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Optimized biopsy procedures for estimating Gleason Score and prostate
cancer volume

Abstract
Prostate biopsy is the gold standard procedure for pre-operatively estimating Gleason Score (GS) and cancer
volume (CV), which are two important surrogate markers for prostate cancer aggressiveness. Currently,
biopsy estimates GS based on architectural patterns of the sampled tissue at the microscopic level [1] and
estimates CV mostly based on the percent positive biopsies. However, underestimations are sometimes
observed mainly due to the sampling errors of biopsy [2-5]. This problem is partially alleviated in this paper,
where we have developed optimized biopsy procedures that could differentiate between prostate specimens
having high and low GS/CV by sampling the spatial cancer distributions at the macro level. Differentiation
rates of 81.93% (for GS) and 94.79% (for CV) have been obtained under cross validation in a population of
prostatectomy specimens. To the best of our knowledge, the optimized biopsy procedures are the first ones
that use (macro-level) spatial cancer distributions to estimate GS and CV. More validations might be needed
to reveal its generalization ability.
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Optimized Biopsy Procedures for Estimating Gleason Score and Prostate Cancer Volume 
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Introduction: Prostate biopsy is the gold standard procedure for estimating Gleason Score (GS) and cancer volume 
(CV), which are two important surrogate markers for prostate cancer aggressiveness. Currently, biopsy estimates GS 
based on architectural patterns of the sampled tissue at the microscopic level [1] and estimates CV based on the percent 
positive biopsies. However, underestimations are sometimes observed mainly due to the sampling errors of biopsy [2-5]. 
This problem is partially alleviated in this paper, where we have developed optimized biopsy procedures that could 
differentiate between prostate specimens having high and low GS/CV by sampling the spatial cancer distributions at the 
macro level. Differentiation rates of 81.93% (for GS) and 94.79% (for CV) have been obtained under cross validation in 
a population of prostatectomy specimens. To the best of our knowledge, the optimized biopsy procedures are the first 
ones that use (macro-level) spatial cancer distributions to estimate GS and CV. More validations might be needed to 
reveal its generalization ability. 
 

Method: This is a population-based study, where histological images from a population of prostatectomy specimens are 
first reconstructed, spatially normalized into a stereotaxic coordinate space using an elastic warping method [6] and 
stacked into an atlas, reflecting different spatial distributions between specimens having high and low GS/CV. The main 
problem is then how to select optimal biopsy locations that could effectively sample the (macro-level) spatial cancer 
distributions, for the purpose of estimating high or low GS/CV for a prostate cancer patient. Selecting optimal biopsy 
locations is formulated into a feature selection problem, where biopsy outcome (1 for cancer presence and 0 for cancer 
absence) at each potential biopsy location is regarded as a feature. Given those optimized biopsy locations, estimating 
GS/CV of a prostate cancer patient is formulated into a binary classification problem, where a supervised classifier 
labels high or low GS/CV by jointly considering biopsy outcomes at these locations (reflecting macro-level spatial 
cancer distribution of this patient). In our implementation, the feature selection problem is solved by a feature selector 
developed in [7], and the binary classification problem is solved by support vector machine (SVM) [8] with Gaussian 
kernels. Cross-validation is conducted and ROC curves are plotted to reflect the sensitivity and specificity of our 
optimized biopsy procedure in classifying patients having high or low CV/GS. 
 

Results: In our study, 83 specimens have been collected, of which 46/37 having high/low GS and 45/38 having 
high/low CV. The atlases in Fig. 1 visually demonstrate that specimens having high and low GS/CV exhibit different 
spatial distribution in the prostate space. In trying to sample these distributions, optimized biopsy locations are shown in 
Fig. 2, in both transrectal (anterior-posterior) and transperineal (apex-base) settings. Then, the sampled pattern of the 
spatial cancer distribution is the factor that determines high or low GS/CV. For example, using 7 optimized needles for 
CV in transrectal setting (lower left, Fig. 2), a prostate with the sampled pattern [1 1 0 0 0 1 0] (corresponding to cancer 
status from 1st to 7th biopsy) would indicate high CV, even though the percent positive biopsies is only 3/7, while 
another prostate with the sampled pattern [0 0 1 1 1 0 0] would indicate low CV, even though it also has 3 out of 7 
biopsies being positive. Figs. 3 & 4 show the leave-one-out cross validation results, where high classification rates 
(0.8193 for GS and 0.9479 for CV) and large areas under the ROC curve (AUC=0.83 for GS and 0.98 for CV) have 
been obtained when differentiating between specimens having high GS/CV and low GS/CV. 

Fig. 1: Cancer distributions in two groups of prostate specimens. 
Blue dots are some intuitively observed biopsy locations where 
two groups of specimens would most likely to be differentiated.

Fig. 2: Optimized biopsy procedures (7 needles) in transrectal and 
transperineal settings, when Gleason Score and cancer volume are 
used as the surrogate marker for cancer aggressiveness, respectively.



 

 
Discussion: We have developed optimized biopsy procedures for estimating Gleason Score (GS) and cancer volume 
(CV) of prostate cancer patients. In contrast to the traditional methods, which estimate GS/CV by examining micro-
level cancer patterns or the proportion of biopsy sites with cancer presence, our method assumed and experimentally 
demonstrated that prostate specimens having high and low GS/CV would exhibit different spatial cancer distributions at 
the macro level (Fig. 1), which could be sampled by our optimized biopsy locations (Fig. 2), resulting in improved 
estimation accuracy (Figs 3&4). Our estimation framework is binary (high or low) in accordance to clinical decisions 
that tend to binary (treatment or watchful waiting). Our framework is general and applicable to any population of 
prostatectomy specimens. Future work includes validating on a larger population and combining the optimized biopsy 
procedure with other pre-operative variables, such as PSA, to more accurately estimating surrogate markers for cancer 
aggressiveness. 
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Classification rate = 0.9479
when 7 needles are used 

Fig. 4. Classification (differentiation) rate of the optimized transperineal biopsy (Fig. 2, lower right), when CV is used as 
the surrogate marker for cancer aggressiveness. (A): classification rate as a function of the number of optimal needles; when 
7 needles are optimized, classification rate is 94.79%. (B): ROC curve when 7 needles are used, AUC=0.98. 

K: the number of optimal features (needles)

A Classification Rate as a function of the 
number of optimal features/needles 
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Classification rate = 0.8193
when 7 needles are used 

Fig. 3. Classification (differentiation) rate of the optimized transperineal biopsy (Fig. 2, upper right), when GS is used as the 
surrogate marker for cancer aggressiveness. (A): classification rate as a function of the number of optimal needles; when 7 
needles are used, classification rate of 81.93% is achieved. (B): ROC curve when 7 needles are used, AUC=0.83. 
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