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Figure A1.4. Accumulation of autophagic structures in Alzheimer’s disease brain. 
(a) Ultrastructural appearance of dystrophic neurites from Alzheimer’s disease brain 
demonstrating autophagic structures that are similar to autophagic structures from highly 
purified subcellular fractions from mouse liver (b, c). Autophagic structures 
morphologies in Alzheimer’s brain include large double-membrane-limited vesicles 
containing multiple smaller double-membrane vesicles exhibiting heterogeneous 
intralumenal contents (d). Multilamellar bodies, another variant of autophagic structures, 
are also common in dystrophic neurites (e). This figure is adapted with permission from 
Nixon et al., 2005.  
 

In many cases, the accumulation of autophagic vacuoles observed in patients with 

neurodegeneration has been recapitulated in respective disease models. For example, 

exogenous expression of a variety of polyglutamine-expanded disease proteins leads to 

an increase in biochemical and morphological markers of autophagy in vitro (Kegel et al., 

2000; Taylor et al., 2003; Ravikumar et al., 2004; Iwata et al., 2005a) as well as in fly 

(Pandey et al., 2007) and mouse (Petersen et al., 2001; Skinner et al., 2001) models of 

polyglutamine diseases. However, from these descriptive studies it is not possible to 

distinguish whether accumulation of autophagic vacuoles is due to induction of 

autophagosome formation or a defect in clearance of autophagic vacuoles, such as might 



124 

 

occur with failure of autophagosome-lysosome fusion. If the accumulation of autophagic 

vacuoles observed in neurodegenerative disease is due to autophagy induction, 

descriptive studies also do not permit determination whether increased autophagy is 

helpful (e.g., an adaptive response to misfolded protein stress) or harmful (e.g., 

autophagic cell death). Of course, autophagy is not necessarily performing the same 

function in all diseases or at all stages within a single disease. Nevertheless, recognition 

of morphological features of altered autophagy in neurodegeneration set the stage for 

experimental studies of the functional role of autophagy in neurodegenerative diseases. 

Substantial progress has been made in sorting among these possibilities from studies of 

model systems of disease. 

 

Autophagy is neuroprotective 

Evidence suggesting a protective role for autophagy in the context of disease was initially 

provided by a series of in vitro studies demonstrating that disease-causing proteins are 

frequently degraded by autophagy. For example, pharmacological induction or inhibition 

of macroautophagy alters the rate of turnover of a polyglutamine-expanded protein, 

polyalanine-expanded protein, as well as wild type and mutant forms of α-synuclein 

(Ravikumar et al., 2002; Kabuta et al., 2006). Moreover, ultrastructural analysis by 

immuno-electron microscopy has demonstrated delivery of polyglutamine-expanded 

proteins to autophagic vacuoles (Kegel et al., 2000; Taylor et al., 2003). Chaperone-

mediated autophagy has also been found to contribute to the degradation of α-synuclein, 

a process that is impaired by disease-causing mutations (Cuervo et al., 2004). An 

interesting observation is the recruitment of Atg proteins including LC3, Atg5, Atg12, 
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and Atg16 into mutant huntingtin aggregates, suggesting autophagic activity in the 

vicinity of protein inclusions (Iwata et al., 2005b; Yamamoto et al., 2006). However, as 

protein aggregates have recently been found to nonspecifically sequester autophagy 

components, these particular results should be interpreted with caution (Kuma et al., 

2007). Collectively, these studies suggested that autophagy contributes to the degradation 

of multiple disease proteins and raised the possibility that induction of autophagy could 

be a protective pathway in the context of misfolded protein accumulation.  

