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ABSTRACT

EQUILIBRIUM TUITION, APPLICATIONS, ADMISSIONS AND

ENROLLMENT IN THE COLLEGE MARKET

Chao Fu

Kenneth I. Wolpin

I develop and structurally estimate an equilibrium model of the college market. Stu-

dents, who are heterogeneous in both abilities and preferences, make college appli-

cation decisions, subject to uncertainty and application costs. Colleges observe only

noisy measures of student ability and set up tuition and admissions policies to com-

pete for more able students. The model incorporates tuition, applications, admissions

and enrollment as the joint outcome from a subgame perfect Nash equilibrium. I esti-

mate the structural parameters of the model using the NLSY 97 data, via a three-step

estimation procedure to deal with potential multiple equilibria. I use the estimated

model to perform three counterfactual experiments. First, I explore the impacts of

incomplete information on the market. A perfect measure of student ability would

lead to higher enrollee ability across colleges and a $2500 increase in average student

welfare. Second, I examine the equilibrium consequences of funding cuts to pub-

lic colleges. All colleges, public and private, increase their tuition, and the drop in

student welfare is three times as large as government savings. Finally, I study the

extent to which the government can expand college access by increasing the supply

of lower-ranked colleges. At most 2:1% more students could be drawn into colleges.
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Chapter 1

Introduction

Expanding college access has been a continuing policy goal in the U.S. One way used

to achieve this goal is to provide government support directly for college education.

For example, Figure 1.1 shows that from 1980 to 1997, local and state governments�

per capita expenditure on higher education grew by about 50%.1 Figure 1.2 shows

that concurrently, among recent high school completers, the college enrollment rate

increased from 49% to 67%, and the four-year college enrollment rate, in particular,

increased from below 30% to 44%.2 ;3 However, from 1998 to 2006, although govern-

ments�expenditure on higher education grew even faster than in earlier years, the

college enrollment rates remained almost �at. This observation raises the follow-

ing question: How much further could the government expand college access simply

through its support for college education?

The pursuit for this long-run goal has been interrupted by the recent government

budget crisis: by September 2009, at least 34 states had implemented funding cuts

1Measured in 2006 dollars. Data source: U.S. Census Bureau: State and Local Government
Finances.

2"Recent high school completers" refers to individuals ages 16 to 24 who graduated from high
school or completed a GED during the preceding 12 months.

3Public four-year colleges accommodate over 60% of four-year college attendees. (Digest of Ed-
ucation Statistics. National Center for Education Statistics.)

1



0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
ex

pe
nd

itu
re

1980 1985 1990 1995 2000 2005
year

50State Average

(Per Capita in $2006)
State & Local Gov. Spending on Higher Education

Figure 1.1: State and Local Gov. Spending on Higher Education (Per Capita in 2006
Dollar)

30
40

50
60

70

1980 1985 1990 1995 2000 2005
year

All Colleges 4Year Colleges

College Enrollment Rate (Current High School Completers)

Figure 1.2: College Enrollment Rate

2



to public colleges and universities. For example, the University of California and

California State University received 20% less state funding in 2009 than they did in

2007. How would these funding cuts a¤ect the college market?4 Colleges may react by

changing their admissions policies and/or their tuition policies. For example, public

colleges may have to increase their tuition, but by how much is unclear. Private

colleges may also increase their tuition. However, not increasing tuition may enable

them to attract more able students from public colleges. Which strategy is better

depends on how important student ability is to colleges, relative to tuition revenue.

More important, it depends on how students would respond to the changes in both

the tuition policies and the admissions policies of all colleges in the market.

In order to predict the impacts of the recent funding cuts, as well as to assess

policies aimed at achieving the long-run goal of expanding college access, we need

to understand how the student and the college sides of the market interact over the

process of tuition setting, applications, admissions and enrollment. This is the goal

of my paper.

I develop and structurally estimate an equilibrium model of the college market.

The model builds on the theoretical work of Chade, Lewis and Smith (2008), who de-

velop an equilibrium model of college admissions process, with decentralized matching

of students and two colleges.5 Students, with heterogeneous abilities, make applica-

tion decisions subject to application costs and noisy evaluations. Colleges, observing

only noisy signals of student ability, compete for better students by setting admissions

standards for student signals. These standards act like prices, allocating the scarce

4This paper focuses on the four-year college market and college refers to four-year college here-
after.

5Nagypál (2004) analyzes a model in which colleges know student types, but students themselves
can only learn their type through normally distributed signals.

3



slots to quali�ed students.

I extend their framework in the following ways: On the student side, �rst, students

are heterogeneous in their preferences for colleges as well as in their abilities, both

unknown to the colleges. Second, I allow for two noisy measures of student ability.

