
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

7-13-2003

Testing and Monitoring Model-based Generated
Program
Li Tan
University of Pennsylvania

Jesung Kim
University of Pennsylvania

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Postprint version. Published in Electronic Notes in Theoretical Computer Science, Volume 89, Issue 2, October 2003.
Publisher URL: http://www.sciencedirect.com/science/journal/15710661

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/143
For more information, please contact repository@pobox.upenn.edu.

http://repository.upenn.edu
http://repository.upenn.edu/cis_papers
http://repository.upenn.edu/cis
http://repository.upenn.edu/cis_papers/143
mailto:repository@pobox.upenn.edu

Testing and Monitoring Model-based Generated Program ∗

Li Tan, Jesung Kim, and Insup Lee

Department of Computer and Information Science

University of Pennsylvania

Philadelphia, PA

1 Introduction

Automatic code generation from hybrid automaton models attracts much research interest recently [14, 15, 5].
Besides the significant cut of the development cost, the benefits of automatic code generation also include
that the system can be verified on the model level and the generated code can be free of human errors which
otherwise may be introduced by manual translation. Recently, code generation from hybrid system models
has been used for embedded systems. Industry has followed the trend by providing their own tools (cf.
Real-time workshop for Simulink [14]). Nevertheless, the validation of the generated code still much relies
on traditional techniques designed for code created by conventional means. We intend to fill this missing
link by showing how the model-based code generation paradigm may also benefit the validation of generated
code.

The validation techniques explored in this paper include testing and runtime verification. Testing is a
well-studied domain. Usually testing checks the behavior of the tested system in response to a test suite.
In contrast to static verification techniques like model checking [9], testing in general cannot provide full
assurance of the tested system. Nevertheless, it is well studied and widely accepted in the field, and testing
can work on the implementation level, in our case, on a hardware/software integrated embedded system. A
benefit of model-based design is that a test suite may be generated from the model [13]. For this purpose, we
implemented a simulation-based test-suite generator for hybrid automata. Our simulation-based test-suite
generator produces a test suite in the form of a set of traces which satisfies the desired coverage criteria.
The generated test traces are then loaded into the targeted embedded system to perform a test. However, a
problem with such an approach is that traces are often prohibitively big to be fit into the targeted embedded
system. In this paper, we advocate an alternative approach: instead of directly generating and applying
a test suite, we create a testing automaton which can produce the desired test trace during its execution.
Since testing automata themselves are also hybrid automata, the same code generation mechanism may be
exploited to generate a tester from a testing automaton. The tester can then be linked with the rest of the
generated code to supply the test trace when the code is running on the targeted embedded system. Once
testing is done, the tester can be eliminated by simply recompiling the code without the tester.

To check the behavior of generated code during testing, we apply the idea of runtime verification (mon-
itoring). Runtime verification is a technique to check in real time whether an execution of the program
violates the given properties. In our approach, system properties are encoded as a deterministic Büchi timed
automaton, from which a monitoring automaton may be synthesized. The monitoring automaton may be en-
coded as a hybrid automaton, and hence the same code generation mechanism can again be used to generate
a monitor from the monitoring automaton. Figure 1 shows the overall flow of our toolset.

The code generation process we are using supports modular compilation [5]. Each component of the
resulting hybrid model – the system model, the testing automaton, and the monitoring automaton – may

∗This research was supported in part by NSF CCR-9988409, NSF CCR-0086147, NSF CCR-0209024, ARO DAAD19-01-1-
0473, and DARPA ITO MOBIES F33615-00-C-1707.

1

environment
constraints

+
testing goal

coverage
checker

simulator
code

generator

.cc .cc .cc

codetester monitor

model
testing

automata
monitor
automata

property
specification

Figure 1: Framework for testing and monitoring model-based generated code

be generated and compiled separately, and linked only when testing and/or monitoring task is requested.
We will illustrate our approach by going through an example built on a SONY AIBO robotic dog [7]. The
original model is specified in Charon [2], a modeling language for hybrid automata which supports both
behavioral and structural hierarchy as well as resource hiding. These features bring extra benefits to our
approach: the hierarchical structure allows us to put the tester and the monitor to the exact level of hierarchy
which we want to validate, and resource hiding allows us to specify what may or may not be seen by the
tester and the monitor.

The rest of paper is organized as following. Section 2 prepares the notions and definitions. It also includes
a brief introduction of Charon and the code generation process [15] which we will use. Section 3 discusses
the issue of generating a test suite and integrating it as a part of the model being tested. In Section 4 we
synthesize a monitor from temporal specification. Section 5 discusses our experiment on a SONY AIBO
robot. We show that our approach may be used both on the model level by the simulation technique, or
on implementation by plugging into the targeted hardware platform the generated code as well as the tester
and the monitor. Finally, we conclude with a discussion on future directions.

Related works. Our work on synthesizing monitors is close in spirit to previous works on runtime
verification based on formal methods, for instance, MaC [16] and Java PathExplorer [11]. Both tools work
on the code level. They are capable of instrumenting Java bytecodes, observing the events emitted by
the program, and comparing them with formal specification. However, our approach is capable of working
on both the model level and the code level, that is, we may also combine the monitor model with the
system model and run the compositional model on a simulator. In [12] authors show how to synthesize a
monitor program directly from formal specification, while we take a different route: we synthesize monitors
as hybrid automata, and leave the generation of actual monitor programs to code generators. In [8] and [10]
authors show how to synthesize automaton-based monitors (test oracle) from temporal logics for systems
with discrete events. However, in our approach, we are more interested in handling continuous dynamics in
hybrid systems.