 

Compelling evidence that autophagy is neuroprotective was provided by a series of 

animal studies in which impairment of the autophagy-lysosomal system was consistently 

found to induce neurodegeneration. Knockout of cathepsin D, a lysosomal protease 

highly expressed in the nervous system, in mice caused accumulation of autophagosomes 

and lysosomes with accompanying neural dysfunction and degeneration (Koike et al., 

2000; Koike et al., 2005; Shacka et al., 2007). Interestingly, signs of autophagic stress 

occur at very early ages in these mice and precede cell death (Koike et al., 2000). A 

Drosophila cathepsin D mutant also shows accumulation of indigestible pigments and 

modest neurodegeneration (Myllykangas et al., 2005). The importance of autophagy in 

neurodegeneration was further underscored by two studies examining conditional CNS 

knockout of autophagy in mice. Deficiency of Atg5 or Atg7, both critical genes for 

autophagosome formation, caused neurodegeneration characterized by ubiquitin-positive 

neuropathology (Hara et al., 2006; Komatsu et al., 2006). No evidence of proteasome 

impairment was detected, suggesting that loss of basal autophagy alone leads to 

ubiquitinated protein accumulation even in the context of normal UPS function. In 
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addition to highlighting the importance of autophagy in protecting neurons from toxic 

protein accumulation, these studies suggested the possibility of functional cross talk 

between autophagy and the UPS. Subsequent studies using Drosophila genetics provided 

direct evidence of a compensatory relationship between autophagy and the UPS (Pandey 

et al., 2007). 

 

But what of autophagy in the context of neurodegenerative disease in vivo? In all of the 

studies published to date, autophagy has been found to be neuroprotective in the context 

of disease. In several different Drosophila models of neurodegeneration based on 

misexpression of disease related proteins, genetic inhibition of autophagy is detrimental 

while pharmacologic induction of autophagy with rapamycin is protective (Ravikumar et 

al., 2004; Ravikumar et al., 2006; Pandey et al., 2007). While the effect of TOR 

inhibition by rapamycin is pleiotropic, in two of these studies it was verified that the 

beneficial effect of rapamycin was autophagy-dependent (Ravikumar et al., 2005; Pandey 

et al., 2007). Consistent results were obtained in a C. elegans model expressing a 

pathologic huntingtin fragment, in which degeneration was enhanced by genetic 

inhibition of autophagy (Jia et al., 2007). Perhaps the most exciting result was the finding 

that treatment of a transgenic mouse model with CCI-779, an analog of rapamycin, 

ameliorated several metrics of neurodegeneration including tremor prevalence, grip 

strength, body and brain weight, and rotarod performance, thus extending observations to 

mammals (Ravikumar et al., 2004).  
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Can autophagy be co-opted for therapeutic benefit? 

The evidence indicating that induction of autophagy is cytoprotective in 

neurodegenerative disease models raises the tantalizing possibility that this intracellular 

catabolic pathway may be exploited to clear toxic disease proteins and provide 

therapeutic benefit for patients. While rapamycin is an FDA-approved drug that has been 

used extensively in renal transplant patients, it is a less than optimal choice for 

therapeutic induction of autophagy as it is associated with serious adverse effects, most of 

which are related to long-term immunosuppression. Consequently, novel approaches to 

manipulating autophagy in human patients are desirable. Using a yeast screen, one recent 

study identified several small molecules capable of augmenting autophagy in mammalian 

cells and further demonstrated therapeutic benefit of these compounds in a Drosophila 

model of neurodegeneration (Sarkar et al., 2007). However, it remains to be seen whether 

any of these compounds will have clinical benefit and a favorable adverse effect profile 

in mammalian neurodegeneration models. Recently, overexpression of histone 

deacetylase 6 (HDAC6), a cytoplasmic deacetylase containing a ubiquitin binding 

domain, was found to suppress neurodegeneration in a model of polyglutamine disease 

and to compensate for defects in the UPS by facilitating  autophagic protein degradation 

(Pandey et al., 2007). These results suggest that HDAC6 functions at the intersection of 

the UPS and autophagy and identify HDAC6 as a promising target for pharmacologic 

manipulation in neurodegeneration. Future studies defining the molecular details of 

autophagic degradation of misfolded proteins will likely provide additional targets for 

therapeutic intervention in neurodegenerative diseases.  
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Unanswered questions and future directions 