One measure is subjective and its assessment is known only to the college, for example,

a student essay. I model this measure as a signal, following Chade, Lewis and Smith

(2008). The other measure is the objective SAT score, which is known both to the

student and the colleges she applies to, and may be used strategically by the student

in her applications.6 Third, in addition to the admission uncertainty caused by noisy

evaluations, students are subject to post-application shocks. On the college side, I

model multiple colleges (public and private), each choosing its tuition and admissions

policies to maximize its payo¤, which depends on expected enrollee ability and tuition

revenue.

The market operates in three stages. First, colleges simultaneously announce

their tuition. Second, students make their application decisions and colleges simulta-

neously choose their admissions policies. Finally, post-application shocks are realized

and students make their enrollment decisions. The model incorporates tuition, ap-

plications, admissions and enrollment as the joint outcome from a subgame perfect

Nash equilibrium (SPNE). I show that SPNE exists, but need not be unique. Multiple

equilibria could arise from two sources: 1) di¤erent self-ful�lling expectations held by

the student about admissions policies, and 2) the strategic interplay among colleges.

To estimate the model with potentially multiple equilibria, I extend the two-step

estimation strategy proposed by Moro (2003), who estimates a statistical discrim-

6For example, a low-ability student with a high SAT score may apply to top colleges to which she
would not otherwise apply; a high-ability student with a low SAT score may apply less aggressively
than she would otherwise.
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ination model in which only one side of the market is strategic. I show how the

extended strategy can be used to estimate a model in which both sides of the market

are strategic, and hence, the additional second source of multiple equilibria arises.

I estimate the model in three steps; the �rst two steps recover all the fundamental

parameters involved in the application-admission subgame without having to impose

any equilibrium selection rule. In particular, each application-admission equilibrium

can be uniquely summarized in the set of probabilities of admission to each college

for di¤erent types of students. The �rst step treats these probabilities as parameters

and estimates them along with fundamental student-side parameters in the student

decision model, thereby identifying the equilibrium that generated the data. The

second step recovers the college-side parameters by imposing each college�s optimal

admissions policy. I implement the �rst step via the simulated maximum likelihood

estimation method and the second step via a simulated minimum distance estimation

method. Step three recovers the rest of the parameters by matching colleges�optimal

tuition with the data tuition.

To implement the empirical analysis, I use data from the National Longitudinal

Survey of Youth 1997, which provides detailed information on student applications,

admissions, �nancial aid and enrollment. I also use tuition information from the

Integrated Postsecondary Education Data System.

I use the estimated structural model to conduct three counterfactual experiments.

First, I consider the degree to which the market is a¤ected by incomplete information.

With a perfect measure of student ability, average student welfare would increase by

$2500, or 6%. Colleges obtain higher-ability students, although their admissions rates

increase to almost 100%, which highlights the fact that the selectivity of a college need

not re�ect its quality in terms of enrollee ability.

5



In the second experiment, I examine the equilibrium impacts of a funding cut to

public colleges. All colleges - public and private - increase their tuition. Although the

government saves on educational expenses, the loss in student welfare is three times

as large as government savings.

Finally, I investigate the extent to which the government can expand college access

by increasing the supply of lower-ranked colleges, private or public. At most 2:1%

more students can be drawn into colleges, although the enlarged colleges lower their

tuition dramatically and adopt an open admissions policy. Therefore, neither the

tuition cost nor the number of available slots is a major obstacle to college access. A

large group of students, mainly low-ability students, prefer the outside option over

any of the college options.

Although this paper is the �rst to estimate a market equilibrium model that incor-

porates college tuition setting, applications, admissions and enrollment, it builds on

various studies on similar topics. For example, Manski and Wise (1983) use reduced-

form approaches to study various stages of the college admissions problem separately

in a partial equilibrium framework. Most relevant to my paper, they �nd that ap-

plicants do not necessarily prefer the highest quality school.7 Arcidiacono (2005)

develops and estimates a structural model to address the e¤ects of college admissions

and �nancial aid rules on future earnings. Taking admissions probabilities as exoge-

nous, he models student�s application, enrollment and choice of college major and

links education decisions to future earnings.

The study by Epple, Romano and Sieg (2006) is most related to my paper to

the extent that both papers build and empirically implement a market equilibrium

7Light and Strayer (2002), Bowen and Bok (1998) and Brewer, Eide and Goldhaber (1999) are
examples of reduced-form studies that focus on the role of race in college education.

6



model for college education. Abstracting from college applications, Epple, Romano

and Sieg (2006) focus on admissions, net tuition and enrollment, in an environment

with complete information and no uncertainty.8 Students make enrollment decision,

and colleges choose �nancial aid and admissions policies to maximize the quality of

education provided to their students. They base their empirical analysis on a sample

of incoming freshmen and detailed college-level data. By comparison, I build a college

market model with incomplete information and uncertainty. I model application de-

cisions as well as (gross) tuition policies, admissions policies and enrollment decisions,

taking �nancial aid policies as given. I estimate my model on a sample of potential

college applicants and college-level tuition data. The two papers complement each

other in understanding the college market. Epple, Romano and Sieg (2006) provide

a more comprehensive view of colleges�pricing strategies. My model incorporates

students�application behavior and therefore contributes to the assessment of policies

that would a¤ect application decisions.

