
data from several patients. Validation of the classifiers
is done by creating classifiers using only part of the
expert defined training samples, and then applying the
classifiers to those excluded samples to determine how
well the classification agrees with the expert’s interpre-
tation (27). The amount of agreement is referred to as
the classification accuracy.

Intrapatient Classification

We use the Bayesian classification method, to design
discriminant functions (30) for each of the six tissue
classes for a subject, which we refer to as the respec-
tive tissue class classifiers. Different discriminant func-
tions designed for each of the six tissue classes (ie,
ET, NET, ED, WM, GM, and CSF), evaluated at each
voxel, provide the estimate of the probability of that
voxel belonging to the respective class, and produce a
three-dimensional voxel-wise probability map, called a
“tissue abnormality map.” There is one tissue abnor-

mality map pertaining to each of the six tissue classifi-
ers produced by assuming multivariate Gaussian distri-
bution for the features. We can obtain tissue segmenta-
tion by assigning the voxel to the class having the
highest discriminant value among the six classes. This
method of tissue classification is optimal when training
samples are available for the patient whose tissue
needs to be characterized. It effectively replicates the
experts’ samples to identify regions that are similar.
However, only tissue classes (ET, ED, NET) identified
by the expert can be characterized for that patient, and
because of the conservative nature of sample selection,
expert identification may not be provided for all alter-
nate tissue types. This requires pooling samples from
several patients and, because of the high variability
across individuals, Bayesian classification with its
multinomial Gaussian assumption does not provide ad-
equate classification.

Figure 2. Intrapatient Bayesian classification framework applied to three patients. Each row corresponds to a patient. Columns 1–2
show examples of training samples conservatively chosen by the expert for tissues samples of edema (ED), enhancing neoplasm/tumor
(ET), or nonenhancing neoplasm/tumor (NET). Columns 3–5 are the probability maps for ED, NET, and ET, respectively. The numbers in
the upper left corners denote the classification rates after segmentation (see column 6). A missing image such as in (2, 4) block indicates
the lack of training samples for that tissue class and hence the inability of the classifier to produce the corresponding probability map.
The color bar for the probability maps are in block (2, 4). Column 6 shows the segmented image with the color coding of the tissues
shown next to the color bar.
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Interpatient Classification
We combine training samples from across patients, to

obtain more generalized tissue classification using SVM.
We define six classifiers, one pertaining to each of
healthy (WM, GM, and CSF) and neoplasm (ET, NET,
and ED) classes (27). Each classifier is created using two
sets of training samples: one containing samples of the
tissue type for which the classifier is being created and
the second class containing samples from all other tissue
classes combined together. This is referred to as the one-
versus-all framework of creating a classifier and details
can be found elsewhere (27). When these classifiers are
applied to features defined at voxels in a new brain, they
produce a number (SVM classification score) indicative of
the class membership (tissue type). This SVM score is
then converted to a pseudo-probability score p_platt using
Platt’s method (31). Then the pseudo-P values are nor-
malized: p_normalized � p_platt/sum(p), where sum(p-
platt) is the sum of pseudo-probabilities for all classes.
These voxel-wise pseudo-probability scores form the tis-
sue abnormality map pertaining to that classifier. Re-
sponses from the classifiers are combined to obtain tissue
segmentation (ie, labels are assigned according to the
maximum probability [after normalization]). The classifi-

ers are validated using a similar framework to the one
adopted in intrapatient classification.

Design of Recurrence Map
Figure 3 provides examples of recurrence maps for

three cases. The top row shows slices from postresection
scans: CBV maps computed from perfusion images and
T1 images (with/without contrast) that indicate regions of
likelihood of recurrence characterized by increased en-
hancement in GAD (cases 2, 3) and high CBV (case 2) or
hypointensity in T1 (cases 1, 3). These are regions indica-
tive of high risk and are pointed out by green arrows.
Visual cues gathered from these scans were combined
with the cues obtained by elastically registering the pos-
tresection scans with the preresection scans (shown in
bottom row, left) to account for tissue deformation caused
by resection, and to guide the determination of the posi-
tion of these probable recurrence regions in the preresec-
tion scans (marked in burgundy in bottom row). Because
no evidence for residual enhancing tumor existed after the
resection, these regions were likely to be on or outside
the visible tumor boundary in the preresection scans and
to have developed an abnormality over time, possibly
from tumor infiltration. Samples for the healthy class de-

Figure 3. Maps of tumor recurrence for three cases. For each case, the top row shows postresection scans; green arrows point to re-
gions identified as suspected of possible recurrence. Bottom row, left: Preresection scans showing the regions used for training; blue are
samples for healthy tissue; burgundy are some of the regions identified by an expert as having recurrence in postresection scans when
combined with cues obtained from elastic registration. Bottom row, right: Probability maps using interpatient classifiers that provide a
voxel-wise map of likelihood of tumor recurrence. The color bar is the same as that of Fig. 2 with red indicating higher degree of abnor-
mality. Red arrows are used to indicate regions in which recurrence actually occurred in follow-up scans.
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picted in blue (Fig. 3, bottom row) were delineated close
to the tumor as well as away from it to sample the vari-
ability fully. These samples were used to train a two-class
SVM classifier. At each instance of training, one patient
was left out. Then the classifiers, applied to this left-out
patient, produced voxel-wise SVM scores of the tissue at
that voxel demonstrating recurrence. These voxel-wise
SVM scores comprise a recurrence probability map that
is indicative of the voxel-wise likelihood of recurrence.