While we now know that misfolded protein accumulation induces autophagy, and that 

autophagy suppresses neurodegeneration by assisting in the clearance of toxic protein 

species, unresolved questions remain. For instance, why is endogenous upregulation of 

autophagy insufficient to protect against the accumulation of proteotoxic species? Studies 

of autophagy and degeneration also underscore larger questions relating to fundamental 

issues in neurodegenerative disease. For instance, why do mutations that affect often 

ubiquitously expressed proteins specifically cause the demise of specific subpopulations 

of neurons? And finally, why is the onset of many neurodegenerative diseases age-

dependent in spite of expression of toxic protein species throughout the lifespan? While 

the answers to these questions are sure to be multifactorial and complex, perhaps some of 

the answers are related to the changing nature of autophagy with age. It is possible that 

upregulation of autophagy is sufficient to effectively clear misfolded proteins and 

forestall neurodegeneration early in life, but that diminished autophagic protein 

degradation with age might allow toxic protein accumulation and late-onset development 

of neurodegenerative pathology. Postmitotic cells such as neurons are likely to be 

particularly vulnerable to subtle disruptions in protein degradation pathways and 

membrane homeostasis as they require massive coordination of long-distance trafficking 

of vesicles and trophic factors. Therefore, a neuronal age-related decline in autophagy 

combined with the unique homeostatic demands of neurons might largely contribute to 

the selective sensitivity of neurons to the accumulation of proteotoxins. Support for these 

notions has come from manipulation of aging pathways in model organisms. Inhibition of 

insulin signaling pathways prolongs lifespan in multiple species (Kenyon, 2005). 
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Strikingly, these pathways involve repression of PI3K and Akt signaling, manipulations 

which lead to upregulation of autophagy. Furthermore, autophagy is required for 

extension of lifespan in worms that are deficient in insulin-like signaling pathways, 

suggesting that mutations that extend lifespan might work by activating autophagy 

(Melendez et al., 2003). Recent evidence has now directly linked neurodegeneration to 

aging by demonstrating that aging pathways strongly influence the onset of disease in C. 

elegans models of neurodegeneration. Expression of Aβ in muscle causes the progressive 

development of motor degeneration, but by delaying the aging process, aggregation of Aβ 

and the onset of symptoms is also delayed (Cohen et al., 2006). In addition, knockdown 

of autophagy blocks the protective effects of delayed aging, suggesting that 

neuroprotection associated with manipulation of aging pathways is autophagy-dependent 

(Florez-McClure et al., 2007). These results are consistent with the notion that protein 

aggregation and accompanying neuronal dysfunction might occur coincident with age-

related decline in cellular mechanisms to deal with misfolded protein species. Thus, the 

age-related onset of pathology in neurodegenerative conditions might be correlated with a 

decline in autophagic capacity beyond a critical threshold. However, additional studies 

will be required to define the precise relationship of aging, autophagy, and 

neurodegeneration. 

 

The result suggesting that autophagy contributes to basal turnover of ubiquitinated 

proteins is a fascinating finding that provokes additional questions. Presently, it is not 

known whether autophagy contributes nonspecifically to bulk degradation of 

ubiquitinated proteins, whether a certain subset of ubiquitinated proteins is selectively 
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identified for autophagic degradation, or whether undigested autophagy substrates are 

futilely ubiquitinated after deposition. And how precisely does CNS knockout of 

autophagy lead to degeneration? Defects in basal autophagy could lead to altered 

neuronal homeostasis and degeneration through impaired utilization of nutrients or an 

imbalance of vesicular biogenesis and turnover. Alternatively, neuronal dysfunction 

might be a more direct result of failed protein degradation with resultant accumulation of 

ubiquitinated protein aggregates. A final question: is autophagy universally protective in 

the context of neurodegenerative disease? A recent provocative study has implicated 

autophagy as a contributor to the production of toxic Aβ species in Alzheimer’s disease 

suggests that this is not necessarily so (Yu et al., 2005). Perhaps in the case of some 

diseases autophagy is initially induced as a neuroprotective response in stressed or 

injured neurons but is subsequently overwhelmed or impaired by disease-related factors. 