The rest of the paper is organized as follows: Chapter 2 lays out the model, de�nes

the equilibrium and proves existence. Chapter 3 explains the estimation strategy,

followed by a brief discussion of identi�cation. Chapter 4 describes the data. Chapter

5 presents empirical results, including parameter estimates and model �t. Chapter

6 conducts the counterfactual experiments. The last Chapter concludes the paper.

The appendix contains some details and additional tables.

8In their paper, (1) it is implicitly assumed that either application is not necessary for admission,
or all students apply to all colleges. (2) Student ability is equivalent to their SAT scores, and hence
is observed by all economic agents as well as the econometrician.
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Chapter 2

Model

2.1 Primitives

2.1.1 Players

There are J colleges, indexed by j = 1; 2; :::J . In the following, J will also denote the

set of colleges. A college�s payo¤ depends on the total expected ability of its enrollees

and its tuition revenue. To maximize its payo¤, each college has the latitude to choose

its tuition and admissions policies, subject to its �xed capacity constraint �j, where

�j > 0 and
X
j2J

�j < 1.

There is a continuum of students, making college application and enrollment de-

cisions. Students di¤er in their SAT scores and family backgrounds, and they are of

di¤erent types. In addition, each student also has her own idiosyncratic (permanent)

tastes for colleges. In particular, SAT scores (SAT 2 f1; 2; :::SATg) and family

backgrounds (B) are jointly distributed according to H(SAT;B):1 A student type T

is de�ned as T � (A;Z) 2 f1; 2; :::; Ag � f1; 2; :::; Zg, with A denoting ability, and

Z representing the non-ability dimension. Type T is correlated with (SAT;B) and

distributed according to P (T jSAT;B) = �(AjSAT;B)P (ZjA), where �(AjSAT;B)

1The distribution of H (SAT;B) is nonparametric and comes directly from the data.
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is an ordered logistic distribution and P (ZjA) is non-parametric.2 Student�s idiosyn-

cratic (permanent) tastes for colleges are captured by a J-dimensional random vector

�. � is i.i.d. N(0;
�), where 
� is restricted to be a diagonal matrix with �2�j denoting

the variance of �j:

2.1.2 Application Cost

Applications are costly to the student. The cost of application is restricted to be a

function of only the number of applications sent, regardless of where they are sent.

The cost function, denoted as C(�), satis�es the following: C : f1; :::; Jg ! R++, with

C(n+ 1) � C(n). I treat C(�) non-parametrically.

2.1.3 Financial Aid

A student may obtain �nancial aid that helps to fund her attendance in any college,

and she may also obtain college-speci�c �nancial aid. The amounts of various �nancial

aid depend on the student�s family background and SAT , via the exogenous �nancial

aid functions fj(B; SAT ), for j = 0; 1:::J , with 0 denoting the general aid and j

denoting college j-speci�c aid.3 The �nal realizations are subject to post-application

shocks � 2 RJ+1. I assume that � is i.i.d. N(0;
�), where 
� is a diagonal matrix

with �2�j denoting the variance of shock �j. The realized �nancial aid for student i is

given by

fji = maxffj(Bi; SATi) + �ji; 0g for j = 0; 1; ::J:

2In implementation, only one element of B; family income, enters P (AjSAT;B):
3See the appendix for functional forms of �nancial aid.
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2.1.4 Student Preference

Given tuition pro�le t � ftjgJj=1, the ex-post value of attending college j for student

i is given by

uji(t) = (�tj + f0i + fji)(1 + � + �2 + �3) + ujTi + �ji; (2.1)

where tj is tuition for attending college j, f0i and fji refer to the realized general aid

and college j-speci�c aid for student i, and � is the discount factor. The �rst term of

(2:1) summarizes student i�s net monetary cost of attending college j for four years.

The non-pecuniary value of attending college j for student i is captured by: ujTi,

the average utility from attending college j among type Ti students, and by �ji, i�s

idiosyncratic taste for college j:4

An outside option is always available to the student and its net expected value is

normalized to zero. After application, the outside option is subject to a random shock

�, which is i.i.d. N(0; �2� ), and the ex-post value of the outside option is u0i = �i.

2.1.5 College Payo¤

The payo¤ for college j 2 J is given by:

�j =
AP
a=1

!anja + (mj1tj +mj2t
2
j)�

AP
a=1

nja; (2.2)

where !a is the value of ability A = a, with !a+1 > !a and !1 normalized to 1.

nja is the measure of j�s enrollees with A = a. The �rst term in (2:2) is college j�s

total enrollee ability. The second term in (2:2) is college j�s payo¤ from its tuition

revenue, where mj is college j�s valuation of tuition relative to that of enrollee ability.

In particular, if college j uses tuition only as a tool to maximize enrollee ability, mj

would be 0.