RESULTS

The experiments were conducted with the aim of iden-
tifying the applicability of the multiparametric framework
in distinguishing between neoplastic tissue types in pa-
tients and identifying regions that have a high likelihood
of recurrence. In all these experiments, our aim was to
produce three-dimensional voxel-wise spatial probability
maps for each tumor tissue type; however, we also pro-
duced maps of hard segmentation to validate the results
visually and empirically. We used classification rates and
sensitivity and specificity values, computed on some of
the expert-defined samples excluded from training, to pro-
vide a measure of degree of certainty in identifying the
tumor and the healthy tissue. Classification rate was the
percentage of correctly classified voxels with respect to
the expert defined samples excluded from training avail-
able for that class. Therefore, there was one value for
each of the six classes. We took the average over all the
subjects for that class to produce the average values for
each of the classes.

The sensitivity and specificity are calculated on the two-
class problem by grouping together the tumorous tissue
types ED, ET, and NET into one class (positive class) and
the healthy tissue types CSF, GM, and WM into another
class (negative class), respectively. The sensitivity and speci-
ficity show the percentage of correctly classified positive and
negative samples, respectively. Sensitivity � TP * 100/(TP
� FN) and Specificity � TN * 100/(FP � TN), where TP,
TN, FN, and FP stand for true positive, true negative, false
negative, and false positive, respectively.

Intrapatient Tissue Classification
Figure 2 shows the results of applying the Bayesian clas-

sification framework (see Creation of Tissue Classifiers and
Tissue Probability Maps) on 3 of the 14 patients. Each row
corresponds to a different patient and shows examples of
expert-defined neoplastic regions that are used as training
samples, the tissue probability maps, as well as hard tissue
segmentation obtained from these probability maps. The top
left corner of each probability map gives the classification
accuracy for that tissue in that patient. For some patients,
where the expert was unable to define certain tissue types,
such as NET in rows 2 and 3 of Fig. 2, no probability maps
could be created. The average classification rates over all
datasets can be found in row 1 of Table 1.

Interpatient Tissue Classification
The comparative results of applying the interpatient,

Bayesian, and SVM tissue classifiers can be found in Ta-
ble 1, rows 2 and 3, respectively. As can be observed,
Bayesian classification (row 2) performed poorly in the

Table 1
Average (avg) Classification Rates and their Standard Deviation (stdev) of the Classification Rates, Sensitivity, and Specificity,
Over All Subjects for Intrapatient and Interpatient Framework Using Bayesian and SVM Classifications

Classification Rates
Sensitivity Tumor

vs. Healthy
Specificity Tumor

vs. HealthyED ET NET CSF GM WM

Bayesian classification (intrapatient)
Avg 97.03 96.39 93.05 89.68 74.86 82.95 91.84 99.57
Stdev 3.18 3.4 11.82 21.72 6.95 7.73 6.01 0.63

Bayesian classification (interpatient)
Avg 53.86 86.56 51.11 82.31 66.78 76.06 75.62 94.57
Stdev 47.59 27.74 43.86 15.82 9.22 15.05 36.14 6.12

SVM classification (interpatient)
Avg 93.38 88.79 34.01 91.34 72.21 85.33 87.54 97.03
Stdev 8.75 29.03 38.71 7.9 12.08 9.45 15.58 3.26

CSF, cerebrospinal fluid; ED, edema; ET, enhancing neoplasm/tumor; GM, gray matter; NET, nonenhancing neoplasm/tumor; SVM,
support vector machines; WM, white matter.
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Tissue that shows mixture of healthy and neoplastic
tissue, with or without ED, may be a precursor to the de-
velopment of a neoplasm in the future. This is precisely
the aim of the experiments that we have conducted on
cases that have demonstrated recurrence (Fig. 3). By iden-
tifying regions in the preresection scan that correspond to
the areas of recurrence in the follow-up scans, we have
characterized the imaging profile of abnormal tissue that
transformed to a neoplasm. Although we used a small
dataset for the identification of regions of high abnormal-
ity and high tumor recurrence probability, the quantifica-
tion of the degree of abnormality by the probability maps
in this manner illustrates the concept of anticipating sites
of recurrence requiring more aggressive or alternate thera-
pies. Thus, although we may not have always accurately
determined the regions of recurrence, we have been able
to demonstrate that the regions we predicted to recur,
based on the probabilistic maps produced by the classifi-
cation framework, did actually progress to recurrence.