This could partly account for evidence that autophagy seems to be both induced and 

impaired in several major neurodegenerative diseases. Interestingly, mutations in Fig4, a 

protein which regulates levels of PI(3,5)P, have been found to cause an autosomal 

recessive form of Charcot-Marie-Tooth disease known as CMT4J (Chow et al., 2007). 

These mutations were subsequently shown to inhibit autophagy within axons, suggesting 

that defects in the autophagy-lysosomal pathway might underlie peripheral neuropathy in 

addition to loss of neurons in the brain and spinal cord (Ferguson et al., 2009). Future 

experiments will be needed to address whether such disruption of autophagy leads to the 

pathological accumulation of toxic, misfolded proteins, or whether blockage of 

autophagic flux causes disease through an as yet unidentified mechanism.  
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Appendix 2: HDAC6 regulates the steady-state levels and 

turnover of polyglutamine-expanded androgen receptor 

 

This section summarizes work that was included as part of the following publication: 

Pandey, U.B., Nie, Z., Batlevi, Y., McCray, B.A., Ritson, G.P., Nedelsky, N.B., 

Schwartz, S.L., DiProspero, N.A., Knight, M.A., Schuldiner, O., Padmanabhan, R., Hild, 

M., Berry, D.L., Garza, D., Hubbert, C.C., Yao, T.P., Baehrecke, E.H., and Taylor, J.P. 

HDAC6 rescues neurodegeneration and provides an essential link between autophagy and 

the UPS. Nature 447, 859-63 (2007). 
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Abstract 

A prominent feature of late-onset neurodegenerative diseases is accumulation of 

misfolded protein in vulnerable neurons (Taylor et al., 2002). When levels of misfolded 

protein overwhelm degradative pathways, the result is cellular toxicity and 

neurodegeneration (Trojanowski and Lee, 2000). Cellular mechanisms for degrading 

misfolded protein include the ubiquitin-proteasome system (UPS), the main non-

lysosomal degradative pathway for ubiquitinated proteins, and autophagy, a lysosome-

mediated degradative pathway (Rubinsztein, 2006). The UPS and autophagy have long 

been viewed as complementary degradation systems with no point of intersection 

(Ciechanover et al., 1984; Pickart, 2004). This view has been challenged by two 

observations suggesting an apparent interaction: impairment of the UPS induces 

autophagy in vitro, and conditional knockout of autophagy in the mouse brain leads to 

neurodegeneration with ubiquitin-positive pathology (Rideout et al., 2004; Iwata et al., 

2005a; Hara et al., 2006; Komatsu et al., 2006). It is not known whether autophagy is 

strictly a parallel degradation system, or whether it is a compensatory degradation system 

when the UPS is impaired; furthermore, if there is a compensatory interaction between 

these systems, the molecular link is not known. Pandey et al. show that autophagy acts as 

a compensatory degradation system when the UPS is impaired in Drosophila 

melanogaster, and that histone deacetylase 6 (HDAC6), a microtubule-associated 

deacetylase that interacts with polyubiquitinated proteins (Kawaguchi et al., 2003), is an 

essential mechanistic link in this compensatory interaction. The data presented in Pandey 

et al. show that compensatory autophagy is induced in response to mutations affecting the 
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proteasome and in response to UPS impairment in a fly model of the neurodegenerative 

disease spinobulbar muscular atrophy caused by polyglutamine tract expansion in the 

androgen receptor (AR). Furthermore, expression of HDAC6 is sufficient to rescue 

degeneration associated with UPS dysfunction in vivo in an autophagy-dependent 

manner. The work presented in this appendix specifically demonstrates that HDAC6 

rescues degeneration in flies expressing polyglutamine-expanded AR by facilitating AR 

turnover. 
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Introduction 

Neurodegenerative diseases such as Parkinson’s disease, Alzheimer’s disease, familial 

amyotrophic lateral sclerosis, and the polyglutamine diseases are characterized by the 

accumulation of toxic misfolded protein species  (Ross and Poirier, 2004). These 

misfolded proteins result in cytotoxicity and neuronal death through mechanisms that are 

poorly understood. Polyglutamine diseases constitute a family of nine dominantly-

inherited neurodegenerative diseases caused by expansion of a polymorphic 

polyglutamine (CAG) tract within the disease protein (Zoghbi and Orr, 2000). 