2

2 Preliminaries

2.1 Hybrid Automata

In this paper we consider hybrid systems, that is, systems with both discrete and continuous behaviors.
Formally, hybrid systems are modeled by hybrid automata [1, 18]. We use the following definition of hybrid
automata for our discussion.

Definition 2.1 A hybrid automaton A is a tuple {S, V, T, G, W, D, A, I, C, I0}, where

• S is a set of locations.

• V is a set of variables defined on R.

• T ⊆ S × S is a set of transitions between two locations.

• G assigns to each t ∈ T a guard, denoted as G(t), which is a predicate over V . A transition t ∈ T is

said enabled when G(t) is true.

• W assigns to each t ∈ T an assignment, denoted as W (t), which is a partial function from V (t) ⊆ V to

R. G and W collectively define discrete behavior of A. An assignment changes the value of variables

in V (t) to W (t) instantaneously when t is taken.

• D is a set of differential equations in the form of ẋ = f(X), where x ∈ V , X = {x1, x2, ..., xn} is a

vector of variables xi ∈ V , and f(X) is the first derivative of x with respect to time.

• A is a set of algebraic equations in the form of x = g(X), where x ∈ V , X is a vector of variables in

V \ {x}.

• I is a set of predicates over V that are the invariant conditions.

• C assigns to each s ∈ S constraints, a subset of D ∪ A ∪ I that defines continuous behavior of the

location. An element in C(s) is said active when (s′, s) is the last transition that was taken.

• I0 is the initial state, which is a tuple {s0, V0}, where s0 ∈ S is the initial location and V0 : V → R is

the initial valuation of the variables in V .

A run of a hybrid automaton can be defined similarly to the traditional finite state machine, except that
variables are changing continuously according to differential equations and algebraic equations corresponding
to the current location. Also note that hybrid automata may have more than one possible run, since the
transition may occur any time when the guard is true, provided that the invariant is true.

Hybrid automata have been widely used for modeling and simulating control systems consisting of mul-
tiple control laws. In such a system, differential equations and finite state machines are essential to specify
switching control laws. These are also useful for programming robots, where one of the main tasks is to
update the angle of each joint periodically to simulate a continuous action.

For example, Figure 2 shows a simple hybrid automaton modeling a robot dog panning its head. It
consists of two locations, each of which specifies constant increase/decrease (±10 ◦/s) of variable x, which
represents the angular position of the head. Transitions cause the direction of the movement of the head
to be reversed by switching the location (and hence dynamics) when the head is moved beyond a certain
position (±45 ◦). Note that in hybrid automata transitions can be taken any time while the guard is true
(i.e., the time when the transition is taken can be non-deterministic). The invariant of each location specifies
that the switch should occur before the head moves beyond its allowed range (x ≤ 46 and x ≥ −46). Once
the automaton is compiled into a programming language and the variable x is mapped to a hardware device
or a device driver that actually controls the position of the head, the head will move as expected from the
model.

3

x

46

10

≤
=

x

x&

46

10

−≥
−=

x

x&

45−≥x

45≤x

Figure 2: Hybrid automaton modeling a robot dog panning the head.

x = 10
x ≤ 46

. x = -10
x ≥ -46

.
x = k⋅θ.

x ≥ 45

x ≤ -45

x θ

10>β

10≤β

Figure 3: Hierarchical hybrid automaton modeling a robot dog tracking an object.

Hybrid automata can be composed hierarchically and/or concurrently to model more complex systems.
In a hierarchical hybrid automaton, a location can be a hybrid automaton, or another hierarchical hybrid
automaton. Figure 3 shows a hierarchical hybrid automaton modeling a robot dog tracking an object. The
variable θ indicates the difference between the direction of the head and the object, and the variable β is
the degree of visibility of the ball. When β is greater than a certain threshold, the robot attempts to move
the head towards the object, as modeled by a differential equation ẋ = k × θ. However, if β is below the
threshold, the robot gives up tracking the object, and continues panning the head. Note that the same model
in Figure 2 is reused to model the movement of the head.

Figure 4 shows concurrent hierarchical hybrid automata modeling a robot dog wagging its tail when it
detects an object. It simply combines the automaton shown in Figure 3 with another automaton for wagging
the tail, which is very similar to the model shown in Figure 2 and the details are omitted. The automaton
shown in Figure 3 is slightly modified such that it assigns to the variable v a value greater than zero when
the dog detects the object. This triggers the tail to wag.

A hybrid automaton can be identified by a set of possible traces of states. The state of a hybrid automaton
is expressed as a tuple {si, Vi}, where si ∈ S is the current active location and Vi is a valuation of the variables
in V .

Definition 2.2 A trace of a hybrid automaton is a sequence of tuples ρ = 〈s0,V0, I0〉〈s1,V1, I1〉 · · · where

Ii = [Il
i , I

h
i) represents a time interval with I0I1 · · · partitions [0,∞) and Vi : Ii → (V → R). In addition,

stop wag
x = 10
x ≤ 46

. x = -10
x ≥ -46

.
x = k⋅θ.

x ≥ 45

x ≤ -45

v > 0

v = 0

10:?10 =≥ vβ

0:?10 =< vβ

Figure 4: Concurrent hierarchical hybrid automaton modeling a robot dog wagging the tail.

