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Elementary Simulation of Tethered Brownian Motion

Abstract
We describe a simple simulation, suitable for an undergraduate project or graduate problem set, of the
Brownian motion of a particle in a Hooke’s law potential well. Understanding this physical situation is
necessary in many experimental contexts, for instance in single molecule biophysics, and its simulation helps
students appreciate the dynamical character of thermal equilibrium. The simulation captures behavior seen in
experimental data on tethered particle motion.
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We describe a simple simulation, suitable for an undergraduate project or graduate problem set, of
the Brownian motion of a particle in a Hooke’s law potential well. Understanding this physical
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its simulation helps students appreciate the dynamical character of thermal equilibrium. The
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I. INTRODUCTION

Introductory courses in statistical physics often place their
greatest emphasis on average quantities measured in thermo-
dynamic equilibrium. The study of equilibrium gives many
powerful results without needing to delve into the dynamics.
This simplicity stems in part from the fact that for thermo-
dynamic equilibrium, we are not interested in the time de-
pendence �dynamics�. Thus, concepts such as friction and
viscosity are not typically discussed.

However, there are compelling reasons to introduce stu-
dents to the dynamical aspects of thermal systems as early as
possible—perhaps even before embarking on a detailed
study of equilibrium.1,2 One reason is that students can easily
miss the crucial steps needed to go from a basic appreciation
that “heat is motion” to understanding the Boltzmann distri-
bution, and thus can end up with a blind spot in their under-
standing of the foundations of the subject. Although any kind
of rigorous proof of this connection is out of place in a first
course, a demonstration of how it works in a sample calcu-
lation can cement the connection.

A second reason to give more attention to dynamical phe-
nomena is the current increase in student interest in biologi-
cal physics. Much current experimental work is on the mo-
lecular processes of life or their analogs at the single
molecule level, where simple mathematical descriptions cap-
ture the observed behavior.

One familiar setting where simple models describe the dy-
namics well is the random walk and its relation to diffusion.
Reference 2 shows an attempt to present classical statistical
mechanics starting from the random walk, building on earlier
texts such as Ref. 1. The link between thermal motion and
the Boltzmann distribution emerges naturally in the analysis
of sedimentation equilibrium, where we require that in equi-
librium, diffusive changes in a concentration distribution
must cancel changes caused by drift from a constant external
force field �gravity�.

In this article we discuss another generalization of free
Brownian motion that is important for interpreting a large
class of current experiments in single molecule biophysics:
the Brownian motion of a micrometer-size particle attached

to a linear spring. Typically the particle is a spherical bead,
and the spring is the effect of either an optical trap or a
polymer tethering the bead to a fixed point. We investigate
the dynamics of fluctuations of such a particle in equilib-
rium; that is, the equilibrium thermal motion of an over-
damped harmonic oscillator. Although the analytic solution
of this system appears in some undergraduate textbooks, the
derivation is complex �see, for example, Ref. 3�. However,
we have found that the simulation of the system is a good
project for undergraduates familiar with, for example, Ref. 1.
Such a simulation brings insight into the emergence of equi-
librium behavior from independent random steps and also
can serve as an entry into the topic of equilibrium fluctua-
tions.

Section II gives some background on the two types of
experiments that we wish to model. Section III sets out the
framework of the calculation. In essence, we create a simu-
lated time series for the motion of a tethered bead by con-
structing a series of small time steps. At each step, the bead’s
displacement is the vector sum of a random component,
which by itself would give rise to ordinary Brownian motion,
plus a deterministic component. The latter motion reflects the
drift of the bead in its viscous environment, under the influ-
ence of a spring that pulls it toward the attachment point.
Section IV shows that this simple model yields a fairly good
account of some experimental data. An implementation of
the simulation written in MATLAB is available from EPAPS.4

II. EXPERIMENTAL BACKGROUND

As motivation, we briefly mention two contexts in which
Brownian motion in a harmonic �Hooke’s law� trap has
played a role in recent biological physics experiments.

Optical trapping2,5 is now an everyday tool for the ma-
nipulation of micrometer-scale objects �typically a polysty-
rene bead�, and indirectly of nanometer-scale objects at-
tached to them �typically DNA, RNA, or a protein�. In this
method, a tightly focused laser spot creates a restoring force
that pushes a bead toward a particular point in space. When
the trapping beam has a Gaussian profile, the resulting force
on the bead is approximately linear in the bead displacement
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to a good approximation. Thus the bead executes Brownian
motion in a harmonic potential well. In such a well the mo-
tions along the three principal axes of the well are indepen-
dent.