We have proposed intra- and interpatient approaches to
the characterization of neoplastic tissue, based on very
conservative training samples identified by experts. The
approach that is to be finally adopted depends on the ap-
plication. If the aim is to replicate the understanding of
the expert for a particular patient, as may be the case in a
surgery-related decision, then the intrapatient Bayesian
framework is appropriate (as can be seen in the classifica-
tion rates and the overall good segmentation maps in Fig.
2). Although useful for individual patient analysis, such a
profile can only be applied to future scans of that patient
alone, due to the fact that the profile will not be able to
capture the variability across patients. An analysis of the
probability and the segmentation maps reveals that the

framework might oversegment tissue types such as ET in
patient of row 3. Additionally, the intrapatient Bayesian
framework is unsuitable for determining a tissue type that
the expert is unable to identify, or even do the character-
ization of the patient for which no training samples are
available. This is especially the case when there is a large
mass of NET and ED, which is difficult to distinguish
even by the expert. When treatment decisions need to be
made about surrounding nonenhancing tissue, it is impor-
tant to have a tissue characterization that will highlight
the regions of abnormality. This was the motivation to
develop the interpatient framework.

The evaluation of the SVM and Bayesian classification
methods in combining tissue samples across patients indi-
cates that SVM performs better. A comparison of rows 2
and 3 of Table 1 shows that the Bayesian classifier has
lower sensitivity than the SVM, and also demonstrates
increased classification accuracy (with lower variability)
for the SVM classifier in all tissue types except NET.
Edema identification shows marked improvement. En-
hancing neoplasm/tumor is also identified with high clas-
sification accuracy based on the expert defined samples.
The comparison reveals that NET was the most difficult
tissue type to characterize both by the computerized algo-
rithm as well as the experts, demonstrated by the fact that
the expert identified the least training samples for NET.
This is indicative of the variability in these regions across
patients. There is a decrease in the average classification
rate of NET from the interpatient Bayesian to the SVM
classification, although both are low, which could be due
to the low number of training samples to which SVM is
sensitive. Based on the improved performance in the
other tissue classes, we expect SVM to do better when

Table 2
Classification Rates Sensitivity and Specificity of Applying the SVM and Bayesian Interpatient Classification Framework to the
Two Patients Shown in Figures 4 and 5

Patient in Figure

Classification Rates
Sensitivity Tumor

vs. Healthy
Specificity Tumor

vs. HealthyED ET NET CSF GM WM

Fig. 4
SVM 79.78 NA 56.61 78.11 81.99 84.36 71.07 99.49
Bayes 2.28 NA 100 37.01 56.25 60.58 99.98 77.6

Fig. 5
SVM 100 11.56 NA 99.9 54.66 96.16 81.59 99.97
Bayes 100 99.03 NA 97.87 72.84 61.26 99.02 98.11

CSF, cerebrospinal fluid; ED, edema; ET, enhancing neoplasm/tumor; GM, gray matter; NET, nonenhancing neoplasm/tumor; SVM,
support vector machines; WM, white matter.

Overall, the SVM classification performs better than the Bayesian. The low classification rates of healthy tissue are due to these sam-
ples being selected through an automated segmentation method, which may have led to errors in training.
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we add training samples in the future. Although it may
seem that the intrapatient Bayesian classification performs
very well in the case of NET, it should be noted that this
is only true for patients in whom NET has already been
identified by an expert and the average classification rates
have been computed only on these few subjects. Analysis
of the NET classification results with interpatient classifi-
cation reveals that it is mostly misclassified as ED, GM,
and CSF or a possible combination of these. This could
be explained by the fact that NET could have healthy
tissue combined with neoplasm and ED, and NET could
also be easily misclassified by an expert as well. The su-
periority of interpatient classification reveals that a combi-
nation of information from several patients is crucial for
generalizability when a new patient is to be tested in this
framework. We propose to use additional features and
better SVM based classifiers to pursue interpatient classi-
fication of tumor types.

CONCLUSIONS

In summary, we have tested a multiparametric frame-
work for neoplastic tissue characterization using multiple
MR acquisition protocols. This abnormality profile helps
distinguishing among neoplastic components, ED, and
normal tissue, and creating a probabilistic map that indi-
cates the likelihood of tumor recurrence. We expect that
our tissue classification will be able to 1) provide a better
understanding of the spatial distribution of cancer, thereby
assisting in treatment planning either via resection or fo-
cused radiotherapy and radiosurgery; 2) potentially en-
hance the physician’s ability to diagnose and segment the
tumor; and 3) help identify tissue that can convert to tu-
mor in follow-up cases after resection. The method can
thus potentially be used to study tissue changes intro-
duced as a result of radiotherapy, chemotherapy, and
medication. Future studies are necessary to provide a
more extensive training basis for the classifiers and to
further validate the performance of this computer analysis
methodology. We also propose to use feature selection
schemes to determine the contribution of each of the mo-
dalities, so that the modalities best for tissue characteriza-
tion can be identified and the acquisition protocol stream-
lined.
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