4

it satisfies the following,

1. V0(0) = V0.

2. For each pair of 〈si,Vi, Ii〉〈si+1,Vi+1, Ii+1〉, 〈si, si+1〉 ∈ T , G(〈si, si+1〉)(Vi(I
h
i)) = true, and Vi+1(Il

i+1) =
W (〈si, si+1〉).

3. Vi satisfies all the constraints enforced by C(si).

Composing two hybrid automata to form a new one is much like the case of composing two dis-
crete automata. The composition of the automata B = {Sb, Vb, Tb, Gb, Wb, Db, Ab, Ib, Cb, Ib0} and C =
{Sc, Vc, Tc, Gc, Wc, Dc, Ac, Ic, Cc, Ic0} yields a hybrid automaton B||C = {S, V, T, G, W, D, A, I, C, I0}, where,

1. The locations S = Sb × Sc is the product of B and C’s locations

2. t = 〈〈sb, sc〉, 〈s′b, s
′
c〉〉 ∈ T if sb = s′b ∧ 〈sc, s

′
c〉 ∈ Tc, in which case G(t) = Gc(〈sc, s

′
c〉) and W (t) =

Wc({sc, s
′
c}), or sc = s′c ∧ 〈sb, s

′
b〉 ∈ Tb, in which case G(t) = Gb(〈sb, s

′
b〉) and W (t) = Wb(〈sb, s

′
b〉).

3. V = Vb ∪ Vc, D = Db ∪ Dc, A = Ab ∪ Ac, and I = Ib ∪ Ic.

4. C(〈s, s′〉) = Cb(s) ∪ Cc(s
′), for all 〈s, s′〉 reachable from 〈s0, s

′
0〉.

Let ρ be a trace of B||C and ρ�B be the project of ρ on B, then clearly ρ�B is also a trace of B. However,
the reverse doesn’t hold. Composing traces of component automata may not necessarily yield a trace for the
compositional automaton, since the composed trace may not satisfy the constraints imposed by both B and
C.

2.2 Modeling Language Charon

Charon [2] is a modeling language for hierarchial hybrid automata. We provide a very brief introduction
to Charon with the emphasis on the features related to the techniques addressed in this paper. For the
description of full features of Charon, please refer to [2].

The behavioral hierarchy of Charon is encoded as the hierarchy of modes. Each mode describes a
continuous behavior and a single thread of discrete control. Each mode has its own constraints in terms of
differential equations, algebraic equations, and invariants, just as a location in an ordinary hybrid automaton.
Nevertheless, a mode in a Charon model may also contain a set of submodes. At any given moment, at
most one submode is active in an active mode. Transitions link a mode with its sibling modes, parent mode,
and child modes. The constraints imposed by an active mode is a collection of constraints of the modes and
all its active descendant modes.

The architectural hierarchy of Charon is implemented by agents. Each agent stands for a hybrid
automaton. An agent may be compositional, in which case it contains several subagents, or atomic. Atomic
agents are building blocks of architectural hierarchy, and a compositional agent functions as the composition
of all its descendant atomic agents.

Charon also provides the capability of resource hiding, which is implemented by defining the scope of
variables. At any level of hierarchy, a mode or an agent may specify the attributes of variables it can assess as
“read”, meaning that a variable defined in a higher level can be read in the current agent or mode, “write”,
meaning that a variable defined in a higher level may be read and written to, and “private”, meaning that
a new variable is introduced. Resource hiding will help define the interface between the tester/monitor and
the system by specifying what variables may or may not be seen by the tester/monitor. The skeleton of
Charon model for tester, monitor, and controller which we will use in our case study is given in Figure 5.

5

agent DogHead() {

private analog real head_pan;

private analog real ball_pan;

private analog real vision;

......

agent headAgent = head();

agent testerAgent = ball();

agent monitorAgent = monitor();

......

}

agent head() {

write analog real head_pan;

read analog real ball_pan;

read analog real vision;

......

mode topMode = headMode();

......

}

agent ball() {

write analog real ball_pan;

write analog real vision;

mode topMode = ballMode();

......

}

agent monitor {

read analog real ball_pan;

read analog real head_pan;

read analog real vision;

.....

mode topMode = monitorMode();

}

Figure 5: Skeleton of Charon model used in SONY AIBO example

6

class M : public mode {

var v1, v2, ...; // variables

mode *m1, *m2, ...; // submodes

void diff() { ... } // differential

void alge() { ... } // algebraic

bool inv() { ... } // invariant

mode *trans() { ... } // transition

};

Figure 6: C++ class skeleton for a mode.

2.3 Generating Code from Charon

The code generator transforms a Charon model into a high-level language representation. One of the main
differences between Charon models and high-level language programs is that in the former the state is
defined in the continuous-time domain whereas in the latter the state changes in a discrete fashion. We
approximate the continuous behavior by updating the state of the continuous model periodically at every
∆ time unit. We chose C++ as an intermediate target language, mainly because the object-oriented features
of the language best suit Charon and make the code/test generation process simpler, and also because the
language has been deployed in many real systems, including SONY AIBO Robotic dog.

