














(a) (b)

(c)

Figure 6: Food court scenario. 6(a) shows the spatial layout of a
central eating area surrounded by seven buffet-style food stations.
6(b) shows the activity graph for this scenario. Agents must order
food and pick it up before eating. 6(c) shows the spatial graph
which corresponds to the scenario map.

���������������� ���	���
���
���
����

���������

������ ��������������������

Figure 7: Authoring keyframes. A user can author keyframes with-
out knowing the details of the scenario. Our algorithm for com-
puting rates depends on the geometry, map of where activities can
be performed, and activity timing and sequence constraints. How-
ever, the user does not need to be aware of these details to author
a scene. Instead, she can use high-level sliders and crowd brushes
to set a desired high-level appearance for the crowd. At the click
of a button, our technique computes rates for maintaining the given
distribution.

in sequence, it is unclear how rates affect the high-level appearance,
and the computation of rates becomes necessary (Figure 8).

Wandering Zombies

In this example, we use the techniques from section 3.1.4 to dis-
tribute wandering behaviors across a large mall environment con-
sisting of 69 locations. Because of the large number of spatial lo-
cations, setting densities across the entire mall by hand would be
tedious. In this section, we show the result of automatically dis-
tributing agents across sites based on the desired activities set by
the user.

In the first example (Figure 9(a)), we weight the distribution of
agents across mall locations so that densities are highest in areas
where sites are close together. To compute the elements of W , we
use the travel distances between each pair of locations using a nav-
igation mesh. The start and end points are located at the center
(determined by bounding box) of each location. We then define our
weights as

Wij =

8
<

:

0; eij =2 E
0; Distance(x i ; x j ) > Thresholdmax
D max � Distance(x i ; x j );

(11)

8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9

0

0.2

0.4

0.6

0.8

1

Time (hours)

P
er

ce
nt

ag
e

Pickup
Outside
Eat
Order

No Constraints

Outside

Eat

Order

Pickup

(a)

8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ag
e

Outside
Eat
Pickup
Order

Time (hours)

Ordering Constraints

Outside

Eat

Order

Pickup

(b)

8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ag
e

Outside
Eat
Pickup
Order

Time (hours)

Duration Constraints

Outside

Eat

Order

Pickup

(c)

8 8.2 8.4 8.6 8.8 9 9.2 9.4 9.6 9.8 10

0

0.2

0.4

0.6

0.8

1

All Constraints - Our Method

P
er

ce
nt

ag
e

Outside

Eat
Pickup

Order

Time (hours)

Outside

Eat

Order

Pickup

(d)

Figure 8: Food court scenario. These graphs show changes in ac-
tivity over time. The x-axis is the simulation time in hours. The
y-axis is the proportions of agents who are either eating, ordering
food, picking up food, or outside. 8(a) If activities can be executed
in any order and have the same duration, there is no need to com-
pute rates: sampling directly from the desired distribution yields
the same high-level distribution (average deviation: 0.03). 8(b)
However, if the sequence of activities matter, it is unclear how rates
should be changed to yield a desired high-level appearance. In this
example, we set the transition probability for invalid transitions to
zero and renormalized. The high-level distribution now accumu-
lates agents in the food ordering activity (average deviation: 0.43).
8(c) Similarly, differences between activity durations will also af-
fect the high-level distribution. Here, the rates are the same as in
8(a), but the durations of each activity is different. Agents now ac-
cumulate in the longest activity, eating (average deviation: 0.73).
8(d) Our proposed method can directly compute valid rates which
take into account both sequences and durations simultaneously (av-
erage deviation: 0.03).

where D max is the maximum distance between two locations in the
environment and Thresholdmax can be used to set a maximum dis-
tance for comparing locations.

In the second example (Figure 9(b)), we weight the distribution of
agents across mall locations so that more agents are located in large
areas than in small areas. In this case, the weights of W are the
ratio of the areas between the target location and the start location.

Wij =
�

Area(x i )=Area(x j )
0; eij =2 E (12)

In the third example (Figure 10), we distribute wandering behaviors
evenly across all locations, but add preferences for closer locations
over further ones using hard constraints (section 3.1.3). To keep the
number of additional constraints smaller, we don’t consider each
pair of locations, but instead use a threshold around each location
that separates near locations from far ones, e.g. kij > = kkj if site
x i is closer than our threshold distance and site x j is farther than
our threshold distance.

