographic, ecological, and cultural areas of modern Central America. Essentially, the entire Yucatan Peninsula, the Mexican states of Chiapas and Tabasco, the nations of Guatemala and Belize, and the western parts of Honduras and El Salvador together make up what Archaeologists consider the “Maya area” (Sharer, 1994). Rather loosely defined, this area corresponds to distributions of extant Maya dialects and archaeological finds diagnostic of Ancient Maya. The environment varies quite widely from the northern reaches of the Yucatan to the Guatemalan highlands in the south, and this variability certainly expresses itself in the cultural adaptations of the Maya populations in different areas (Sabloff, 1994). The Central Lowlands or Peten region of Guatemala and Belize will consume most of the attention in this study, with a few short references to the highland regions and the arid ones in the Yucatan. The Peten generally falls into the category of tropical to subtropical in climate, which means there are no frosts during the either of the two main seasons, a rainy period generally corresponding to our summer and fall, and a drier period generally corresponding to our winter and spring.

Actun Nak Beh lies in the Roaring Creek Valley, a tributary of the Belize River which eventually depositing its flow into the Caribbean at the present-day Belize City. The Belize River’s tributary valleys lie adjacent to one another, separated by the uppermost hills, but in a general queue one after another perpendicular to the Belize River (See
Hodgman, 2001

Map of Belize Valley). The medium-sized surface site Cahal Uitz Na lies in the upper regions of the Roaring Creek Valley in a somewhat unusual location relative to the lower part of the Valley. The upper Roaring Creek Valley is quite narrow and consequently holds less potential for agricultural exploitation. In stark contrast, the lower regions of the Valley sprawl with flat, cultivable land ideal for maize (or any other) farming (Awe and Helmke, 1998). A strong case can be made to explain the placement of Cahal Uitz Na relative to a more valuable and desirable resource, the plethora of caves in the narrower upper Valley region. The significance of these caves will be discussed in the next section.

Within the chronological framework of Maya civilization, the period of occupation at Cahal Uitz Na and in the Roaring Creek Valley began in the Late Preclassic Period (ca. 400 BC to AD 250) and terminated with monumental construction and urban-level population densities in the Terminal Classic (c.a. AD 800). At this point in the mold of many other Lowland polities (Ehret and Conlon, 1999), a rapid depopulation of the site occurred, as did the population of the entire Belize Valley. Since the Terminal Classic collapse, the site has remained uncleared of jungle foliage and generally intact architecturally. Unfortunately, though, some of the buildings and all of the cave sites (except for one cave, Actun Tunichil Muknal) have incurred damage and loss of archaeological evidence as the result of looter activity. In fact, when the first archaeologist conducted reconnaissance of the site in 1996, a looter camp was discovered within the main plaza of the site itself.
Caves, Cosmology, and the Maya

A few important questions require answers concerning the role of caves in Ancient Maya society. On what ideological foundation did the Maya build their ritual belief in caves? Where did these caves fit into their more general cosmological perception? Were these caves important enough to serve as burial grounds for the elite of Cahal Uitz Na? Were these caves important enough to necessitate the construction of a 230-meter long causeway? In this section I will address these questions, and provide evidence to support the theory that Actun Nak Beh served as the ideological impetus behind massive construction at the site of Cahal Uitz Na.

The Maya recognized the world in a manner which reflects a strong belief in the significance of the natural environment. The Maya universe, or cosmos, contains three distinct levels: the terrestrial level where the Maya themselves dwell, the dark underworld, which has nine different “sub-levels”, and the benevolent heavens, which have thirteen “sub-levels.” As far as the actual earth, where the winik, or people, lived, the Maya shared an analogous belief with many other cultures of Mesoamerica that the earth was both sacred and amorphous, often personified as an “earth lord” deity or Tzuultaq'a (Bracy, 1997). The underworld, or Xibalba, had strong associations as well, most prominently watery images as the entire superposition of levels mentioned above was believed to rest upon the back of a floating caiman or turtle in an utterly endless ocean. Now, with the earth as a central focus of the Maya belief system, it should be expected that terrestrial features play important roles in their perception of the
environment. Quite expectedly, the most prominent features linked to religious significance for the Maya are rugged ones: mountains, caves, and water. Caves and mountains represented the sacred earth and its associated power; caves were seen as entrances to the underworld and mountains as hollow, containing earth deities and their possessions. The pyramids diagnostic of the Maya and other Mesoamerican civilizations have been argued by Evon Vogt (1992) to represent sacred mountains in Ancient Maya religion. Construction of temples from natural hills (such as El Duende Pyramid at Dos Pilas) further supports this claim (Brady, 1997), while the smaller temples atop these pyramids may even represent symbolic caves (Benson, 1985).

Of these natural attributes, caves represented one of the most ritually and cognitively charged features of the natural environment. To better grasp the deep-set involvement of caves in Maya religion, one must examine their creation story with reference to cognition of the earth, the heavens, and the underworld. The creation story of the K'iche' Maya, recorded in the Popul Vuh, glorifies the exploits of the mythical Hero Twins, Hunahpu and Xbalanque, and their numerous descents into Xibalba in order to play a ballgame against the lords of the underworld, or the "Xibalbans" (Tedlock, 1985). The Maya word for cave, ch'en, transcends a vast number of geological features differentiated by modern geologists. The word refers to virtually all naturally occurring karstic formations: grottoes, springs, cenotes, caves, and sinkholes (Stone, 1997). These features, as breaks in the earth’s surface, served as perceived entrances to Xibalba, and stand out as features that transcend world the levels (Brady, 1997). Ever-present
groundwater in caves and its cave-forming geological effect in karstic limestone regions also strongly point to the association of caves with the watery nature of the underworld.

Throughout the Maya area, caves have long been found containing cultural remains in association with surface sites. Probably the most well known example is the Sacred Cenote of Sacrifice at the Postclassic site of Chichen Itza. The Cenote connects to the ceremonial core of the site by way of a causeway or sacbe and was used extensively for sacrifice and offerings to the watery underworld (Sharer, 1994). Another significant cave in the Maya region is Naj Tunich, or “stone house,” located in western Guatemala. It contains perhaps the most spectacular examples of Maya ritual cave usage. Within Naj Tunich are some of the few examples of wall paintings, dozens of hieroglyphic texts, representations of various deities and the Hero Twins of the Popul Vuh, and the depiction of dwarfs associated with cave-dwelling rain spirits (Brady and Stone, 1986).

Not only were caves themselves viewed as significant, but the materials and geological formations found in caves were sacred as well. Several examples of speleothem breakage and removal have been found at the site of Baking Pot and Cahal Pech in the Cayo District of Belize in which the speleothems placed (and perhaps erected) within a ballcourt (Josalyn Ferguson, personal communication 1999). An interesting connection arises here within Maya beliefs of both caves and the ballgame. Many examples of removed speleothems have been found throughout the Maya area in surface sites. The ballcourts themselves served as entrances to the underworld, as places transcending world levels much in the same fashion as the Maya belief in caves. Also, at Yaxchilan Mexico, a stalactite was removed from a nearby cave and carved depicting a
scene common on Maya stelae of a ruler in his regalia (Brady, 1996; see also Tate 1992). There are many more examples of speleothem discoveries at surface sites, but lack published documentation of associated evidence and provenience.