Modularity of the original model is captured by aggregating objects belonging to the same mode in a
C++ class that can be compiled separately. The C++ class consists of methods implementing equations and
transitions, pointers to the external variables and the submodes, as shown in Figure 6. Readers are referred
to [5] for a full description of the code generation algorithm.

Variable. Variables in Charon are either private or shared. Each private variable is translated into a
variable class instance, while each shared variable is translated into a reference to a variable class instance
that is instantiated at an upper-level mode where the same variable is declared as a private variable. Variables
are represented by instances of class var that has methods read() and write(), which are used to get the
value and assign a new value to the variable. Top-level variables need to be handled differently, since they
can be mapped either to platform specific APIs or to the tester. This mapping is done by overriding read()

and write() methods in a derived class of var, that are used to get the value from and put the value to
the environment, respectively. This allows us to associate variables to the tester without modifying the
automatically generated code.

Differential equation. A differential equation of the form ẋ = f(X) declares that a variable x should
evolve continuously at a rate given by the expression f(X) over variables which may be continuous. We
approximate this specification into an assignment statement that is executed at every period to increment
the variable in proportion to the length of the period. This approximation, known as Euler’s method, is
efficient to compute and produces good results when dynamics is not changing rapidly. More advanced, but
more expensive methods can be used to improve accuracy [15]. Interested readers are referred to [6], in
which the effect of numerical errors for sound simulation of hybrid automata is addressed formally.

Algebraic equation. An algebraic equation declares that an equation involving variables should be
satisfied at all times. In Charon, an algebraic equation is specified as the form of y = f(X), where f(X) is
an expression of variables other than y. Such an equation can be translated into an assignment statement.

Invariant. An invariant declares a condition that should be satisfied at all times while the mode is active.
In general, violation of an invariant means that the implementation is not faithful to the specification, or
the model is infeasible. We translate each invariant to an assertion statement for run-time checking of
correctness. Our framework also provides a means for run-time checking of properties that are not part of
the model through a monitor as explained in Section 4.

Transition. Transitions specify the control flow of the model. In Charon, transitions can be non-
deterministic. Non-determinism comes from two sources. First, a transition can be enabled for a duration
of time in which the transition can be taken at any time instance. Second, more than one transition
can be enabled at the same time. Non-determinism in the Charon model implies more than one valid

7

implementations. In our implementation, we use an urgent branching policy, meaning that a transition is
taken as soon as it is detected to be enabled. Such a policy can be implemented simply by translating it into
an if-then statement where the if-block contains the guard and the then-block contains the optional discrete
actions. More sophisticated approach can also be considered (e.g., [6]), but it is beyond the scope of this
paper. Furthermore, the second source of non-determinism is resolved by ordering the if-then statements
according to priority. The priority of a transition is implicitly encoded as the order of appearence in the
textual form of the Charon model.

Mode. The class for modes has two methods, continuousStep() and
discreteStep() that perform evaluation of differential/algebraic equations and transitions, respectively.
Each method is invoked by the same method of the parent mode. These methods are implemented in a base
class mode and shared by all the modes. The class also contains run-time information such as the pointer to
the currently active submode. This pointer constitutes a linked list of active submodes from the top-level
mode to some leaf mode. The methods of the top-level mode are invoked by the same methods in the class
for agents.

Agent. We have implemented a single-threaded code generation scheme, since hybrid models generally
have much finer granularity concurrency than that is supported by the traditional multitasking mechanism
of the operating system. That is, execution of concurrent subagents are interleaved at the granularity of the
period ∆ in a single thread of execution. The top-level agent has a single method update() that is called
periodically at every ∆ by the timer or a periodic task of the platform. It executes first the continuous steps
and then the discrete steps of all the subagents. Note that, since the code for each agent is modularized,
code for testing and monitoring agents can be easily coupled or decoupled, without modifying the code for
the model.

3 Generating Tester

Typically testing involves checking how a tested system responses to a test suite, that is, a finite set of finite
traces selected according to the required coverage criteria. Some sample coverage criteria for discrete systems
include state coverage, transition coverage, and modified condition coverage etc. In our case study, we are
interested in mode coverage. Mode coverage requires that test suite traverse all the modes in a Charon

model.
We implemented a simulation-based test-suite generator for hybrid automata written in Charon. The

heart of our test-suite generator is a simulation routine [2]. To generate a test suite for a hybrid automaton
A = {S, V, T, G, W, D, A, I, C, I0} with I0 = {V0, s0}, test suite generator simulates the behavior of A,
starting with the initial valuation V0 and the initial location s0. Let 〈s0,V0, [0, u0)〉 · · · 〈si,Vi, [ui−1, u)〉 be
the trace explored so far, the test suite generator may have more than one of the following choices,

• Continuous update. If Vi(u) satisfies invariants imposed by C(s), then the test-suite generator can
stay for another integration step δ at location si and extends Vi to V ′

i such that Vi(m) = V ′
i(m) for

m ∈ [ui−1, u], and V ′
i(m) satisfies all the constraints imposed by C(s) for m ∈ (u, u + δ]. 1

• Discrete update . If there is a transition t = {si, si+1} such that Vi(u) makes true the guard G(t), the
test-suite generator may choose to take t.

Unless an enable transition is urgent, i.e., any prolonged stay at the current location will mean the violation
of invariants, the test-suite generator may choose between continuous update and discrete update, and in
the case of continuous update the size of integration step, or in the case of discrete update which enabled
transitions to be taken. The deviation on these choices means a different simulation trace. The test-suite
generator logs the transitions and modes the trace has covered to check whether the traces reach the required
coverage criteria.