Spinobulbar muscular atrophy (SBMA) belongs to the polyglutamine disease family and 

results from polyglutamine expansion within the androgen receptor (AR) gene (La Spada 

et al., 1991). Polyglutamine disease manifests when the glutamine repeat reaches a 

critical threshold, and polyglutamine repeat length is strongly correlated with disease 

severity (Doyu et al., 1992). The expanded polyglutamine repeat confers a toxic gain of 

function to the normal gene product (Warrick et al., 1998; Moulder et al., 1999; Marsh et 

al., 2000). Expanded polyglutamine proteins form intracellular aggregates that can 

coalesce into ubiquitin-positive protein inclusions (Taylor et al., 2003). Although it is 

unclear which species in the aggregation/inclusion process is toxic, it is likely that 

interventions directed at augmenting turnover of polyglutamine proteins will have 

therapeutic value (Taylor et al., 2003; Arrasate et al., 2004).  

 

HDAC6 is a cytoplasmic deacetylase that contains two deacetylase domains, a ubiquitin-

binding zinc finger domain, and a dynein-binding domain (Seigneurin-Berny et al., 2001; 
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Kawaguchi et al., 2003). Deacetylase targets of HDAC6 include HSP90, α-tubulin, and 

the actin binding protein cortactin (Hubbert et al., 2002; Kovacs et al., 2005; Zhang et al., 

2007). HDAC6 binds misfolded, ubiquitinated proteins and facilitates their retrograde 

microtubule trafficking into specialized cellular structures termed “aggresomes” 

(Johnston et al., 1998; Kawaguchi et al., 2003). Aggresomes form in response to 

misfolded protein stress and represent an adaptive response that serves to sequester toxic 

proteins and facilitate their degradation (Taylor et al., 2003; Arrasate et al., 2004; Tanaka 

et al., 2004; Burnett and Pittman, 2005). HDAC6 has been shown to be required for 

aggresome formation, and its activity can protect against misfolded protein stress in vitro 

(Kawaguchi et al., 2003). However, aggresomes are primarily a cell culture phenomenon 

and their relevance to misfolded protein disease pathogenesis remains unclear. 

Furthermore, the role of HDAC6 in mediating misfolded protein turnover has not been 

explored in vivo. In the present study, we investigated the role of HDAC6 in the 

autophagic pathway and examined how HDAC6 levels influence the phenotypes 

associated with expression of misfolded, toxic proteins.  
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Materials and Methods 

Fly stocks 

All Drosophila stocks were maintained on standard media in 25oC incubators unless 

otherwise noted.  DHT (Steraloids) was mixed with freshly made food once it had cooled 

to <50oC to a final concentration of 1 mM. To generate AR transgenic flies, cDNA 

encoding full length human AR with 12, 77, or 121 CAG repeats was subcloned into 

pUAST (Brand and Perrimon, 1993). The cDNA for dHDAC6 was generated from EST 

LD43531 which encodes 1128 amino acids corresponding to HDAC6-RA on Flybase.  

Kpn1 and Xba1 restriction sites were included in the 5’ and 3’ primers, respectively for 

subcloning into the vector pAc5.1/V5 (Invitrogen). The dHDAC6 cDNA plus in-frame 

V5 tag was subsequently subcloned into pUAST. UAS-atg6-IR flies were described 

previously (Scott et al., 2004). Inverted repeats for UAS-atg12-IR flies were generated 

with primers 5’-ggcgcgccTATCC TTCTGAACGCCACTG-3’ and 5’-

gcggaattcCTTAGCAAAGTCATGTGCG TATCG-3’ as described previously  (Scott et 

al., 2004).   

 

Transgenic Drosophila lines were generated using standard techniques (Rubin and 

Spradling, 1982). The GMR-GAL4 line was obtained from the Bloomington Stock 

Center (Bloomington).  AR20Q and AR52Q flies were provided by Kenichi Takeyama. 