The natural environment not only pervaded the Maya mindset in terms of cosmology, but also influenced the layout and placement of Maya settlements. In reference to site planning, the Maya had distinct ways of patterning and locating their settlements in association with significant features of the environment in order to stake a more powerful claim at sanctity. Outside of pragmatic considerations such the strategic location of the Petexbatun-region site of Aguateca along a faulted cliff face for defensive purposes (Sharer, 1994), Maya ideology permeated and influenced many aspects of material culture. Sites may have been located in spite a lack of natural resources or unfavorable defensive positioning. The location of Cahal Uitz Ná in the less agriculturally-exploitable region of the Roaring Creek Valley (Awe and Helmke, 1998) is a case in point. At the same time, settlement layouts and placement reflected more than cosmological and ritual beliefs in the environment, since they also act as political tools of propaganda. The Maya used civic planning not only as a method of demonstrating adherence to diagnostic ideological beliefs and strategic location for trade and warfare, but also as a method of reinforcing a given site’s legitimacy as an autonomous entity. As Ashmore (1989) states:

(T)he political function of site-planning is perhaps more obvious: the commissioning of monumental and multibuilding constructions – that is, manipulation of three-dimensional space as well as physical constructional volume – offers a means of expressing personal power and, indirectly, professing affiliation with executors of like projects, whether revered ancestors or powerful peers.
All of these factors blend in examples of Maya sites located in direct association with caves such as those in the nearby Macal Valley in Belize (see Awe and Helmke, 1998) or those seen in the Petexbatun region.

Perhaps the most striking example of Maya site planning in proximity to natural caves can be found at the Pasión region site of Dos Pilas. The site probably belongs in the category of an established colony of the central lowland giant Tikal due to the two sites having the same emblem glyph and the sudden eruption of monumental architecture at around AD 647 and the inauguration of Flint Sky as ruler (Sharer, 1994). The largest temple structure found at the site, El Duende pyramid, was revealed during investigations by James Brady to have been constructed over a natural cave called Cueva del Río Duende. Based on Brady’s 1997 publication of the results of his investigations at Dos Pilas, the cave appears to pass directly under the huge pyramid. Almost assuredly the engineers and architects of El Duende pyramid planned to place the pyramid over the formation. Also, Brady discusses a supposed palace structure that again lies over a cave. The Cueva de los Murcielagos (Cave of the Bats) runs directly under the palace at Dos Pilas. Upon a visit to the site during the summer of 1999, I saw the man-made cut access in the roof of Murcielagos that Brady marks as an entrance or doorway between the subterranean cave and the palace structure on the surface. Brady makes a case that the caves at Dos Pilas became incorporated into the site planning as follows:

Given the number of caves present at Dos Pilas, the inhabitants were surrounded on all sides with landmarks of enormous power and deep meaning . . . The cave(s), therefore, sanctifies the site and and defines it as the cosmic center, in the process legitimizing the site and the political organization that stands at the center. . . . Thus, caves in whatever form, when incorporated into site centers, would tend to carry the same connotations of legitimization of kingship based on the divine status of the officeholder. (1997: 614)
By incorporating caves within the layout and geography of the site, a statement is made on several fronts: control of the surrounding population, sanctity of the site, and legitimization of the elite class’ rule.

Another compelling facet of Maya cave use comes from Guatemalan highland areas outside of the karstic geological morphology seen in the Yucatan and the Peten. Areas consisting mainly of igneous and metamorphic rocks considerably harder and crystalline than the soluble limestone of the Lowlands occur in the southern Highlands in an east-west belt of mountains due to recent volcanic activity and older metamorphic activity (Morley, Brainerd, and Sharer, 1983). At highland sites investigated by Brady and Veni prior to 1992, a number of man-made caves have been found. One must take into account the vast amount of labor required to excavate a cave into igneous rock. The simple fact that the relatively small populations of these highland centers felt compelled to construct such labor-intensive chambers reflects a strong belief in the need to associate the polity with a cave. Brady and Veni (1992a) propose that the man-made caves were built to legitimatize sites that needed these sacred associations to establish significant trade ties, regional influence, and sanctity.

Caves not only held great meaning for the Maya, though – throughout Mesoamerica, caves transcend distinct cultures and geologically divided regions. Perhaps the best example of the significance of caves outside of the Maya realm of Mesoamerica is the layout of the Classic Period Central Mexico city of Teotihuacan. Laid out to along a masterful grid plan at its conception, an enormous man-made cavern lies underneath the Pyramid of the Sun along the main street of the city, the “Avenue of
the Dead" (Heyden, 1981). Other Central Mexican sites such as Xochicalco and Malinalco also have man-made caves associated with them (Brady and Ashmore, 1999). These centers also required the presence of a sacred *ch'en* and the associated ideological importance it provided. Without a natural candidate, the inhabitants undertook the massive effort to create their own cave. Another interesting Central Mexican site is the Mexica capital of Tenochtitlan. The Templo Mayor at Tenochtitlan, lies along the same symbolic grid as the Temple of the Sun at Teotihuacan. According to the Mexica creation story, the temple stands over the exact spot where a mythical eagle sat on a cactus which in turn sat on two caves from which water issued when the Mexica settled the swampy area (Brady, 1997). Obviously, the belief in caves as sacred spaces was a pan-Mesoamerican one, perhaps even one that extended throughout the New World and into the creation story of several tribes whose ancestors emerged from a cave (Turpin, 1992; Faulkner, 1988).
Survey and Excavation Reports: Actun Nak Beh

The excavations at Actun Nak Beh began in the 2000 field season. A reconnaissance and brief surface survey had taken place previously (see Mirro, Owen, and Helmke, 1999). The investigations at the cave began with a dual-pronged approach with one team of staff supervisors and field students working at the entrance of the cave in the “light zone” and another team working in the interior “dark zone”. The reason for the separate teams derives with the contrasting work environments and from the stark difference in artifactual assemblages found between the interior and exterior of cave sites in the Roaring Creek Valley (see Helmke and Awe, 1998, Awe and Helmke, 1998, and Awe, 1999) as opposed to working in physically draining and potentially hazardous cave environments. The project attempted to ameliorate any persons’ desire to avoid such risks. One benefit our team found of working in the interior of the cave the exterior was the 75° F temperature and relatively dry climate as opposed to the 100°-plus temperatures and stifling humidity of the entrance.