1Integration routine in simulator may introduce numerical error, which may prevent detecting the potential violation of
invariants during an integration step. Nevertheless, this is not in the scope of this paper. Interested readers are referred to [6].

8

0

5

10

1

=
=

<
=

ball

vision

u

u&

90)1.0)sin((

20

05.01

1

⋅⋅+=
=

⋅+=

=

huball

vision

hh

u
&

&

0:?10 =≥ hu

Figure 7: Environment (ball) model

ball
vision

-80

-60

-40

-20

0

20

40

60

80

0 10 20 30 40 50 60 70 80

Time (in seconds)

V
a
l
u
e

Figure 8: Movement of the ball

Embedded system interacts with the environment with a defined I/O interface. In a hybrid model for
embedded system I/O interface is defined by a set of inputs variables VI and output variables VO such that
VI ⊆ V , VO ⊆ V , and VI ∩ VO = ∅. For the formal description of hybrid I/O automata, users may refer to
[17], but the rough idea is that the hybrid model has no control over input variables VI , that is, no input
variable v ∈ VI appears in the left side of differential or algebra equations. If we directly put such automata
on our test-suite generator, the test-suite generator will choose the random value for these input variables
since no constraints are imposed on them, which reflects a completely chaotic environment. However, in
many applications one may want to test the system under more controlled environment. Some common
reasons for testing under controlled environment include (1) the embedded system is designed to function
correctly under certain assumption on environment, or (2) we are more interested in how the system reacts
to certain environment. In the case of testing SONY AIBO Robot, we are more interested in seeing the
reaction of the dog to the accelerated movement of the ball.

To test the system under a controlled environment, we model the environment itself as a hybrid automa-
ton. The output variables of the environment model are the input variables of the system model. The hybrid
automaton for the controlled environment (i.e. ball) is given in Figure 7. The model basically describes the
movement of the ball. Figure 8 shows the simulated trace of the ball’s movement. The movement of the ball
has two phases: Initially, it remains invisible; after exactly 10 seconds, it starts to be visible and waved in
front of the dog. This controlled environment is designed to test all the modes in SONY AIBO model. The
initial invisible phase tests the dog’s behavior when the ball is invisible, and the second phase tests how well
the dog tracks the ball. The introduction of non-linear factor h is to accelerate the ball’s movement.

After each run of simulation, the test-suite generator checks whether the current trace could contribute
to the requested coverage criteria, and if so, the test-suite generator keeps the current traces and continue
test-suite generation if the requested coverage criteria has not been met. A final test suite may be obtained
by projecting the traces to the input variables. In our example, a single test trace in Figure 8 already achieves
the desired mode coverage. In general, however, the mode coverage on the mode level may not imply the
mode coverage on the code level because of the semantics difference between the model and the generated
code. This is a topic of future research.

9

Last but not least, we need to test the generated code with the obtained test suite. A traditional way
to do so is to write an input/output routine to read the trace in and feed it into the generated code. Given
the fact that the most of embedded systems have very limited internal memory, loading the test suite to the
targeted system is not always possible. In our example, a single test trace for an 80-second test contains
8000 lines of information, or roughly 240 KB in the size, and this is just with a moderate setting on the
integration step size. With a longer test and a finer integration process, the test suite can easily exceed the
capacity of memory in the targeted embedded system.

We choose a different approach: since test traces are essentially an execution of the environment model,
we may use a tester, a program which reassembles the function of the environment model, and link the tester
with the code generated from the system model. Moreover, since we already have the ability of automatic
code generation, we can directly generate the tester from the environment model. This is exactly what we
did on our SONY AIBO example. We generate the tester from the environment model shown in Figure 7,
link it with the code generated from the system model and the monitor (which will be introduced shortly),
and then load it to the robot. The generated tester has 472 lines of C++ code and slightly increases the
binary code by 18 KB. Note that the tester remains the same size regardless of the duration of tester or the
size of integration step.

As summary, the approach we advocate for generating and applying test suite is following: first we
analyze the test requirement and the constraints of hardware/software environment to create a model for
controlled environment. Next, we bounded the environment model with the system model and put them on
a test-suite generator. Third, we refine the environment model to produce the exact test trace we want to
test on the targeted system. Finally, the same code generator used to generate the code from the system
model may be used to generate a tester from the refined environment model and link it with the rest of
generated code.

4 Synthesizing Monitor

4.1 Encoding Properties

In our approach, the system property is encoded as passive timed automata.

Definition 4.1 A passive timed automaton is a tuple {S, s0, V, X, T, G, W}, where

1. S is a set of locations.

2. s0 ∈ S is the initial location.

3. V is a set of variables.

4. X is the set of clocks.

5. T ⊆ S × S is the transition relation.

6. G assigns each transition a guard, which is a predicate on X ∪ V .

7. W : T → 2X associates a transition with a set of clocks which need to be reset of taking the transition.

A passive timed automaton is deterministic if for each pair of transition t1 = {s, s1} ∈ T and t2 = {s, s2} ∈ T ,

G(t1) ∧ G(t2) is unsatisfiable.