4ujT�s are treated non-parametrically.
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2.1.6 Timing

First, colleges simultaneously announce their tuition levels, to which they commit.

In the second stage, students make their application decisions, and all colleges simul-

taneously choose their admissions policies. Finally, students learn about admission

results and post-application shocks to the outside option and �nancial aid, and then

make their enrollment decisions.5

2.1.7 Information Structure

Upon student i�s application, each college she applies to receives a signal s 2 f1; 2; ::sg

drawn from the distribution P (sjAi), the realization of which is known only to the

college. I assume that for A < A0, the distribution P (sjA0) �rst order stochastically

dominates P (sjA):6 Conditional on the student�s ability, signals are i.i.d. across the

colleges she applies to.

P (sjA), the distributions of characteristics, preferences, payo¤ functions and �-

nancial aid functions are public information. Individual student�s SAT score is known

both to her and the colleges she applies to. Throughout all stages, a student has pri-

vate information about her type T , her idiosyncratic taste � and her family background

B. To ease notation, let X � (T;B; �). After application, the student observes her

post-application shocks. For any individual applicant, college j has information only

about her SAT and the signal she sends to j. In particular, it does not observe

whether the student also applies to other colleges.

5This paper excludes early admissions, which accounts for only a small fraction of the total
applications. For example, in 2003, 17:7% of all four-year colleges o¤ered early decision. In these
colleges, the mean percentage of all applications received through early decision was 7:6%: Data
source: Admission Trends Survey (2004), National Association for College Admission Counseling.

6That is, if A < A0; then for any s 2 f1; 2; ::sg; Pr(s0 � sjA) � Pr(s0 � sjA0):
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In the following, I will �rst specify and solve the student problem and the college

problem for a given tuition pro�le and de�ne an application-admission equilibrium.

Then, I will specify the �rst stage tuition game and de�ne the equilibrium of the

whole game.

2.2 Applications, Admissions and Enrollment

2.2.1 Enrollment Decision

Knowing her post-application shocks and admission results, student i chooses the

best among the outside option and admissions on hand, i.e., maxfu0i;fuji(t)gj2Oig,

where Oi denotes the set of colleges that have admitted student i. For students not

admitted anywhere, maxfuji(t)gj2; = �1. Let

v(Oi; Xi; SATi; �i; �ijt) � maxfu0i;fuji(t)gj2Oig (2.3)

be the optimal ex-post value for student i, given admission set Oi. Denote the asso-

ciated optimal enrollment strategy d(Oi; Xi; SATi; �i; �ijt).

2.2.2 Application Decision

Given her admissions probability pj(Ai; SATijt) to each college j, which depends on

her ability and SAT , the value of application portfolio Y � J for student i is given

by:

V (Y;Xi; SATijt) �
X
O�Y

Pr(OjAi;SATi; t)E(�;�)[v(O;Xi; SATijt)]� C(jY j); (2.4)

where jY j is the size of portfolio Y , and

Pr(OjAi;SATi; t) =
Y
j2O

pj(Ai; SATijt)
Y

k2Y nO

(1� pk(Ai; SATijt))
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is the probability that the subset of colleges O � Y admit student i. The student�s

application problem is

max
Y�J

fV (Y;Xi; SATijt)g: (2.5)

Let the optimal application strategy be Y (Xi; SATijt):

2.2.3 Admissions Policy

Given tuition, a college chooses its admissions policy in order to maximize the total

expected ability of its enrollees, subject to its capacity constraint.7 Its optimal ad-

missions policy must be a best response to other colleges�admissions policies while

accounting for students�strategic behavior. In particular, observing only signals and

SAT scores of its applicants, the college has to infer: �rst, the probability that a

certain applicant would accept its admission, and second, the expected ability of this

applicant conditional on her accepting the admission, both of which depend on the

strategies of all the other players. For example, the conditional expected applicant

ability need not be monotone in SAT because students know their SAT and could

use this information strategically in their applications.

Formally, given tuition pro�le t, students�strategies Y (�); d(�) and other colleges�

7It is implicitly assumed that the tuition weights m are such that j(s; SAT jt; e�j ; Y; d)+mj1tj+
mj2t

2
j � 0 for any (s; SAT ) under reasonable tuition levels: Otherwise, the college may rather be

under capacity than admit certain (s; SAT ) students. I estimatem without imposing this restriction,
but the estimated bm (and a wide range of m around bm) satis�es this restriction. For example, even
if j(s; SAT jt; e�j ; Y; d) = 1 (the lowest ability value), in order to get 1 + bmj1tj + bmj2t

2
j < 0 with

tj � 0; tj needs to be higher than $64; 895 for private colleges, and higher than $46; 290 for public
colleges, which are far beyond the tuition levels in the data.
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admissions policies e�j, college j solves the following problem:

max
ej(�jt)