Elav-GeneSwitch flies were described previously (Osterwalder et al., 2001). Eye 

phenotypes of 1-day-old anesthetized flies were evaluated with a Leica MZ APO 

stereomicroscope and photographed with a Leica DFC320 digital camera.  
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SEM 

SEM samples were collected and fixed in 2.5% gluteraldehyde (EMSin PBS, and post-

fixed for 15-30 minutes in 1.5% osmium tetroxide (Stevens Metallurgical) in PBS. 

Samples were then dehydrated in ethanol, immersed in hexamethyldisilazane 

(Polysciences Inc.) and dried in a desiccator for three days. Specimens were then coated 

with gold:palladium using a Denton DV-503 vacuum evaporator, and analyzed using an 

AMRAY 1820D scanning electron microscope.      

 

Protein turnover assay 

UAS-AR or UAS-AR; UAS-dHDAC6-V5 transgenic flies were combined with flies 

expressing GeneSwitch GAL4 under the elav pan-neuronal enhancer. All flies were 

maintained at 25°C for the duration of the experiment. To monitor protein turnover in 

vivo, 1-day-old adult flies of the appropriate genotype were collected and starved for 12 

hours in a vial that contained only a kimwipe soaked with 3 ml of water.  After 

starvation, flies were placed in a vial that contained a kimwipe soaked with 3 ml of 500 

μM RU486 dissolved in a 2% sucrose solution (minus DHT condition) or 500 μM RU486 

and 1 mM DHT in a 2% sucrose solution (plus DHT condition) for 1 hour, and then 

transferred to a vial containing normal food (minus DHT condition) or food containing 1 

mM DHT (plus DHT condition) until collected for extract preparation. Five flies were 

collected every 2.5 hours up to 20 hours, heads were removed, crushed in RIPA buffer, 

sonicated, and analyzed by Western blot. AR, actin, and V5-tagged HDAC6 protein 

levels were assessed by immunoblot using antibodies against AR (N20, Santa Cruz 
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Biotech), 119 α-actin (119, Santa Cruz Biotech), and V5 epitope (Sigma). Quantification 

of luminescence was performed with a Kodak IS2000RT instrument and Kodak 

Molecular Imaging software. Minus DHT experiments were performed in quadruplicate 

and plus DHT experiments in triplicate. Mean AR/actin ratios and standard error of the 

mean were plotted on a logarithmic scale.  
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Results and Discussion 

HDAC6 suppresses degeneration associated with misfolded protein stress 

To determine whether overexpression of histone deacetylase 6 (HDAC6) could suppress 

degeneration associated with misfolded protein stress, flies expressing polyglutamine-

expanded androgen receptor (AR) in eye tissue were crossed to flies expressing 

Drosophila HDAC6 (dHDAC6).  As the ligand for AR is required for toxicity, AR52-

expressing flies reared on food without ligand showed no degenerative phenotype (Fig. 

A2.1.A). However, flies reared on food containing dihydrotestosterone (DHT), the ligand 

for AR, demonstrate a degenerative rough-eye phenotype characterized by 

supernumerary bristles and ommatidial disorganization, collapse, and pitting (Fig. 

A2.1.B). Ectopic expression of dHDAC6 strongly suppressed the ligand-dependent 

degenerative phenotype in flies expressing polyglutamine-expanded AR (Fig. A2.1.C). 

Thus, overexpression of dHDAC6 protects cells from polyglutamine toxicity in vivo.  