The 2000 survey and excavation of Actun Nak Beh was conducted under the auspices of the Western Belize Regional Cave Project (WBRCP) and funded in part by the field school program offered by the WBRCP through the University of New Hampshire. Due to the large number of culturally-significant caves in the Roaring Creek Valley, a major research goal of the WBRCP is to determine the temporal and spatial relationship between surface settlements and cave sites (Awe, 1998). Further investigations into this relationship holds particular importance due to the assumption
that caves represent sacred spaces and therefore predominantly were used for ritual activities by the occupants of nearby sites. Also, the nature of the WBRCP’s approach to cave research differs from that of other cave initiatives in the Maya area. The WBRCP attempts to collect chronological and cultural data from a large number of cave sites in order to construct interpretations of regional patterns and anomalies, whereas other investigations focus on a single site without consideration of the implications of widespread cave usage in a single region.

Geological Suite

Interestingly enough, the culturally significant areas in Actun Nak Beh reach no deeper than 50 meters within the cave, a distance considerably less than other caves in the valley with considerable cultural remains. Water is available from condensation on the walls of the E1 Corridor and Chambers 1, 2, and 3, and “live” flowstone formations are present at numerous locations. Except during extremely heavy rainy seasons, consistent flow of water, as seen in Actun Tunichil Muknal and Actun Yaxteel Ahau in the Roaring Creek Valley, probably has not occurred in Actun Nak Beh for a considerable amount of time. The walls of the cave, almost uniformly from entrance to entrance, consist of extremely hard dolomitic limestone. This made the insertion of nails for use as semi-temporary datum a near-impossible and finger-numbing task. There is a large amount of clay in Chamber 3 and in the unmapped passages to the North probably due to flood-period washout and erosion was found. The project geologist (Eric White) has posited
that this clay could have possibly been used as a source for the ceramic industry of nearby Cahal Uitz Na (Personal Communication, 2000).

Reconnaissance and General Layout of Actun Nak Beh

The 2000 research began with a two-day reconnaissance of the interior passages in order to plan the surface survey and collection, mapping, and determine potential locations for excavation units. All mapping was done by the baseline/offset method. A string was strung between two datums and perpendicular offsets to the adjacent cave walls were recorded. The baselines were measured for their distance, many times at a measured angle to the horizontal due to the topography of the cave, and horizontal distances were then calculated using simple trigonometric principles. Also, the azimuth of each baseline was taken using a Brunton surveying compass. After this data was collected, it was plotted in a Cartesian manner (as the offsets act as “x” coordinates and the baselines to form the “y-axis”) to produce a plan view of the cave interior walls and features. Due to some extreme topography, a theodolite was used to determine the angle of inclination of several baselines in the area surrounding Chamber 3, as a Brunton losses measurement accuracy at angles greater than 30°. The use of a theodolite in this treacherous environment proved quite difficult (see PHOTO #?), but beneficial in the end as a small degree of error was achieved in the mapping effort.

The cave itself was discovered to have two entrances at either end of a horseshoe-like gallery (see PLAN VIEW). Entrance One (E1) was the main access to the interior chambers both for our purposes as well as for those of antiquity, as the sacbe terminus lay
just meters away. E1 is a keyhole-shaped opening one-meter in width and three meters in height, an area consistent in size with E1 Corridor until Chamber 1. Entrance Two (E2), a small, one meter in diameter circular opening only accessible by crawling, lies to the South and above E1 on the abutting cliff face. In the interior, a relatively straight corridor led to several interior chambers, many of which had inter-connecting passageways and crawlspace, giving the area containing Chambers 1and 2 the nickname “Swiss Cheese”. These areas proved increasingly difficult to map due to their complexity, containing overhanging ceilings, flowstone columns, piles of imported river cobbles, and muddy slopes.

Deeper into the cave, a pedestal-like cave formation created the elevated Chamber 3, which required a safety line to ascend and descend on its eastern edge, as well as on the northern edge leading to the unsurveyed passages to the North. These northern passages contained no cultural material, so they did not merit further survey due to time constraints. Chamber 4 lay to the Southeast of Chamber 3 and contained an inaccessible flowstone climb that was not explored due to potential danger and the inability to secure a safety line for ascent.

Beyond Chamber 4, the passages turn southwards and lead outwards towards E2. Along the corridor (labeled E2 Corridor on the Plan View) lies Chamber 5. This chamber has the most difficult access via a half-meter wide crawl with a 90° turn and sudden two-meter drop to the floor of the chamber. Due to its location near E2 and its higher elevation, this chamber had temperatures and humidity rivaling if not surpassing those of the exterior, causing it to gain the nicknames “the Sauna” and “the Hell Hole” during
excavations. After passing Chamber 5, there is a large alcove inhabited by a great number of bats en route to E2 and the exterior slope along the cliff wall.

Actun Nak Beh Excavation Summary

The mapping effort required approximately three weeks to complete, after which the first excavations began. Due to time and personnel constraints, only three units were begun during the 2000 season: units 4, 6, and 7. Unit 4 was located in Chamber due to basal flange sherds found on the surface during the 2000 reconnaissance of the cave, as well as human bone fragments and a 15 cm knapped chert adze bearing little hint of use ware. Also on the surface at this location, many rounded river cobbles overlay the loose, reddish-brown matrix of the cave floor. Project geologist Eric White asserted that these cobbles could not possibly have found their way to the cave except by human activity. In fact, in several places throughout the cave, river cobbles litter areas in dense concentrations that suggest, based on findings from excavation, that the stones served as markers for materials buried beneath. The location of Units 6 and 7 were based upon the presence of surface artifacts and river cobbles as well as the desire to test different areas of the cave for archaeological data.

Unit 4

Unit 4 began as a one-meter by one-meter excavation to salvage what initial observations suggested was looter activity. Unfortunately, much of the cave had been pillaged prior to the 2000 field season since the cave’s proximity to, and path access
from, the large surface site made its discovery easy for looters. During the excavation of this unit, the observed disturbance was found to be the result of large rodent activity in the area, which meant the excavated finds were in a less disturbed context than originally suspected.

After removing the cobbles from the surface of the unit, a level of loose, reddish-brown clay matrix was removed and screened by a \(\frac{1}{4} \) wire grid. In this matrix, designated Level 1, more basal flange vessels fragments were found, as well as human bone from the hand or foot, a human tooth, slate fragments, and a nearly complete obsidian blood-letter. In the SE corner of Unit 4, the excavation team encountered a very distinct matrix, containing a much higher concentration of human bone, ceramic remains, and charcoal. The larger outside of this corner, contained very few artifactual remains and suggested that the main concentration of remains was to the East of Unit 4. This suspicion led to the extension of Unit 4 one meter eastwards.