Definition 4.2 A trace of a passive automaton B = {S, s0, V, X, T, G, W} is a sequence ρ = 〈s0, X0,V0, I0〉
〈s1, X1,V1, I1〉 · · · where Xi are the evaluation of clocks upon entering location si, Vi : Ii → (V → R)
records the change of values of variables at location si, the time interval Ii represents time spent at location

si. In addition, ρ satisfies the following constraint: for each pair of 〈si, Xi+1,Vi, Ii〉〈si+1, Xi+1,Vi+1, Ii+1〉,
t = 〈si, si+1〉 ∈ T , G(t)(Vi(Ih

i)) = true, and, Xi+1(x) = Xi(x) + Ih
i − Il

i for x /∈ W (t) and Xi+1(x) = 0 for

x ∈ W (t).
A trace is infinite if |ρ| is infinite, or |ρ| is finite but ρ stays in the last location for infinite time.

10

0:?10 => xvision
0s 1s

2s

?10||105 <−∧>∧> headballvisionx

?10≤vision

Figure 9: A Deterministic Passive Büchi Timed Automaton, where {s1} is the Büchi acceptance condition

Passive timed automata accept timed words on the valuation of variables. A timed word is a sequence
η = {V0, I0}{V1, Ii} · · ·, where Ii is a time interval such that Ih

i = Il
i+1, and Vi(m) such that m ∈ Ii is the

evaluation on the set of variables.

Definition 4.3 A timed word η = {V0, I0}{V1, I1} · · · is accepted by a passive timed automaton B =
{S, s0, V, X, T, G, W} if there is a trace of B: ρ = 〈s0, X0,V ′

0, δ
′
0〉〈s1, X1,V ′

1, δ
′
1〉 · · · such that, if m ∈ Ii,

then there is a l such that m ∈ I′
l and Vk(m) = V ′

l(m).

A passive Büchi timed automaton is a passive timed automaton extended with a subset of locations as
Büchi acceptance condition.

Definition 4.4 A passive Büchi timed automaton is a tuple B = {S, s0, V, X, I, T, G, W, F}, where {S, s0,
V, X, I, T, G, W} is a passive timed automaton and F ⊆ S is the Büchi acceptance condition. A trace ρ is

an accepting run of a passive Büchi timed automaton if and only if ρ is infinite and inf(ρ) ∩ F �= ∅, where

inf(ρ) is the set of locations ρ visits infinitely often, or the last location of ρ if |ρ| is finite. B accepts a timed

word η if B has an accepting run for η.

Figure 9 shows a deterministic passive Büchi timed automaton (DP-BTA). It accepts a timed word η if
|ball − head| < 10 holds within five second after whenever vision > 10 holds, unless vision ≤ 10. Note that
in our example of robotic dog, vision > 10 means that the ball is visible, and |ball − head| ≤ 10 indicates
that the angle between ball and head is close enough. The automaton in Figure 9 encodes the property that
the dog shall closely chase the ball five second after the ball is visible.

Remarks. The definition of passive timed automata is quite similar to that of traditional timed automata
[3]. However, the major difference between the two is that passive timed automata take predicates as the
input from environment, while traditional timed automata take actions or events. In our application of
monitoring hybrid automata, working on predicates directly allows us to save the extra work of interpreting
events or actions as the changes on predicates, which otherwise may be required if we use the traditional
notion of time automata.

4.2 Synthesizing Monitor from Properties

Now our question is, given a property specified as a DP-BTA, how we can synthesize a monitor to detect an
erroneous execution. There are two problems: First, since the monitor sets to detect the erroneous behavior
in an execution but an execution is always finite in practice, we need to translate DP-BTA to an automaton
which accepts finite traces; Second, since our code generator works on hybrid automata, or more specifically,
Charon models, the monitor should be expressed as a hybrid automaton.

Definition 4.5 Given a DP-BTA B = {S, s0, V, X, T, G, W, F}, a monitoring automaton is a tuple M =
{S, s0, V, X, T, G, W, F ′}, where s ∈ F ′ if there is no path in T from s to any s′ ∈ F . A timed word

η = 〈V0, I0〉〈V1, I1〉 · · · is accepted by M if and only if M has a trace ρ for η such that there is si ∈ F ′ on ρ.

11

0:?10 => xvision
0s 1s

2s

?10||105 ≥−∧>∧> headballvisionx

?10≤vision

Figure 10: Monitor automaton for DP-BTA in Figure 9

10

1

≤
=

vision

x&

10||

10

1

<−
>

=

headball

vision

x&

trueerror

x

=
= 1&

?10||105 ≥−∧>∧> headballvisionx

0:?10 => xvision

?10≤vision

Figure 11: Hybrid automaton version of the monitoring automaton

Theorem 1 Let B be a deterministic passive Büchi timed automaton and M be the monitoring automaton

for B, then timed words accepted by M cannot be accepted by B.

Figure 10 gives the monitoring automaton of DP-BTA in Figure 9. Both automata have similar structure,
except that the monitoring automaton has {s2} as its acceptance set.

Note that a monitoring automaton also accepts finite words. By Theorem 1, the acceptance of a finite
prefix of a timed word ρ by the monitor automaton implies that ρ will be rejected by the original DP-BTA.

Next, we need to encode monitoring automata as hybrid automata. There are two problems we need
to solve: First, we have to find a way to handle clocks since hybrid automata don’t explicitly have clock
variables; Second, transitions in a timed automaton are urgent, i.e., whenever the guards of some transitions
are satisfied, the automaton takes some enabled transition, while in the case of a hybrid automaton continuous
update may still be taken even if the guard of some transitions are satisfied, given that the invariant of the
current location is not violated.