X
s;SAT

ej(s; SAT jt)�j(s; SAT jt; e�j; Y; d)j(s; SAT jt; e�j; Y; d)�j(s; SAT j�)

(2.6)

s:t:
X
s;SAT

ej(s; SAT jt)�j(s; SAT jt; e�j; Y; d)�j(s; SAT jt; e�j; Y; d) � �j

ej(s; SAT jt) 2 [0; 1];

where ej(s; SAT jt) is college j�s admissions policy for its applicants with (s; SAT ),

�j(s; SAT jt; e�j; Y; d) is the probability that such an applicant would accept college

j�s admission, j(s; SAT jt; e�j; Y; d) is the expected ability of such an applicant con-

ditional on her accepting j�s admission, and �j(s; SAT jt; e�j; Y; d) is the measure of

j�s applicants with (s; SAT ). The �rst order condition for problem (2:6) is

j(s; SAT jt; e�j; Y; d)� �j + �0 � �1 = 0; (2.7)

where �j is the multiplier associated with capacity constraint, i.e., the shadow price

of a slot in college j. �0 and �1 are adjusted multipliers associated with the constraint

that ej(s; SAT ) 2 [0; 1]:8

If it admits an applicant with (s; SAT ) and the applicant accepts the admission,

college j has to give up a slot from its limited capacity, which induces the marginal

cost �j. The marginal bene�t, on the other hand, is the expected ability of such an

applicant conditional on her accepting j�s admission. Conditioning on acceptance is

necessary for correct inference about the student�s ability because of the potential

"winner�s curse": the student might accept college j�s admission because she is of low

ability and is rejected by other colleges. Balancing between the marginal bene�t and

8�0; �1 are the multiplier associated with �j(s; SAT jt; e�j ; Y; d)�j(s; SAT jt; e�j ; Y; d)ej(s; SAT ) 2
[0; 1]:
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the marginal cost, the solution to college j�s admissions problem is characterized by:

ej(s; SAT jt)

8<:
= 1 if j(s; SAT jt; e�j; Y; d) > �j
= 0 if j(s; SAT jt; e�j; Y; d) < �j
2 [0; 1] if j(s; SAT jt; e�j; Y; d) = �j

; (2.8)

X
s;SAT

ej(s; SAT jt)�j(s; SAT jt; e�j; Y; d)�j(s; SAT jt; e�j; Y; d) � �j; (2.9)

and

�j

�
� 0 if (2:9) is binding
= 0 if (2:9) is not binding

:

Let the Wj(t; e�j; Y; d) denote the maximized value of (2:6) for college j:

To implement its admissions policy, college j will rank its applicants with di¤erent

(s; SAT ) by their j(s; SAT jt; e�j; Y; d), then admit from the top group to the bottom

group until its capacity is �lled in expectation.9 All applicants with the same (s; SAT )

are identical to the college and hence are treated equally. In particular, everyone in

an (s; SAT ) group will be admitted if two conditions hold: 1) this (s; SAT ) group

is ranked highest among the groups whose admissions are still to be decided, and 2)

the expected enrollment of this group, �j(s; SAT jt; e�j; Y; d)�j(s; SAT jt; e�j; Y; d), is

no larger than college j�s remaining capacity, where j�s remaining capacity equals

�j minus the sum of expected enrollment of groups ranked above, i.e., groups that

college j has already decided to admit. A random fraction of an (s; SAT ) group is

admitted if condition 1) holds but 2) does not, where the fraction equals the remaining

capacity divided by the expected enrollment of this group. As a result, a typical set of

admissions policies for the ranked (s; SAT ) groups would be f1; :::; 1; q; 0; :::; 0g, with

q 2 (0; 1) if the capacity constraint is binding, and f1; :::; 1g if the capacity constraint

is not binding or just binding. Appendix A.1 provides details on how to calculate

�j(�) and j(�).

9However, colleges sent out their admission decisions for all applicants simultaneously.
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2.2.4 Link Among Various Players

The probability of admission to each college for di¤erent (A; SAT ) groups of stu-

dents, fpj(A; SAT jt)g, summarizes the link among various players. The knowledge

of p makes the information about admissions policies fej(s; SAT jt)g redundant. In

particular, students� application decisions are based on p, and college j can make

inferences about �j(�) and j(�), and therefore choose its admissions policy, based on

p�j. The relationship between p and e is given by:

pj(A; SAT jt) =
X
s

P (sjA)ej(s; SAT jt): (2.10)

The role of p as the link among players and the mapping (2:10) are of great importance

in the estimation strategy to be speci�ed later.

2.2.5 Application-Admission Equilibrium

De�nition 2.1. Given tuition pro�le t, an application-admission equilibrium, denoted

as AE(t), is

(d(�jt); Y (�jt); e(�jt)), such that

(a) d(O;X; SAT; �; �jt) is an optimal enrollment decision for every (O;X; SAT; �; �);

(b) Given e(�jt), Y (X;SAT jt) is an optimal college application portfolio for every

(X;SAT ), i.e., solves problem (2:5) ;

(c) For every j, given (d(�jt); Y (�jt); e�j(�jt)), ej(�jt) is optimal admissions policy for

college j, i.e., solves problem (2:6) :

Proposition 2.1. For any given tuition pro�le t, an application-admission equilib-

rium exists.