The new eastern extension measured 1X1 meters and proved far richer in artifacts. After the removal of cobbles and the identical loose Level 1 seen in the initial Unit 4 excavation, we encountered a 5-10 cm layer of nearly strictly pure charcoal that was defined as Level 2 which had been disturbed in the western 1X1 m area of Unit 4. Level 2 contained, numerous fragments of basal flange sherds, identified as several Dos Arroyos Polychrome (Gifford 1976: 176-177). Three modified speleothems were found in this strata as well, perhaps placed there as part of a ritual offering similar to those seen in the excavations of the ballcourt at Cahal Uitz Na (Ferguson, 1999) and at the nearby surface sites of Baking Pot (Ferguson, 1999), Cahal Pech (Ferguson, 1993), and
Xunantunich (Thompson, 1940a). Several pieces of flat ceramic disks, of the size and shape that served as lids for incensarios, were also found in Level 2 (Smith and Gifford, 1965; Sabloff, 1970; Awe, 1985). The presence of these lid fragments suggests that at one time incensarios had been located in this chamber, but have since been removed by looters.

Perhaps the most interesting discovery in Level 2 was the presence of a multitude of 34 prismatic obsidian blade fragments. The heavy concentration of these fragments (numbering upwards of 40 in total) suggests that they may have been part of a burial cache, like those found deposited above dynastic burials at Tikal, specifically Burial 116 of Ah Cacau in Temple I of the Great Plaza (Coe, 1962). While at this point the excavations had only revealed bone fragments in secondary context, in Level 3 this pattern changed abruptly.

Burial 1

Level 3 was designated for the material below the Charcoal Lens in the stratigraphy and also for a dense concentration of human bone found along the cave wall in the SE area of the unit. Due to the context and volume of bone, it was labeled Actun Nak Beh Burial 1. Long bones, ribs, and teeth were excavated from the lighter, dry matrix surrounding the concentration. None of the teeth bore any modifications common to elite members of Maya society (Mata Amado, 1989). Due to the density of bone, a block-lift of a 30cm X 15 cm X 15 cm block of bone/soil matrix was removed intact and taken to the field lab to allow more careful excavation in a controlled environment. This
Hodgman, 2001

process, albeit painstaking, provided the best chance of collecting detailed information about the interred individual in Burial 1. Conducted by Sherry Gibbs, the Actun Nak Beh on-site Osteologist, the block-lift procedure provided enough data to determine relative age (adult), but unfortunately not sex. Rodent activity and the moist environment within the cave had transformed much of the bone into oatmeal-like mush. In fact, burrowing rodents may have destroyed the entire skull and pelvis barring these bones’ removal in antiquity.

At the time of burial the individual had probably been placed in a kneeling position, determined by the jumble of unrelated bones discovered in the block lift and complete unarticulation observed during excavations. The position of the bones indicated that the head originally faced West, a direction the Maya associated with death and darkness (Ashmore, 1997). In the area where the skull would have been located, a small blue-green jadeite bead was discovered that may have been placed in the mouth of the interred individual in accordance to the burial pattern seen throughout the Ancient Maya area (Sharer, 1994).

That the burial underlay a large deposit or “cache” of obsidian blades and blade fragments in Level 2. This recalls an interpretation proposed by Marshall J. Becker in his article entitled “Burials as Caches, Caches as Burials” (1992). This article deals with the relationship between burials and caches: more specifically, that some burials may have function as caches. As Becker states,

When human remains occurred with secreted offerings, or caches, in situations normally containing offering without human remains, the remains are dealt with simply as objects belonging to the assemblage comprising the offering. In the case of some . . . burials, the remains deposited in the grave may not represent the
Hodgman, 2001

entire individual. Some portions might have been removed for ritual purposes or might have been passed directly into a cache of nonburial repository.

Certainly Actun Nak Beh Burial 1 parallels this observance. The possible lack of a complete individual (if not due to rodent activity) and a closely-associated “cache-like” deposit of obsidian. Given the Maya treatment of caves as ritually charged entities, Burial 1 could be interpreted not only as a simple burial, but as an offering in combination with the ceramic and obsidian offerings.

Unit 6

Unit 6 was placed in close proximity to Unit 4 due to the presence of polychrome ceramic sherds on the surface, a jumble of river cobbles, and a small bone probably from a human digit. After discovering the human bone in Unit 4, Unit 6 was opened to test whether another burial followed the same general pattern: i.e. located next to cave wall, under numerous imported river cobbles. The unit was placed along the western cave wall and stretched 2m North-South and .5m East-West. Level 1 of this unit consisted of the cobbles removed from the surface and the same loose, clayey soil found in Unit 4. Within Level 1, the excavators found the continuation of the layer of charcoal discovered in Unit 4, suggesting a rather large episode of burning that covered the entirety of Chamber 1 with charcoal. Also found in Level 1 were several pieces of Bichrome/Polychrome sherds that may have originated from one of the Dos Arroyos vessels found in Unit 4. But this could not be determined due to corrosion of the sherd surfaces. A retractable claw came from a large cat, probably a jaguar was found in this level as well. Unfortunately, the claw was lost before the project faunal analyst could
properly study it. Below this material, Level 2 consisted of a reddish-brown clayey matrix observed as quite soft and easy to excavate. Only a few sherds were recovered in Level 2, along with several “soda straw” cave formations of unknown origin, so the excavation ceased after 35 cm of depth.

Unit 7

Unit 7 was a 0.5 X 2 meter unit that covered the majority of the surface area of Chamber 5. This Chamber lies within the first few meters of the dark zone of Entrance 2. It was apparent during initial investigations of the interior of the cave that Chamber 5’s floor was littered with ceramic sherds and jute shells.

An excavation unit within the chamber served as a means of exploring why and to what extent this small, reclusive area was used. The unit extended down seven levels, which were divided by natural layers. Changes of matrix may have been created through erosion of soil and water from Chamber 5A, a small (2.2X0.5 m) area southeast of the Chamber 5 that possessed cave formations. During surface collection of the entire area, though, about 50% of a “shoe-shaped” pot was discovered in the rear area of the chamber (see Plan View). The discovery of such a vessel raises some interesting comparisons to other contexts in which these vessels have been discovered. These vessels have been discovered more frequently in cave contexts across the Maya area than in surface contexts (Brady and Veni, 1992b).

Jute shells both modified and unmodified at the distal end were recovered from all levels with the greatest frequency within Level 3 though not clustered in any particular
area of the unit. Similar to the other interior units, diagnostic ceramics mostly dated to the Early Classic period. Although all seven levels yielded ceramics, only the first four levels contained sherds large enough and structurally intact for identification. Charcoal was found in all levels of the unit, with greatest concentrations on the surface and within Levels 1, 3, and 6. Many of the sherds were charred. Large pieces (>30 cm) of slate extending in from the eastern and western baulk were uncovered in Level 7. They were clearly imported into the chamber, however, interpretations of their function are not entirely clear. Because air circulation and breathing conditions within the chamber were poor, excavations of Unit 7 were closed at Level 8, approximately 119 cm below the MGS (see Halperin, Gibbs, and Hodgman, 2000).