The solution to the first problem is simple. For each clock variable we introduce a variable x in the
hybrid automaton, and define the dynamics of x as ẋ = 1. For the second problem, we add to each location
an invariant which is the negation of conjunction of the guards of all its outgoing transitions. Formally we
define a translation procedure Π as below: Given a monitoring automaton M = {S, s0, V, X, T, G, W, F ′},
Π(M) is a hybrid automaton H = {S, V ′, T, G, W ′, D, A, I, C, I0} such that,

• V = V ∪ X ∪ {error}.

• W ′(t)(x) = 0 for every t ∈ T and x ∈ W (t).

• D = {ẋ = 1 | x ∈ X}, A = {error = true}, and I =
⋃

s∈S(
∨

〈s,s′〉∈T ¬G(〈s, s′〉))

• C(s) = D ∪ {
∨

〈s,s′〉∈T ¬G(〈s, s′〉)} ∪ {error = true | s ∈ F ′} for s ∈ S.

Figure 11 gives the hybrid automaton version of the monitoring automaton in Figure 10.

12

head

-80

-60

-40

-20

0

20

40

60

80

0 10 20 30 40 50 60 70 80

Time (in seconds)

V
a
l
u
e

Figure 12: Movement of the head

Theorem 2 Given a DP-BTA B = {S, s0, V, X, T, G, C, W, F} with M as its monitoring automaton and a

hybrid automaton H, if ρ is a trace of H||Π(M) and error is true on ρ, then ρ�V cannot be accepted by H.

ρ�V is a timed word obtained by projecting ρ on the set of variables V .

5 Case Study

To assess the feasibility of our approach, we test it on the SONY AIBO Robot dog. The robot consists of
both analog devices for inputs and outputs and a digital control system to control the devices. The control
system is an embedded computer based on a MIPS microprocessor running at 384 MHz, and equipped with
32 MB main memory and 16 MB flash memory, the latter may be used for loading controlling program. The
operating system is Sony’s proprietary object-oriented real-time operating system known as Aperios.

In [15] authors develop a code generator which can generate controlling programs for embedded systems
from Charon specification. The code has been generated to control head (tracking a ball) and leg (walking)
movement. In our case study, we want to test and monitor the code generated for head movement. The
dog has a two-dimension light sensor and two step motors, each of which controls the head’s vertical or
horizontal movement. The two-dimension light sensor can measure the relative angle between head and a
bright object, in our case, a red ball. In [15] the automatic code generation process produces a controlling
program to track the ball. The code takes the input from sensor and sends signal to motors to move the
head towards the ball. The code controls both vertical and horizontal movement. However, for simplicity
we only describe the control of vertical movement. The control model is a hierarchical hybrid automaton H
given in Figure 3. It takes two inputs from the sensor: the relative angle (θ in Figure 3) between the ball
and the head, and vision (β in Figure 3), the visibility of the ball. The goal of our task is to,

1. Test the functionalities of generated code specified by each mode in a hybrid automaton (i.e. mode
coverage).

2. Test how well dog track the ball.

The hybrid automaton T for the tester is given in Figure 7.
The property of interest is that dog can closely track the ball whenever the ball is visible. The property

is formally captured by DP-BTA in Figure 9. The hybrid automaton M for monitoring is given in Figure
11.

We did testing and monitoring on simulation level and hardware level. On the simulation level, we run
M||H||T on Charon simulator. Figure 12 gives the head movement. In the first 10 second, the head swings
to the right then back, indicating that the ball is invisible, then it starts to track the ball.

Figure 13 puts together the traces of the angle between the ball and the head, variable vision, and variable
error. Note that after the initial ten seconds, the ball becomes visible and the head starts to track the ball.

13

ball-head
error

vision

-50

-40

-30

-20

-10

0

10

20

0 10 20 30 40 50 60 70 80

Time (in seconds)

V
a
l
u
e

Figure 13: Monitoring head movement

Table 1: Sizes of the tester, the monitor, and the controller

Tester Monitor Controller +Tester +Tester+Monitor
Charon (lines) 81 52 109 190 242

C++ code (lines) 495 466 622 1117 1583
Binary (bytes) 15,496 16,988 661,184 676,680 693,668

However, with the speed of the ball getting faster and faster, there is increasing difficulty for the dog to
follow the ball, indicated by increasing distance between the ball and the head, and finally the dog lost track
of the ball (|ball − head| > 10).

One may be tempted to encode the property of interest as an invariant vision > 10 ⇒ |ball− head| ≤ 10
and reduce monitoring to invariant checking. However, Figure 13 gives us a reason why we need the technique
introduced in Section 4. Note that during the time interval [10.7, 11] there is a peak on the curve ball−head,
and both vision > 10 and |ball − head| > 10 on this peak. The peak is introduced because the ball was
just being seen and the dog has been given time to track the ball. However, if we had simply used invariant
checking, the peak would have been reported as the sign that dog cannot track the ball, a “false” alarm one
may want to avoid.