Figure A2.1. HDAC6 rescues degeneration in SBMA flies. SEM images of fly eyes 
expressing the indicated transgenes. Flies were reared either with or without DHT as 
indicated. (A) Normal eyes in AR52 flies reared without DHT. (B) Rough eyes in AR52 
flies reared with DHT. (C) Degeneration was suppressed by expression of dHDAC6. 
DHT = dihydrotestosterone. 
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HDAC6 accelerates the turnover of misfolded proteins 

We hypothesized that ectopic dHDAC6 suppressed degeneration in AR-expressing flies 

by promoting autophagic degradation of aberrant protein. Thus, we examined AR-

expressing flies and determined that overexpression of dHDAC6 led to lower steady-state 

levels of polyglutamine-expanded AR (Fig. A2.2.A). In contrast, inhibition of autophagy 

by knockdown of the autophagy genes atg6 or atg12 resulted in higher steady state levels 

of AR (Fig. A2.2.A). Altered steady-state levels occurred despite no significant change in 

RNA levels (data not shown), suggesting that dHDAC6 accelerates the rate of AR 

degradation. To investigate this further, we adapted the inducible GeneSwitch (GS) 

expression system to monitor protein turnover in vivo. This system utilizes a GAL4-

progesterone receptor fusion protein that is only active and able to induce expression of 

UAS-driven transgenes when a progesterone receptor ligand such as RU486 is 

administered (Osterwalder et al., 2001). Using this system, we tested whether dHDAC6 

overexpression increases the rate of turnover of AR52 in Drosophila neuronal tissue in 

vivo. In elav-GS;UAS-AR52 flies, no RU486-mediated expression was detected prior to 

induction of protein expression (data not shown). To induce expression, starved flies 

were fed sucrose media containing RU486 for one hour, which resulted in a pulse of 

expression that became detectable within 2 hours, peaked after approximately 10 hours, 

and then gradually decayed (Fig. A2.2.B-C). In elav-GS;UAS-AR52;UAS-dHADC6 

flies, there was a parallel induction of AR52 expression, but an accelerated rate of decay 

(Fig. A2.2.C-D). We estimated the half-life of AR52 in vivo by regression analysis using 

AR52 levels between 10-20 hours post-induction and determined that co-expression of 
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dHDAC6 reduced the half-life by approximately 2-fold (Fig. A2.2.C). Importantly, co-

expression of dHDAC6 not only accelerated the turnover of AR52 monomers, but also 

high molecular weight aggregates that were trapped in the stacking gel (Fig. A2.2.B, D). 

This suggests augmented turnover of AR when dHDAC6 levels are increased.  

 

Figure A2.2. HDAC6 accelerates the turnover of polyglutamine-expanded AR. (A, 
B, D) Western blots from flies expressing the indicated transgenes. (A) Steady-state 
levels of AR52 protein are reduced in flies overexpressing dHDAC6, but are elevated in 
flies in which atg6 or atg12 has been knocked down. (B) Western blots showing the 
temporal profile of AR52 protein monomer and high molecular weight aggregate levels 
after a brief pulse of expression. (C) A logarithmic plot of AR52/actin ratios was used to 
determine the line of best fit by regression analysis (y=Ae-Kx). R2=0.9117 (AR52 -DHT), 
R2=0.7808 (AR52 +DHT), R2=0.9719 (HDAC6 + (AR52 -DHT)), R2=0.9644 (HDAC6 + 
(AR52 +DHT)). Half-life was determined by the slope of the best fit line with the 
equation t1/2 = 0.693/K. Half-life of AR52 in vivo was reduced ~2-fold in flies co-
expressing dHDAC6 and did not differ significantly in the presence (broken lines) or 
absence (solid lines) of DHT. (D) Flies co-expressing dHDAC6 showed a nearly identical 
profile of induced expression as in (B), but AR protein decayed at an accelerated rate. 
Exogenous dHDAC6 was detected by immunoblot against the V5 epitope. 
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Together, these results suggest that HDAC6 can dramatically suppress degeneration 

associated with overexpression of toxic, misfolded proteins in vivo. Furthermore, our 

results suggest that the suppressing effect of HDAC6 is mediated by acceleration of 

protein turnover through the autophagic pathway since HDAC6-mediated suppression of 

degeneration requires autophagy (data not shown). As HDAC6 both binds ubiquitinated 

proteins and is able to traffic along microtubules, HDAC6 may play a role in directing 

misfolded proteins to autophagic machinery or may more directly regulate autophagic 

vacuole maturation, trafficking, or fusion. Future experiments will address the specific 

role of HDAC6 in facilitating the autophagic degradation of misfolded proteins.  
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