Entrance and Causeway Excavations

Units 1, 2, 3, and 9, were placed at the main entrance of the cave in the light zone and concentrated around the area associated with the terminus of the causeway. Unit 1 is situated at the northwestern edge of the main entrance underneath a 1 m overhang of the cave wall and at the foot of a slope of a rocky outwash. Unit 2 was placed adjacent to the southern cave wall at the opposite end of the main entrance from Unit 1. Although both units were underneath the cave ceiling’s overhang, drips of water flowing along the wall and ceiling would enter into these areas during heavy rainstorms. Unit 3 is located underneath a small crawl space just north of Unit 2, and Unit 9 is located between Unit 1 and Unit 2 outside of the cave drip-line (Halperin, Gibbs, and Hodgman, 2000). By far the most integral data, for my purposes, was recovered from Unit 2, which contained both
buried individuals as well as elite prestige goods in the form of sherds from a Belize Modeled-Carved vessel (Gifford, 1976). An MNI of two individuals was discovered in Unit 2, possibly interred as part of a ritual deposit (Becker, 1992). Virtually all of the ceramics excavated from the entrance excavations came from the Late to Terminal Classic period.

The causeway, or sacbe, leading from the site core to Entrance 1 of Actun Nak Beh had several excavations undertaken to determine chronological and building episode data. Unit 5, with the dimensions of 11.7 X 1 m, was placed in the center of the sacbe in order to determine a cross-section of the architectural strata. While the majority of the unit was excavated to the top of level three, two subunits, a central sub-unit and eastern sub-unit, were excavated down to sterile (see Unit 5 Profile). Unfortunately, in the other two units excavated, Unit 8 and Unit 10, very few diagnostic sherds were recovered, the only chronological determinations solidified have the building episodes to have taken place between the Early and Late Classic period. But, in contrast to other sacbeob features at sites in the Belize Valley, which generally date to the Late Terminal Classic Period (Awe and Helmke, 1998), this sacbe appears to have been built considerably earlier based on the evidence discovered within the cave interior.
Unit 5, Profile of north baulk
Cahal Uitz Na - Actun Nak Beh Causeway
Roaring Creek Valley, Cayo District, Belize
Map by: Reiko Ishiara, Christina Halperin, and Harri Kettenun
29 June 2000
Discussion: Wider Comparisons

Having discussed the nitty-gritty details of the survey and excavation of Actun Nak Beh, more in-depth interpretations of these data can be made. As far as what these interpretations cover, I will first make a case for the existence of sacred geography at the site of Cahal Uitz Na with direct reference to Actun Nak Beh and the remains of past activity previously discussed. Secondly I will examine the relationship between the site layout of Cahal Uitz Na and nearby Pacbitun, discussing several striking similarities. Lastly, based on the aforementioned regional site layout pattern, I will present several models for the underlying motivations of the people in this area of the Belize Valley that might explain these patterns.

The previously made assertion that Actun Nak Beh in fact was a “ritually charged” location in the minds of the past inhabitants of Cahal Uitz Na must be justified. Based on the excavation data presented above, one can certainly make a strong case for this assertion. Firstly, all caves, as detailed in the Cosmology section, had ideological importance derived from the Maya perception of the natural environment, and Actun Nak Beh is certainly a cave. Also, evidence exists for ritual offerings made in the cave based on the assemblage of ceramic remains, containing a relatively high percentage of serving wares within both burial and non-burial contexts. The Actun Nak Beh frequencies at 74% of the total assemblage for these wares are higher than typical domestic contexts and many other cave contexts (Halperin, Gibbs, and Hodgman, 2000). Within a ritual context, serving wares are commonly associated with the offering of various items
including food, cloth, and various other goods, or as votive offerings themselves (Reents-Budet, 1994). Simply the presence of what would otherwise be utilitarian serving wares in such an obviously non-utilitarian setting provides support for ritual activity.

Before one can understand the rather esoteric and abstract concept of Maya sacred geography, a background discussion of the concept of space and its will be offered. Archaeology can readily deal with the specific and banal details of chronology and pottery types. But it is more difficult to obtain from these data an understanding of the mindset of the individuals who once used the artifacts recovered by the archaeologist. The cognition of landscapes, space, and the natural, built, and unbuilt environments do not spring to the forefront when examining buckshot-sized ceramic sherds.

In fact, the ancient perception of these important and inaccessible facets of past culture can be read from the landscape itself, the built and unbuilt environments as evidenced by the site layouts seen today, and the spatial organization of dwellings, sites, and regions. As Rapoport (1994) states, “Space is segmented and locations are differentiated, and then organized into systems at various scales from furniture groups, through rooms, buildings and urban spaces, neighborhoods, settlements and settlement systems, regions and cultural landscapes, to countries.” While the Maya never became unified under a single political system, they certainly achieved a high level of sophistication in their cosmology. In a very different theoretical light, Tim Ingold discusses how a society and that society’s environment interact:

As for the familiar domain or dwelling, it is with us, not against us, but it is no less real for that. And through living in it, the landscape becomes a part of us, just as we are a part of it. Moreover, what goes for its human component goes for
other components as well. In a world construed as nature, every object is a self-contained entity, interacting with through some kind of external contact. But in landscape, each component enfolds within its essence the totality of its relations with each and every other. (1993: 154)

In light of this level of interaction between society and environment Maya occupation at Cahal Uitz Na, the landscape emerges as a far more valuable resource than previously thought.

The concept of "sacred geography" emerges from a culture’s perception of the inter-weaving of the landscape, and both the built and unbuilt environments. Thus, an archaeologist can reconstruct the ancient sacred geography from the extant remains of the culture and their associations to the landscape and the built and unbuilt environment. In the case of the Maya, a strong belief in the rugged features of the natural environment supplemented the concepts of landscape, built and unbuilt environment to dictate their universe’s proper order: their unique sacred geography. Based on this methodology I will construct a rough blueprint of the cognition of sacred geography from the Maya at Cahal Uitz Na, Pacbitun and other regional entities.

The newest and most compelling interpretations on Maya sacred geography come from the work of Wendy Ashmore (see Ashmore 1989; Ashmore, 1991; Ashmore and Brady, 1997). She has examined the site core monumental architecture at many Maya sites including Tikal, Copan, and smaller sites such as Xunantunich, not far from the Roaring Creek Valley in the Cayo District, Belize. In essence, Ashmore presents a cosmogram for the layout of monumental architecture based upon the three-tiered Maya cognition of the universe (upper as the heavens, middle as the “dwelling of the people”,
and lower as the underworld, see Cosmology section above for more detail). By examining the patterns of cardinality at most Maya sites, with the East-West and North-South axes strongly defined by quadrilateral buildings, Ashmore provides interesting interpretations of the Maya sacred geography.

East and West, in Maya ideology, were strongly associated with the rising and setting of the sun. This has been demonstrated hieroglyphically, the most explicit information source archaeologists have on the Ancient Maya. At Río Azul, a surface site in northern Guatemala, a tomb contains the glyphs for “darkness” (akbal) and “West” (chkin) on the same wall, and “light” or “day” (kin) on the same wall as “East” (likin) (Coggins, 1988). North and South, on the other hand, are not mentioned as comparable “directions”. Rather, the two longitudinal directions are referred to as “moments between” East and West (Brotherston, 1976). In fact, in several Mayan languages such as Chorti or Tzotzil, there are no specific words for “North” and “South” (Brotherston, 1976; Vogt, 1969).