Finally, we use the model-based code generator in [15] to generate the code for tester, controller, monitor
from T ||H||M. Because the code generator supports modular compilation, we can compile each module
separately and link all or some of them at our will. Table 1 shows the size of the model and the generated
code. In [15] the input variables vision and ball in generated code were mapped to the registers for the
sensor unit. In our experiment, these variables are mapped to the output variables of the code for tester. In
addition, we link the variable error to the input of LEDs on the head, hence when the monitor sees an error,
the LEDs on the dog’s head starts to blink. We have loaded the generated code into the SONY AIBO dog.
The dog acts as if it were chasing a virtual ball, and after 59 second, the LEDs starts to blink, indicating
that the dog fails to follow a fast-moving virtual ball.

14

6 Conclusion

We have proposed an integrated approach to test and monitor model-based generated code. We start with
the techniques of generating and encoding tester and monitor in the same language as the system model,
then use the same code generating process to synthesize a tester and a monitor from these models. In our
approach, the hybrid automaton model for the tester is to model a controlled testing environment we want
to test the system, and the model is refined according to both the coverage criteria and the testing goal. The
tester supplies test traces on-the-fly, which eliminates the need of loading a relatively big static test suite into
the limited memory space of embedded systems. We also introduce a technique to mechanically synthesize
monitors from behavior specifications encoded in deterministic passive Büchi timed automata. The tester
and the monitor may be used both on the simulation level and on the code level to validate the tested
code. Finally, modular compilation supported by our code generator allows us to link the tester and/or the
monitor as needed with the tested code. Our approach essentially shows another benefit of model-based
design and code generation, that is, it allows the user to rapidly prototype testing and monitoring tasks in
the same modeling language, and use the same code generation mechanism to generate code for testing and
monitoring purposes.

Our works may be further extended in many ways. First, it would be interesting to see how testers
can address the constraints imposed by physical systems. In addition, in this paper the system property
is encoded as a variant of timed automata, but our approach may be extended to other logics like MEDL
[16] and metric LTL [4]. We are also interested in automatic generation of testing automata from given
environment constraints.

References

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine.
The algorithmic analysis of hybrid systems. Theoretical Computer Science, 138:3–34, 1995.

[2] R. Alur, T. Dang, J. Esposito, Y. Hur, F. Ivančić, V. Kumar, I. Lee, P. Mishra, G. Pappas, and O. Sokolsky.
Hierarchical modeling and analysis of embedded systems. Proceedings of the IEEE, 2003.

[3] R. Alur and D. L. Dill. The theory of timed automata. TCS, 126(2), 1994.

[4] R. Alur, T. Feder, and T.A. Henzinger. The benefits of relaxing punctuality. In Journal of the ACM, volume 43,
pages 116–146, 1999.

[5] R. Alur, F. Ivančić, J. Kim, I. Lee, and O. Sokolsky. Generating embedded software from hierarchial hybrid
models. In Proceedings of the ACM SIGPLAN Conference on Languages, Compilers, and Tools for Embedded
Systems (LCTES’03), 2003.

[6] J.-Y. Choi, Y. Hur, and I. Lee. IHA: Ensuring sound numerical simulation of hybrid automata. Technical Report
MS-CIS-03-06, Dept. of Computer and Information Science, University of Pennsylvania, 2003.

[7] SONY Corporation. Entertainment Robot AIBO. http://www.aibo.com.

[8] L. K. Dillon and Y. S. Ramakrishna. Generating oracles from your favorite temporal logic specification. In the
Fourth ACM SIGSOFT Symposium on the Foundation of Software Engineering, 1996.

[9] E. A. Emerson and E. M. Clarke. Characterizing correctness properties of parallel programs as fixpoints. In
Proceedings of the Seventh International Colloquium on Automata, Languages and Programming, volume 85 of
Lecture Notes in Computer Science, Berlin, 1981. Springer-Verlag.

[10] D. Giannakopoulou and K. Havelund. Automata-based verification of temporal properties on running programs.
In Automated Software Engineering. IEEE Computer Society, 2001.

[11] K. Havelund and G. Rosu. Java pathexplorer - a runtime verification tool. In Proceedings of The Sixth Interna-
tional Symposium on AI, Robotics, and Automation in Space, May 2001.

[12] K. Havelund and G. Rosu. Synthesizing monitors for safety properties. In Proceedings of International Conference
on Tools and Algorithms for Construction and Analysis of Systems, 2002.

[13] Reactive Systems Inc. Reactis. http://www.reactive-systems.com, 2003.

[14] The MathWorks Inc. Real-time workshop for Simulink. http://www.mathworks.com.

15

[15] J. Kim and I. Lee. Modular code generation from hybrid automata based on data dependency. In Proceedings
of the 9th IEEE Real-Time and Embedded Technology and Application Symposium (RTAS 2003), 2003.

[16] I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan. Runtime assurance based on formal specifi-
cations. In Proceedings of the International Conference on Parallel and Distributed Processing Techniques and
Applications, 1999.

[17] N. A. Lynch, R. Segala, and F. W. Vaandrager. Hybrid I/O automata. In 82, page 16. Centrum voor Wiskunde
en Informatica (CWI), ISSN 0169-118X, 31 1995.

[18] O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In Real-Time: Theory in Practice, REX
Workshop, LNCS 600, pages 447–484. Springer-Verlag, 1991.

16

	University of Pennsylvania
	ScholarlyCommons
	7-13-2003

	Testing and Monitoring Model-based Generated Program
	Li Tan
	Jesung Kim
	Insup Lee