Proof. (see the appendix).
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2.3 Tuition Policy

Before the application season begins, colleges simultaneously announce their tuition

levels, understanding that their announcements are binding and would a¤ect the

following application-admission subgame. Although the subsequent game could admit

multiple equilibria from the econometrician�s point of view, I assume that the players

agree on the equilibrium selection rule and only this selected set of equilibrium pro�les

AE(�) would be considered when colleges choose tuition policies.10 Given t�j and the

equilibrium pro�lesAE(�) in the following subgame, college j�s problem is to maximize

E(�j), which is equivalent to

max
t0j

fWj(t
0
j; t�j; e�j; Y; d) (2.11)

+
X
s;SAT

ej(s; SAT jt0j; t�j)�j(s; SAT jt0j; t�j; e�j; Y; d)

�j(s; SAT jt0j; t�j; e�j; Y; d)(mj1t
0
j +mj2t

02
j )g: (2.12)

The �rst term in (2:11) is college j�s payo¤ from the total expected ability of its en-

rollees resulting from AE(t0j; t�j). The second term is college j�s monetary payo¤ from

its expected tuition revenue, where the expected enrollment,
P

s;SAT ej(�j�)�j(�j�)�j(�j�),

also results from AE(t0j; t�j).

Independent of m, the college has to consider the strategic role of its tuition in

the subsequent AE(t0j; t�j). On the one hand, low tuition makes the college more

attractive to students and more competitive in the market. On the other hand, high

tuition serves as a screening tool and leads to a better pool of applicants if high-

ability students are less sensitive to tuition than low-ability students. Together with

the monetary incentives for tuition revenue, such trade-o¤s determine the optimal

10The way in which the equilibrium selection rule is reached is beyond the scope of this paper.
But as an example, it may result from repeated interactions between players.
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tuition level for the college.

2.4 Subgame Perfect Nash Equilibrium for the Col-
lege Market

De�nition 2.2. A subgame perfect Nash equilibrium for the college market is

(t�; d(�j�); Y (�j�); e(�j�)) such that:

(a) For every t, (d(�jt); Y (�jt); e(�jt)) constitutes an AE(t), according to De�nition 1;

(b) For every j, given t��j, t
�
j is optimal tuition for college j, i.e., solves problem

(2:11) :

Proposition 2.2. Under usual regularity conditions, a subgame perfect Nash equilib-

rium exists for the college market.

Proof. (see appendix).
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Chapter 3

Estimation Strategy and
Identi�cation

3.1 Estimating Application-Admission Subgame

First, I �x the tuition pro�le at its equilibrium (data) level and estimate the para-

meters that govern the application-admission subgame. To save notation, I suppress

the dependence of endogenous objects on tuition.

The estimation is complicated by the fact that the application-admission subgame

may have multiple equilibria and econometricians do not observe the equilibrium

selection rule used by the players.1 One way to deal with this complication is to impose

some equilibrium selection rule assumed to have been used by the players and consider

only the selected equilibrium. However, for models like the one in this paper, there

is not a single compelling selection rule.2 I use a two-step strategy to estimate the

1Models with multiple equilibria do not have a unique reduced form and this indeterminacy poses
practical estimation problems. An important issue associated with maximum likelihood estimation
of such models is that one should maximize the likelihood not only with respect to the structural
parameters but also with respect to the types of equilibria that may have generated the data. The
latter can be a very complicated task: �rst, computing all the equilibria associated with each trial
value of the parameters can be computationally very demanding; and second, the number of possible
combinations of equilibria increases exponentially with sample size.

2See, for example, Mailath, Okuno-Fujiwara and Postlewaite (1993).
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application-admission subgame without having to impose any equilibrium selection

rule.

Each application-admission equilibrium is uniquely summarized in the admissions

probabilities fpj(A; SAT )g, which provide su¢ cient information for players to make

their unique optimal decisions. In the student decision model, these admissions prob-

abilities are taken as given. Step one treats the equilibrium admissions probabilities

p as parameters and estimates them along with structural student-side parameters,

thereby identifying the equilibrium that generated the data. Step two imposes each

college�s optimal admissions policy. The resulting admissions policies fej(s; SAT )g

yield a new set of admissions probabilities, which, under the true college-side parame-

ters, should match the reduced-form equilibrium admissions probabilities estimated

in the �rst step.