Medieval Gatherers

In this example, we show how the methods in this paper could be
used to interactively control a group of characters, for example, as



Weight by distance

(a)

Weight by area

(b)

Figure 9: Computing spatial distributions automatically. This fig-
ure shows maps of the mall environment used for our zombie demo.
The shaded areas on the map indicate locations where zombies can
wander: lighter regions have more zombies than darker regions.
Left, we distribute wandering behaviors based on distance. Re-
gions with many places close together will have more zombies than
spread out regions. Right, we distribute wandering behaviors based
on the region’s area. Regions with more floor space will have more
zombies than smaller regions.

in a real-time strategy game. Here, the player assigns different pro-
portions of agents to collect different resources, either wheat, gold,
or wood. The underlying model for this demo is simple so that we
may solve quickly for new rates (Figure 11). Rather than model the
travel times separately, we lump the round trip travel time with the
resource collection time into a single duration for modeling.

5 Performance

Because rates can be precomputed, no additional computations
need to be performed at runtime, unless one wants to dynamically
modify the distributions. We collected performance statistics with
a Intel Core2 Duo 2.1 GHz with 4GB of RAM. The cost of com-
puting rates for the demos in the previous sections can be found
in Table 1. On the same machine, sampling for the next activities
based on rates took no more than 1 msec. In general, the com-
putation time increases with the number of nodes and number of
constraints in the transition graph.

6 Discussion

We investigate a method for computing random parameters that
supports direct animator control. Using these techniques can reduce
the need for manually tweaking stochastic behaviors, can facilitate
intuitive tools for crowd authoring, and can support interactively
controlling characters in real-time.

The methods in this paper are best applied to large numbers of
agents, such as background characters in open-world video games,
or for controlling populations in aggregate, such as in real-time
strategy games. In these cases, the high-level appearance of back-
ground characters is more important than simulating the internal
processes of each agent and the stringent runtime and memory re-
quirements favors lightweight and highly scalable approaches such
as stochastic models.

However, the factors which make stochastic models appealing for
large groups of background agents make them inappropriate for
simulating small numbers of detailed agents. First, the accuracy
of the model, e.g. how closely we match a desired distribution, be-
comes more accurate as the number of agents increase. In our de-
mos, 100+ agents had good convergence. Second, it is difficult to
build state machines for extremely large numbers of actions (future
work could look at hierarchal stochastic models) and furthermore,

(a) (b)

(c) (d)

Figure 10: Modeling preferences for closer locations. This figure
shows maps of the mall environment used for our zombie demo. Lo-
cations in the mall are shaded to show how often they were visited
from a starting location. For this demo, zombies were distributed
evenly across the environment, but we added hard constraints so
that zombies are more likely to visit closer locations than further
ones. The start location is indicated with a circle. Lighter areas
indicate locations more frequently visited from the start location.

this technique does not support reactive behaviors, such as those in
response to the player. To support reactions, an agent could switch
to a detailed AI script as necessary and then return to the more basic
model. Small disturbances will not have a big effect on the aggre-
gate appearance of the crowd.

Additionally, this model makes assumptions that an agent can al-
ways reach a destination, all interactions with other agents (such
as tellers, shop keepers) are deterministic, and that resources are
always available. Environmental changes can be handled by re-
computing transition matrices to support more dynamic group be-
haviors.

We only consider a subset of the types of distributions used for
stochastic agent modeling. Future work could also look into mod-
eling arbitrary distributions for durations and conditional probabil-
ities between states.In the future, we may investigate how to apply
these techniques to AI level-of-detail and for dynamically com-
puting spawn entry and exit rates in moving regions around the
player. We investigated this approach for authoring the appearance
of crowds, but it might also be applied to sound authoring. For
example, a sports game might use this approach to control the pro-
portions of cheers, whistles, and shouts in response to game events.
Other future work could verify the potential of this approach for
massive scalability. Many massively multiplayer online games do
not contain dynamic background characters. The robustness of this
method and ability to run decentralized has the potential to let de-
signers easily script daily routines for agents with minimal manual
effort and little increased computational cost.

Acknowledgements

The authors wish to thank everyone who provided feedback and
support for this project: Jan Allbeck, Norm Badler, Benedict
Brown, Penfei Huang, Stephen Lane, Yusuf Sahillioglu, Ben
Sunshine-Hill, and Rossana Queiroz. We also thank Fannie Liu and
Corey Novich for their help with assets and videos. This work was



Demo Activities Sites Nodes Edges Constraints Time (s)
Birds 3 3 32 38 72 0.769
Food court - breakfast 4 16 105 134 499 8.76
Food court - lunch/dinner 4 16 105 134 499 8.65
Food court - coffee 4 16 105 134 499 8.73
Food court - closed 4 16 105 134 499 10.95
Zombies (no distance preferences) 2 69 69 4761 4899 3.32
Zombies (distance preferences) 2 69 69 4761 33876 651.23
Medieval 4 9 20 36 155 0.5

Table 1: Precomputation times for our demos. Modeling distance preferences for the zombie mall environment takes much longer to compute
because of the large number of additional constraints.