The bead’s motion in one or two dimensions can be
tracked to high precision, for example by using interferom-
etry, thus yielding a time series. The probability distribution
of the observed bead locations reflects a compromise be-
tween the restoring force, pushing the bead to the origin, and
thermal motion, which randomizes its location. The outcome
of this compromise is a Gaussian distribution of positions,
from which we can read the strength of the harmonic restor-
ing force �the “trap stiffness”�. For practical reasons it is
often more accurate to obtain the trap stiffness and the bead’s
effective friction constant from the autocorrelation function
of the bead position �see Sec. IV�. For example, slow micro-
scope drift can spoil the observed probability distribution
function.5

Our second example concerns tethered particle motion.6 In
this technique a bead is physically attached to a tether con-
sisting of a single strand of DNA. The other end of the tether
is anchored to a microscope slide and the resulting bead mo-
tion is observed. Changes in the bead’s motion reflect con-
formational changes in the tether, for example, the binding of
proteins to the DNA or the formation of a long-lived looped
state. Figure 1�a� shows data for a situation where such con-
formational changes are absent, that is, simple tethered par-
ticle motion.

As in the optical trap case, we can discard the dynamical
information in the time series by making a histogram of the
particle locations. Figure 2�a� shows the frequencies of oc-
currence of various values of x. Detailed agreement between
theory and experiment has been obtained for these histo-
grams, including the slight deviation from Gaussian distribu-
tion shown in Fig. 2�a�.7,8 Here we are interested in a less
sophisticated treatment of a more general question: Can we
understand at least some aspects of the dynamical informa-
tion contained in data like those in Fig. 1?

Figure 1�b� shows the logarithm of the autocorrelation
function, C�����x�t+��x�t��, where the brackets denote the
average over t. At �=0 this quantity is the mean square dis-
placement, which would diverge for a free particle but in-
stead has a finite value determined by the equipartition theo-
rem. At large times the autocorrelation function goes to zero,

because two independent measurements of x are as likely to
lie on opposite sides of the tethering point as they are to lie
on the same side. The autocorrelation function should fall
exponentially with �, as it does in Fig. 1�b�.3

III. SIMULATION BACKGROUND

We wish to simulate the motion of a bead of radius Rbead
attached to a tether of length Ltot and compare our results to
experimental data. To do so we need to know a specific prop-
erty of DNA in typical solution, namely its persistence length
A�45 nm.2

We assume that the external forces acting on the bead are
a hard wall repulsion from the microscope slide, a tension
force from the tether, and random collisions with surround-
ing water molecules �see Sec. V for a further discussion�.
The tension force produces an effective potential well that
keeps the bead close to its attachment point. At low relative
extension, the tension exerted by a semiflexible polymer
such as DNA is approximately given2 by f =−�x. The effec-
tive spring constant is �=3kBT / �2ALtot�, where kBT�4.1
�10−21 J is the thermal energy at room temperature and Ltot
is the contour length of the polymer �DNA�. The temperature
dependence of � reflects the entropic character of polymer
elasticity; it is this dependence that makes a stretched rubber
band retract more strongly when heated.2 Note that the per-
sistence length A enters our problem here, setting the overall
scale of the spring constant �.

The motion in each of the x, y, and z directions is inde-
pendent. Because the microscopy observes only the x and y
motions, we can reduce the problem to a two-dimensional
one and forget about the hard-wall force, which acts only
along the z direction. We can simplify the problem still fur-
ther by examining only the x coordinate of the bead position.

There is a subtlety in that we do not directly observe the
endpoint of the polymer �DNA� in an experiment. Rather, we
observe the image of the bead; the image analysis software
reports the location of the bead center, a distance Rbead from
the attachment point. Thus the time series in Fig. 1�a� reflects
the motion of the endpoint of a composite object, a semiflex-
ible polymer �DNA� attached by a flexible link to a stiff
segment of length Rbead. To deal simply with this complica-
tion, we note that a semiflexible polymer �like DNA� can
also be approximately regarded, for the purpose of finding its
force-extension relation, as a chain of stiff segments of
length 2A. In our case 2A�100 nm is not much larger than
Rbead. Thus, we approximate the system as a single polymer

Fig. 1. �a� Sample data for the x-component of the motion of a bead of
radius Rbead�240 nm, attached to a DNA tether of length Ltether�3500
basepairs or �1200 nm. The experiment and the protocols used to remove
drift from the raw data are described in Ref. 7. For clarity only the first
200 s of data are shown; the full run lasted 600 s. �b� Logarithm of the
autocorrelation function of x expressed in nm2 �see text�. Dots, experimental
data. Dashed line, simulation described in this paper, using the parameters
Aeff=72 nm and effective viscosity 2.4 times that of water in bulk. The solid
line is the analytic solution, using the same parameters as in the simulation.

Fig. 2. �a� Histogram of measured bead position x for the experimental data
shown in Fig. 1. The solid curve shows a Gaussian distribution with the
same normalization and variance. �b� Similar histogram from the simulation.
The solid curve shows the result of the analytic solution, using the same
parameters as used for the simulation.
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chain with effective length Ltot=Ltether+Rbead and an effective
persistence length Aeff somewhat larger than A. In the data
we present, Ltether�3500 basepairs or �1200 nm. We will fit
the data to obtain Aeff.