3.1.1 Step One: Estimate Fundamental Student-Side Para-
meters and Equilibrium Admissions Probabilities

I use the method of simulated maximum likelihood estimation (SMLE) in the �rst

step: together with estimates of the fundamental student-side parameters
�b�0�, the

estimated equilibrium admissions probabilities bp should maximize the probability of
the observed outcomes of applications, admissions, �nancial aid and enrollment condi-

tional on observable student characteristics, i.e., f(Yi;Oi; fi; dijSATi; Bi)gi. �0 is com-

posed of 1) type-speci�c preference parameters and idiosyncratic taste distribution

parameters �0u = [fuj(T )g;
�
��j
	
]0, 2) application cost parameters �0C = fC(n)g0,

3) �nancial aid parameters �0f , 4) the standard deviation of the shock to the outside

option �0� = �� and 5) the parameters involved in the distribution of types �0T .

Suppose student i is of type T . Her contribution to the likelihood, denoted by

LiT (�0u;�0C ;�0f ;�0� ; p), is composed of the following parts:
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LYiT (�0u;�0C ;�0f ;�0� ; p)� the contribution of Yi;

LOiT (p)� the contribution of OijYi;

LfiT (�0f )� the contribution of fijOi, and

LdiT (�0u;�0f ;�0�)� the contribution of dij(Oi; fi):

Hence,

LiT (�) = LYiT (�)LOiT (�)L
f
iT (�)LdiT (�):

Now, I will specify each part in detail. Conditional on (T; SATi; Bi), there are

no unobservables involved in the probabilities of OijYi and fijOi. The probability of

OijYi depends only on ability and SAT , and is given by

LOiT (p) � Pr(OijYi; A; SATi) =
Y
j2Oi

pj(A; SATi)
Y

k2YinOi

[1� pk(A; SATi)]:

Let Jfi � f0; Oig be the sources of observed �nancial aid for student i, where 0 denotes

general aid.3 The probability of the observed �nancial aid depends only on SAT and

family background:

LfiT (�0f ) � Pr(fijOi; SATi; Bi)

=

8<:
Y
j2Jfi

�(
fji�fj(SATi;Bi)

��j
)I(fji>0)�(

�fj(SATi;Bi)
��j

)I(fji=0) if Jfi 6= ;

1 otherwise
;

where �(�) and �(�) are the standard normal density and cumulative distribution,

respectively, and I (�) is the indicator function. The choices of Yi and dij(Oi; fi)

both depend on the unobserved idiosyncratic tastes �, therefore the two probabilities

have to be calculated jointly. Let G(�; �; f�jgj2f0;OignJfi ) be the joint distribution of

3By de�nition, a student can get admitted only to the colleges she applies to and can obtain
�nancial aid from a college only if she is admitted to the college. That is, Oi � Yi and J

f
i � f0; Oig:
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idiosyncratic taste, outside option shock and unobserved �nancial aid shocks,

LYiT (�0u;�0C ;�0f ;�0� ; p)L
d
iT (�0u;�0f ;�0�) �Z

I(YijT; SATi; Bi; �)I(dijOi; T; SATi; Bi; �; �; f�jgj2f0;OignJfi ; ffjigj2Jfi )

dG(�; �; f�jgj2f0;OignJfi );

where the indicator function I (�) is used because the two conditional student decisions

are unique.4 The multi-dimensional integration has no closed-form solution and is

approximated by a kernel smoothed frequency simulator.5 This involves assigning

to each student, characterized by (T; SATi; Bi), R sets of random draws of taste and

ex-post shocks f
�
�; �; f�jgj2f0;OignJfi

�
r
gRr=1, solving the optimization problem for each

of these R cases, and then integrating over these R cases.6

To obtain the likelihood contribution of a student as observed in the data, I

integrate over the unobserved type T :

Li(�0; p) =
X
T

P (T jSATi; Bi; �0T )LiT (�0u;�0C ;�0f ;�0� ; p): (3.1)

Finally, the log likelihood for the whole random sample is

L(�0; p) =
X
i

ln(Li(�0; p)): (3.2)

3.1.2 Step Two: Estimate College-Side Parameters

The college-side parameters to be estimated at step two, denoted �2, are the distri-

butional parameters of signals conditional on ability P (sjA), the capacity constraint

4When the realization of �nancial aid is observed by the econometrician, there is no need to
simulate ex-post shocks for it. However, simulation is needed in cases where information on �nancial
aid is missing.

5See McFadden (1989) for the properties of such simulators.

6See Appendix D.1 for details.
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parameters � and the value of di¤erent abilities !. They are estimated via simu-

lated minimum distance estimation (SMDE). Based on b�0, I simulate a population
of students and obtain their optimal application and enrollment strategies under bp,
which also yields the equilibrium enrollment in each college group. Under the as-

sumption that the expected capacity constraint is binding and that the law of large

numbers applies, the total enrollment in j, as a fraction of the student population,

should equal j�s expected capacity.7 These equilibrium capacities, together with the

estimated equilibrium admissions probabilities bp, serve as the targets to be matched
in the second-step estimation.