But, this lack of mention of North and South as directions does not mean these areas on the compass, as we currently view them, are ignored in Maya ideology. The longitudinal directions became important with a drastic shift in Maya conception of political authority, from one placing utmost importance on the sun and celestial entities (traveling East to West in the cosmos) to one demonstrating increasing prominence of the central head of the ruling dynasties and their succession (Freidel and Schele, 1988a, 1988b; Taube, 1994). In the Classic period, these political changes resulted in North becoming associated with a given site’s monumental core, symbolizing the upper realm
of the Maya universe, or the spiritual realm. At the same time, South became equated with the “middle” world occupied by the Maya themselves. Ashmore gives her own definitions of the two realms: North as “public/ritual/apotheosizing” and the South as “enclosed/residential/administrative (1989: 279).” This theory becomes apparent at Tikal where the North Acropolis served as the royal funerary locus for numerous dynastic figures prior to the Classic Period defeat at the hands of Calakmul and its allies (Houston, 1987). The southern architecture holds the multi-roomed “range” structures commonly held to have served as the royal palace, or the land of the Maya in the cosmogram. Thus, when a royal individual died, he/she ascended to the heavens by moving from the “southern” residential structure to the “northern” celestial realm (Ashmore, 1991).

Sacred Geography of the Roaring Creek Valley

The task is now to fit Cahal Uitz Na/Actun Nak Beh into such a theoretical framework as the basis for revealing the sacred geography at the site. If one views the plan of the Roaring Creek Valley focusing on the site core of Cahal Uitz Na and the nearby caves, clearly it follows the general cosmogram proposed by Ashmore. The royal palace structure lies in the South (labeled Plaza D) and the more “celestial” or “other-worldly” monumental architecture is located to the North (labeled Plaza D and B). One should also note that the ballcourt is in the central region of the site core. In Maya ideology as well as mythology (i.e. the Popol Vuh), the ballcourt was seen as an entrance to the underworld, or a place transcending levels. Ostensibly the ballcourt’s location in
between the “middle” and “upper” realms of the universe symbolizes its transitional meaning.

Outside of the monumental core, the symbols of power derive from their associations with caves. These caves directly influenced many activities and mindsets for the Maya of Cahal Uitz Na. The most stunning feature demonstrating this influence, at an Azimuth of 217° is the causeway that stretches 240 meters from the southern edge of the site to the mouth of Actun Nak Beh. The fact that this causeway or *sache* integrates the cave directly with the largest plaza and temple structures in Cahal Uitz Na suggests that ritual activity was funneled from the open plazas at the site core towards Entrance 1 of Actun Nak Beh. Causeways throughout the Maya area at different sites have been identified as similar channels of such activity (Ashmore, 1989).

The prevalence of movement between the levels of the cosmos emerges as a central theme to the layout of Maya sites – the significance lies not within the autonomous existence of the levels, but in how a person moves through these ideologically diverse realms. For instance, during life elite members at Cahal Uitz Na lived in the palace structures in the “living” world of the people, but moved into the lower realm of *Xibalba* for ritual activities. By conducting rituals in that sacred setting and re-emerging more as powerful by their connection to the supernatural realm, these elites sustained a firm grip upon their subjects. Finally, in death these elite moved from that middle realm to the celestial one, ostensibly ascending from being mere mortal to becoming deities themselves.
Hodgman, 2001

The Actun Nak Beh Cave

With the emphasis on movement between these realms, the labor-intensive construction of the 240-meter sacbe appears much more pragmatic – not only would the elites of Cahal Uitz Na valued it, but the common cognitive bond amongst the population at large would have expedited the construction effort. More importantly, the flux of activity to and from Actun Nak Beh must have been considerably large to merit such a large effort in the first place.\(^1\) In fact, the use of the causeway as a means of channeling the flow of people in a “Commemorative Ceremony,” that the elites at the site could “have invented rituals that claim continuity with an appropriate historic past, organising ceremonies, parades and mass gatherings, and constructing new ritual spaces (Connerton, 1989).” The construction of the *sacbe* not only solidified the rule of Cahal Uitz Na, but in effect created a new ritual space between the site core and the entrance to Actun Nak Beh.

Primary context in almost all cave settings, especially those in the Roaring Creek Valley, involves the ritual deposit of both smashed as well as “killed” vessels (ones with small holes to release the “spirit” or “essence” of the vessel) (see Griffith, 1997; Moyes and Awe, 1997; Helmke and Awe, 1998). The fact that no whole vessels were located in Actun Nak Beh suggests that these have already been by looters. As Conlon and Ehret state, “Strangely, while physically integrated with Cahal Uitz Na, Actun Nakbe is the most inconspicuous of the three caves, lacking both the iconography of Actun Uayazba

\(^1\) But this attachment to the site may have spelled the demise of many of the artifacts formerly located within the cave. Looters having discovered the surface site could have easily followed the *sacbe* with minor cutting of the jangle to the entrance of the cave and subsequently removed any and all of the more portable artifacts cached within the cave.
Hodgman, 2001

Kab and the rich cultural remains of Actun Tunichil Muknal (1998: 3).” Based on the analogous caves in the area, Actun Nak Beh must have held more extravagant ritual remains than discovered in the 2000 field season efforts.

The Maya not only used caves for intra-polity ritual purposes, but used their underlying significance as a source of political propaganda with the help of exploitative site planning, or the deliberate settlement patterning on a basis stretching from domestic to regional (Ashmore, 1989: 272). Due to Cahal Uitz Na’s location in the lower region of the Roaring Creek Valley, where the surrounding land holds less agricultural potential than in the upper region, the planners of the site may have decided that the symbolic power drawn from the caves served their purposes better than the agricultural ones could. The caves provide a never-ending supply of ritual energy and invigoration for the Cahal Uitz Na elites to tap into repeatedly during times of strife and ambivalence towards their rule. In fact, cave usage (determined by volume of artifacts) increases in a near-exponential manner during the Late Classic and Terminal Classic periods (see Griffith, 1998; Moyes and Awe, 1998; Awe and Helmke, 1998; Awe, 1998), suggesting that as ecological resources and societal institutions broke down across the Maya area, people looked to ideological resources, namely caves for the people at Cahal Uitz Na for aid and assurance.