To model the bead’s motion, we note that it falls well
within the low Reynolds number regime, where inertial ef-
fects are negligible.1,2,9 To confirm this assertion, we make
an estimate based on the observed fluctuations of the bead
position, which is �±500 nm. Suppose we release a bead at
this distance from the center. The spring force then moves
the bead toward the center at speed v=−�x /�, where � is the
bead’s friction constant in water. The Stokes relation gives
�=6��Rbead, where ��10−3 Pa s is the viscosity of water.1,2

We substitute the Stokes relation into the relation for the
Reynolds number R=vRbead�m/�, where �m is the mass den-
sity of water, and find R�10−6, which is small.

Consider the bead’s position at times separated by inter-
vals �t. Without the tether, the bead would take independent
random steps, each displacement drawn from a Gaussian dis-
tribution with mean-square step length 2D��t�, where D is
the bead’s diffusion constant. The friction constant � is re-
lated to D by the Einstein relation,1,2 �=kBT /D. If the bead
were subjected to a constant force f �for example, gravity�,
we could get its net motion by superimposing an additional
deterministic drift on the random steps of12 �driftx= �f /���t.
For the tethered case we instead use a position-dependent
force −�x at each step, where x is the current displacement.
For small enough �t �perhaps smaller than the actual video
frame rate�, x will be roughly constant during the step, jus-
tifying this substitution.

IV. SIMULATION RESULTS

The simulation implements a Markov process. That is, we
divide time into steps �t that are smaller than the observation
rate, but much longer than the randomizing collision time of
water molecules with the bead; then to a good approximation
each step is independent of prior steps, depending only on
the bead’s position at the start of the step. We take each step
to be the sum of a random, diffusive component, drawn from
a Gaussian distribution with mean square displacement
2D��t�, and a drift component −D�x�t /kBT. We choose the
value of �t small enough so that each step is much smaller
than the overall bead excursion �a few hundred nm�. The
constants D=kBT / �6��effRbead� and �=3kBT / �2AeffLtot� con-
tain two unknown fit parameters, the effective persistence
length Aeff and the viscosity �eff. The output of the simula-
tion is the probability distribution of the positions, and the
autocorrelation function, which we compare to experimental
data.

The simulation is considered to be successful if the two fit
parameters take values reasonably close to the expected val-
ues, differing in the expected directions, and the full func-
tional forms of the output agree with experimental data. Fig-
ures 1�b� and 2 show that the simple model works well. Our
simulation took �t=0.625 ms, for a total of about a million
steps, which were sampled every 40 ms for comparison to
the experimental data. The best fit values of the parameters,
Aeff=72 nm and �eff equal to 2.4 times that of water in bulk,
are both somewhat greater than their standard values, as ex-
pected.

As mentioned in Sec. I, analytic equations exist for the
quantities we calculated.3 These formulas are shown as solid
curves in Figs. 1�b� and 2�b�.

V. DISCUSSION

Our model made some naive simplifications. Two that
have been mentioned involve the role of the bead radius and
the sources of drag on the bead. In addition, there is a time
scale for rearrangements of the DNA needed to change its
extension, and for rotatory diffusion of the bead, which
changes the location of the attachment point relative to its
center. All of these effects have been assumed to be lumped
into effective values of the fit parameters.

Despite these simplifications, we obtained two key quali-
tative aspects of the experimental data as outputs from the
model. The simulated autocorrelation function of the equilib-
rium fluctuations has the expected, and experimentally ob-
served, exponential form. Moreover, the simulated histogram
of bead positions has the Gaussian form we would expect for
motion in a linear potential well, again roughly in accord
with the data. Both of these results emerge as statistical prop-
erties of a large number of simple steps, each involving only
a diffusive step combined with a drift step based on the cur-
rent bead location.

The insights obtained from this simulation are different
from those obtained from the analytical solution. Students
can see the average behavior emerging from the random
noise as the simulation size grows, for example the emer-
gence of the Boltzmann distribution from individual steps
that do not contain it in any obvious way. Students can also
see how, despite the near independence of each step from all
previous steps, the resulting trajectories have long-time cor-
relations, and how the experimental measurement of those
correlations permits the determination of system parameters.
In addition, the simulation approach opens the door to re-
placing the assumption of a harmonic potential by other
functional forms. For example, students will note that the
experimental distribution of x values is not quite Gaussian
�Fig. 2�, in part because the entropic elasticity of a semiflex-
ible chain �such as DNA� does not quite follow Hooke’s law
appropriate for a flexible chain. Students can readily modify
the force law �which enters the deterministic drift step� to
obtain better agreement with the data.
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