(a) (b)

Figure 11: Medieval gatherers. 11(a) shows the demo environ-
ment. There is a main village where people idle, 4 wheat fields for
gathering wheat, 1 lumber yard, and 3 gold mines. The user can
control the resource gathering across sites by assigning agents to
activities. 11(b) shows the activity graph. Each gathering activ-
ity is executed as a self contained FSM which continuously fetches
resources and brings them back to the village.

supported by NSF Grant IIS-1018486 and ONR MURI DR-IRIS
N00014-09-1-1052.

References

ADMIZA, J. 2001. AI madness: Using AI to bring open-city racing
to life. Game Developer Magazine (January).

ALLBECK, J. M. 2010. CAROSA: A tool for authoring NPCs. In
Motion in Games, Springer, 182–193.

BERMAN, S., HALÁSZ, A., HSIEH, M. A., AND KUMAR, V.
2009. Optimized stochastic policies for task allocation in swarms
of robots. Trans. Rob. 25 (August), 927–937.

BOYD, S., DIACONIS, P., AND XIAO, L. 2003. Fastest mixing
markov chain on a graph. SIAM REVIEW 46, 667–689.

BROCKINGTON, M. 2002. Level-of-detail AI for a large role-
playing game. In AI Game Programming Wisdom, Charles River
Media, 419–425.

CURTIS, S., GUY, S. J., ZAFAR, B., AND MANOCHA, D. 2011.
Virtual Tawaf: A case study in simulating the behavior of dense,
heterogeneous crowds. In IEEE Workshop on Modeling, Simu-
lation and Visual Analysis of Large Crowds.

GRANT, M., AND BOYD, S., 2013. CVX: Matlab software for
disciplined convex programming, version 2.0 beta. http://
cvxr.com/cvx, Sept.

LIU, W., LAU, R., AND MANOCHA, D. 2012. Crowd simulation
using discrete choice model. In Virtual Reality Workshops (VR),
2012 IEEE, 3 –6.

LOVAS, G. G. 1994. Modeling and simulation of pedestrian traffic
flow. Transportation Research Part B: Methodological 28, 6,
429–443.

MARK, D., 2011. Using randomness in AI: Both sides of the coin.
GDC AI Summit.

MUSSE, S. R., AND THALMANN, D. 2001. Hierarchical model for
real time simulation of virtual human crowds. IEEE Transactions
on Visualization and Computer Graphics 7, 152–164.

ROSS, S. 1996. Stochastic Processes. Wiley and Sons, second
edition.

SEWALL, J., WILKIE, D., AND LIN, M. C. 2011. Interactive
hybrid simulation of large-scale traffic. ACM Transaction on
Graphics (Proceedings of SIGGRAPH Asia) 30, 6 (December).

SHOULSON, A., AND BADLER, N. I. 2011. Event-centric control
for background agents. In International Conference on Interac-
tive Digital Storytelling, ICIDS’11, 193–198.

STOCKER, C., SUN, L., HUANG, P., QIN, W., ALLBECK, J., AND
BADLER, N. 2010. Smart events and primed agents. Proc.
Intelligent Virtual Agents (IVA).

STYLIANOU, S., FYRILLAS, M. M., AND CHRYSANTHOU, Y.
2004. Scalable pedestrian simulation for virtual cities. In Sym-
posium on Virtual reality software and technology, VRST ’04.

SUNG, M., GLEICHER, M., AND CHENNEY, S. 2004. Scalable
behaviors for crowd simulation. Computer Graphics Forum 23,
3, 519–528.

SUNSHINE-HILL, B., AND BADLER, N. 2010. Perceptually re-
alistic behavior through alibi generation. Artificial Intelligence
and Interactive Digital Entertainment (AIIDE).

THALMANN, D., HERY, C., LIPPMAN, S., ONO, H., REGELOUS,
S., AND SUTTON, D., 2004. Crowd and group animation. ACM
SIGGRAPH Course Notes.

TOH, K., TODD, M., AND TUTUNCU, R. 1999. SDPT3 — a
matlab software package for semidefinite programming. Opti-
mization Methods and Software 11, 545–581.

ULICNY, B., DE HERAS CIECHOMSKI, P., AND THALMANN, D.
2005. CrowdBrush: interactive authoring of real-time crowd
scenes. In Symposium on Computer Animation (SCA).

UNITY, 2013. www.unity3d.com.

WANG, C., YAN, D., AND JIANG, Y. 2011. A novel approach for
building occupancy simulation. Building Simulation 4, 149–167.

http://cvxr.com/cvx
http://cvxr.com/cvx