As Actun Nak Beh lies almost due South of the site core of Cahal Uitz Na, the power with which it is imbued becomes binary. In the first place it’s significance simply as a cave, similar to the other caves in the Roaring Creek Valley such as Actun Uayazba Kab, Actun Tunichil Muknal, and Actun Coo Mac, derives from the association between
Cahal Uitz Na
Roaring Creek Valley,
Cayo District,
Belize

Entrance 1,
Actun Nak Beh

Plan by:
James M. Conlon (1998)
Survey by:
James M. Conlon (1998)
Christophe G. Helmke (1997)

Western Belize Regional
Cave Project (WBRCRCP) 1998

Revised: 10/IV/1999
caves and the Maya underworld. But, it also was significant due to its location along one of the cardinal axes. Both cardinal orientation, more specifically the intersection of cardinal lines, and caves have been interpreted to serve as an *axis mundi* at Maya settlements (see Brady and Ashmore, 1999; Ashmore, 1989). And again, Actun Nak Beh has a certain dual significance in this sense; as both a cardinal and cave feature, its potential for propagandistic exploitation in a political sense surpasses all other caves geographically associated with the site of Cahal Uitz Na.

Dealing with the theory set forth above by Rapoport, the landscape as a valuable and culturally charged entity begins on the microlevel of single rooms and expands to regional or even rational levels of cultural patterning of landscape. While in a general sense many Classic Maya sites demonstrate the principles of Maya cosmograms, patterns between sites can be seen on a far more specific level in terms of both their layout and geography – essentially, sites in a given area often mirror one another. This emulation can plainly be seen when one examines the site layouts of Cahal Uitz Na and Pacbitun; two sites of near identical size located adjacent to one another in the Roaring Creek Valley and along the bank of Garbutt Creek (See Upper Belize Valley Map) respectively.

Pacbitun, excavated in large part under the auspices of Paul Healy, demonstrates several compelling similarities to the layout and cognitive logic behind the planning of Cahal Uitz Na. Namely, the location of the ballcourt in the North and central area of the monumental core, the existence of low range structures in the Northwestern area of each site, the palacial structures in the Southeast corner of both, and the multi-pyramid complexes in the Northeastern area of the two sites (see Plan Views). Most importantly,
though, each site has a *sacbe* or causeway connecting it to a different feature incorporated into the site core's main architectural complex.

At Pacbitun, this structure "at the end of the road" is known as "Structure 10" while Actun Nak Beh lies at the causeway terminus at Cahal Uitz Na. The two causeways lead in different directions, but, the Maya could not have built a causeway to the East of Cahal Uitz Na since the site lies at the foot of an extremely steep cliff. While no survey or excavations at Structure 10 have taken place due to modern settlements, I would predict that excavations at this structure would reveal ritual usage of the structure based upon an artifactual assemblage bearing close resemblance to those detailed above from Nak Beh.

Structure 10’s architectural morphology reflects its ritual purpose. It has a large raised platform abutting a steep "temple-shaped" mound, similar in size and style to other excavated temples at the more centralized monumental core (Healy, 1990; Healy, 1992). Structure 10 does not in any way resemble the template for domestic dwellings: low, long, multi-roomed range structures. Also, the simple fact that this is away from the central core of the site suggests an ideological importance of it being towards the ritually charged eastern direction (see above). It may have even served as a burial shrine similar to the pattern seen at plazuela groups throughout the Maya area and in the Belize Valley at sites like Pook's Hill (Helmke, 2000). If burials are indeed found at Structure 10 in the future, that would link it even closer with Entrance 1 of Actun Nak Beh, where burials of several individuals were found (see Excavation Summary above).
I would also suggest that the existence of a causeway leading from the back of one of the respective site’s tallest temples to a specialized ritual structure at both sites cannot be coincidence, and the similarity in the general layout of the two sites cannot be attributed to coincidence either. In fact, based on the proximity of the two sites and the similarities between them, a regional preference for site layout takes shape. This preference forms part of an ideological lattice based on common cognitive views amongst the former Maya inhabitants of these Belize Valley sites. But, the motivation or foundation for this pattern has several potential sources.

Viewing the map of the Belize Valley locating all archaeological sites in the area, one notices that the site of Barton Creek is located in the valley directly in between Garbutt Creek and the Roaring Creek Valley. Labeled solely as a cave site on the map, a large number of architectural mounds have recently been discovered near the cave mouth after initial investigations into the cave site itself. Barton Creek Cave has proved one of the richest in terms of both human and artifactual remains (see Mirro and Owen, 2000). Unfortunately, though, the large mounds nearest to the cave entrance have been bulldozed in order to supply stone for a modern dwelling and the surviving intact mounds have not been surveyed. Thus, a comparison between Cahal Uitz Na, Pacbitun, and Barton Creek is not possible. Nonetheless, based on the similarities of the two surveyed sites and their proximity to Barton Creek, I feel strongly that further survey of the intact mounds and extrapolation of basic orientation from the bulldozed mounds would reveal a striking similarity between Barton Creek and its neighbors to the East and West.
Conclusions

Further conclusions and proposals emerge as to how these observations fit into a larger framework – and provide insight as to an appropriate course of action for future research. Following the goals set forth by the WBRCP, a large number of caves in a single region have been tested for archaeological evidence in order to provide better insight not only into the usage of caves throughout this area. But, these interpretations also to provide a better source of knowledge from which holistic interpretations of ideology and worldview in Ancient Maya antiquity can be determined.

One rather peculiar observation from the work carried out at Actun Nak Beh initially placed the cave in direct opposition in terms of temporal usage from virtually all other caves in the valley. Based on findings at other cave sites in the Roaring Creek Valley (see Moyes and Awe, 1997; Mirro, Owen, and Helmke, 1999; Awe, 1999; Awe and Helmke, 1998), a large number of observed caves demonstrate usage dating to the Early Classic Period solely nearby the entrance of caves, sometimes in the cave interior, but never extensively located in the dark zone. At Actun Nak Beh something quite different emerged, in fact, quite the opposite. At the entrance the remains recovered dated almost exclusively to the Late/Terminal Classic, while zero datable artifacts or features from the interior were from the Late Classic. The interior of Actun Nak Beh was used before the area in the light zone.

Speculation at the reasoning behind this stark contrast abounds, but I prefer the reasoning associated with Occam’s Rule – that the simplest explanation for something
usually is the correct one. That this cave held special meaning to the Maya at Cahal Uitz Na beyond that of any other cave in the valley is entirely possible based on the architectural investment associated with it, this scenario has no solid data to support it beyond that. In this case, as Actun Nak Beh’s interior extends less than 60 meters deep into the hillside, these areas of Early Classic activity probably were more easily accessed than some of the entrance/light zone deposits seen at Actun Uayazba Kab or Actun Tunichil Muknal (see above). Nak Beh is not a difficult cave to maneuver, and that geological fact has not changed since antiquity.

While underlying cosmological ideology certainly provided some of the impetus behind the similarities between the architectural layouts of Cahal Uitz Na, Pacbitun and potentially Barton Creek, a more coercive force may have existed as well. Here a problem arises as to which polity or confederation of polities could have commanded that much power throughout this area during the Classic period. Several different frameworks all based on different scales of sophistication in a geographic sense, when examined further, allow for an interesting perspective on the hierarchy or other organization took shape during Maya occupation of these sites. The three scenarios worthy of consideration include the following: no external influence, a regional polity exerting control over these sites, perhaps even one of the three themselves, or that an extra-regional polity controlled these three sites from outside the local geographic region of the Upper Belize Valley.

As for the first scenario, that no polity had any political control over any other polity in the region is almost a certain falsehood. Archaeologists working in the Maya
area have long been aware of the dynamic regional systems of alliances and foes extending throughout the Preclassic to Colonial times. While many sites were under "autonomous" rule, each polity was involved in a number of alliances in order to secure their autonomy. The reliance upon other sites caused increasing amounts of interdependence for support militarily and otherwise. The polities in the Belize Valley were no different than proximate cities elsewhere in the Maya area.

Concerning the second scenario, one must assume that one of the relatively nearby polities extended some level of control over its neighbors, which of the number of middle-sized sites could possibly have held this power? Perhaps the site of Baking Pot (see Upper Belize Valley map) could have been this controlling polity, for it has a very significant monumental center (see Ferguson, 1999) that suggests not only more prestige but also a greater capability to mobilize large numbers of people. Similar to Barton Creek, though, much of the archaeological data has been lost at Baking Pot due to plowing and other modern activities. While the impressive site of Xunantunich is not far from this area, regional administration seems out of the question due to its relative distance and similar size to many other sites. Also, the site does not demonstrate any similarity in terms of layout with any of Cahal Uitz Na, Pacbitun, or Barton Creek. The more distant site of Caracol to the South or even Naranjo in the Peten could have administered this area, but little or no evidence exists to support such a claim at this time. In theory, the claim that one polity served as a principal administrator in the area is accurate and probable, the lack of evidence to support one polity over another disallows further conclusions.
The third scenario involves somewhat of an internalist view of Cahal Uitz Na Pacbitun, and Barton Creek. Based on the proximity of the three sites, they must have been fiercely competitive for resources of all kinds: farmland, malleable stone for knapping, prestige goods, sacred standing, and the faith of the non-elite population on which the elites stood. The best way to best a competitor is to emulate them but raise the stakes slightly – through either a larger temple, a layout in accordance with a cosmogram honored and admired throughout the Maya area, or a causeway leading to a ritually-active cave or structure. Coca-Cola versus Pepsi, McDonalds versus Burger King, and Cahal Uitz Na versus Pacbitun. Cahal Uitz Na, Pacbitun, and possibly Barton Creek all needed to best the other in order to maintain control over the resources of the area. By emulating the other cities and making improvements over them, a script of constant grappling for power through an “arms race” of sorts seems likely.

Much of the interpretation above involves considerable amounts of speculation, but with further research, this speculative component of the interpretations can be alleviated. Almost every archaeologist can list numerous sites, structures, and other locations that would help support one’s interpretations; thus, here is my wish list. First and foremost, Cahal Uitz Na needs to be further excavated beyond those excavations done by Ferguson (1999), and Ehret and Conlon (1999). None of the major temples at the site have been excavated, and allowing these untapped sources of data to sit in the jungle longer with only allow looting to totally decimate them. Also in the Roaring Creek Valley, a number of caves and rockshelters have not been mapped, surveyed, or excavated – any or all of these sites can only help our understanding of the ritual use of
caves by the Maya at Cahal Uitz Na and across the Maya area. At Pacbitun, certainly more extensive mapping and excavation at Structure 10 would provide some insight into the usage of that structure and how its archaeological assemblage compares to that of Actun Nak Beh. While Barton Creek Cave’s initial investigations during the 2000 field season provided fascinating data concerning how the cave was used, very little knowledge was gained on the surface site itself. Mapping survey and even test excavations at the surface site could provide a wealth of data with relatively small expense of time and effort. This list could continue forever. Despite the apparent lack of certain data, many interpretations can be determined based on the data that has been collected.

To this end, several things have been established through examination of theoretical and archaeological data collected in the field. First, the Maya used caves for ritual purposes due to caves’ centrality within their cosmological cognition. Second, Actun Nak Beh was one of these caves, determined due to its incorporation into the monumental core of the site via a sacbe and the data collected during excavation. Third, the Maya at Cahal Uitz Na consciously used the ideological power of caves when conducting the site planning and layout at Cahal Uitz Na, thus imbuing the site with sanctity as part of a ritually-saturated landscape. Pacbitun and Cahal Uitz Na have strikingly similar site plans, most importantly involving the construction of a causeway incorporating a ritually charged area, a temple and a cave, respectively into the site’s monumental plan. Lastly, based on the similarities between Pacbitun and Cahal Uitz Na, one can logically predict that the site layout of the Barton Creek surface site would reflect
that of the two documented sites. Due to the proximity of the three sites, a vast amount of competition between them occurred in antiquity – by emulating and improving one another’s use of sacred geography, these similarities grew.

Note:

All the above data was collected under of the auspices of the Western Belize Regional Cave Project (WBRCP) and funded in part by a research grant to J. Awe (Trent University/Univ. Of New Hampshire) by the Social Sciences and Humanities Research Council of Canada (SSHRC). None of the research above could have taken place without the aid of Christina Halperin, Sherry Gibbs, Eric White, Raffi, Jeff Ransom, Anna Yoder, Special thanks to Christophe Helmke for guiding me through my archaeological endeavors, Jaime Awe for help obtaining copies of formal data from WBRCP and for allowing me to participate on the WBRCP, and Robert J. Sharer for advisory and editorial comments, direction, and introducing me to New World archaeology. All errors and omissions are the responsibility of the author.
References Cited

Ashmore, Wendy

Ashmore, W., and J.A. Sabloff.

Awe, Jaime

Awe, Jaime and Helnke, Christophe

Becker, Marshall J.

Benson, Elizabeth P.
Hodgman, 2001

Brady, James

Brady, James and Ashmore, Wendy

Brady, James and Stone, Andrea

Brady, James and Veni, George

Brotherston, G.

Coe, WR

Coggins, Clemency Chase

Hodgman, 2001

Connerton, Paul

Ehret, Jennifer and Conlon, James

Faulkner, Charles H.

Ferguson, Josalyn

Freidel, David and Schele, Linda

Gifford, James C.

Griffith, Cameron
Hodgman, 2001

Halperin, Christina, Gibbs, Sherry, and Hodgman, Daniel

Healy, Paul F.

Helmke, Christophe

Helmke, Christophe and Awe, Jaime

Heyden, D.

Houston, Stephen D.

Ingold, Tim

Mata Amado, Guillermo
Hodgman, 2001

Mirro, Michael and Owen, Vanessa A.

Mirro, Michael J., Owen, Vanessa A., and Helmke, Christophe

Morley, S.G., Brainerd, G.W., and Sharer, R.J.

Moyes, Holly and Awe, Jaime

Rapoport, A.

Reents-Budet, Dorie.

Sabloff, Jeremy

Hodgman, 2001

Sharer, Robert

Smith, Robert Elliot, and Gifford, James C.

Stone, Andrea

Tate, Carolyn

Taube, Karl

Tedlock, Dennis

Thompson, Eric S.

Turpin, Solveig A.

Vogt, E.Z.