The estimation explores each college�s optimal admissions policy: taking student

strategies and bp�j as given, college j chooses its admissions policy fej(s; SAT )gs;SAT .
This leads to the admissions probability to college j for each (A; SAT ) type, accord-

ing to equation (2:10). Ideally, the admissions probabilities derived from step two

should match the equilibrium admissions probabilities from step one, and the capac-

ity parameters in step two should match the equilibrium capacities. The estimates

of the college-side parameters minimize the weighted sum of the discrepancies. Letb�1 = [b�00; bp0]0; the objective function in the second step is
min
�2
fq(b�1;�2)0cWq(b�1;�2)g; (3.3)

where q(�) is the vector of the discrepancies mentioned above, and cW is an estimate

of the optimal weighting matrix. The choice of W takes into account that q(�) is a

function of b�1, which are point estimates with variances and covariances. Appendix
D.2 gives more details about the second-step estimation.

7The assumption of a binding capacity constraint is justi�ed by the fact that the admission rate
is lower than 100% for any college group in the data.

23



3.2 Tuition Weights

Given other colleges�equilibrium (data) tuition t��j, I solve college j�s tuition problem

(2:11). Under the true tuition weight parameters m, the optimal solution should

match data tuition. The objective in step three is

min
m
f(t� � t(b�;m))0(t� � t(b�;m))g;

where t� is the data tuition pro�le, t(�) consists of each college�s optimal tuition,b� � [b�0; b�2] is the vector of fundamental parameter estimates from the previous two
steps. I obtain the variance-covariance of bm using the Delta method, which exploits

the variance-covariance structure of b�:
3.2.1 Solving the Optimal Tuition Problem

Given b�, t��j and some m, I examine college j�s expected payo¤ at each trial tuition
level t0j and obtain the optimal tuition associated with thism. This procedure requires

computing the series of application-admission equilibria AE
�
:; t��j

�
, which can only

be achieved through simulation. To do so, I use an algorithm motivated by the rule of

"continuity of equilibria," which requires, intuitively, that AE(t0j; t
�
�j) should be close

to AE(tj; t��j) when t
0
j is close to tj. To be speci�c, I start from the equilibrium at the

data tuition level
�
t�j ; t

�
�j
�
, which is numerically unique for nontrivial initial beliefs.8

Then, I gradually deviate from t�j : for
�
t"j ; t

�
�j
�
, I start the search for new equilibrium,

i.e., the �xed point of admissions policies e
�
:j
�
t"j ; t

�
�j
��
, using, as the initial guess,

the e
�
:j
�
t
0
j; t

�
�j
��
that is associated with the most adjacent

�
t0j; t

�
�j
�
. The resulting

series of AE
�
:; t��j

�
is used to solve college j�s tuition problem.

8"Nontrivial initial beliefs" requires that the student�s initial belief about admissions probability
is not 0 at any college. AE(t�) is found to be unique numerically in my search for equilibrium
starting from 500 di¤erent combinations of nontrivial initial beliefs.
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3.3 Identi�cation

3.3.1 Student-Side Parameters

In my model, students are of unobserved (discrete) types and have normally distrib-

uted idiosyncratic tastes. Econometricians observe students�discrete choices without

observing their latent utilities. Therefore, the student-side model can be viewed as a

�nite mixture of multinomial probits. In the appendix, I prove the identi�cation of

a mixed probit model with two types.9 The identi�cation in the more general case

of mixed multinomial probits with multiple types would require more complicated

algebraic analysis but would nevertheless follow the same logic. The observed vari-

ation in students�behavior arises from their heterogeneity both across and within

types. In order to disentangle these two sources of heterogeneity, I need additional

within-type variation that is driven by some observable. I assume that only SAT and

family income (a 5-year average) enter the type distribution, i.e., SAT and family

(permanent) income summarize all information that is correlated with ability. By

contrast, �nancial aid depends on SAT and all family-background variables. For ex-

ample, conditional on family permanent income, family assets vary with factors, such

as housing prices and stock prices, that are not correlated with ability. Variations in

�nancial aid have di¤erent impacts on students across types, which helps to identify

the type distribution and type-speci�c utilities.10

Given the type distribution identi�ed from the mixture of probits, I now discuss

9The proof builds on Meijer and Ypma (2008), who show the identi�cation for a mixture of two
univariate normal distributions.

10This exclusion restriction is su¢ cient but not necessary for identi�cation. For example, I could
allow family asset to enter type distribution as a categorical variable, and to enter �nancial aid
function as a continuous variable. The within-category variation in asset would be enough for
identi�cation.
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the major sources for the identi�cation of other student-side parameters. First, the

probabilities of admissions fpj (A; SAT )g are identi�ed mainly from the observed

variation in admissions across students with the same SAT but di¤erent family in-

come, due to the exclusion restriction that family income a¤ects admissions rates

only via ability. Second, the vector �� for the i.i.d. idiosyncratic tastes is identi�ed

from the variation in expected �nancial aid across students within a college, given

that student utility is measured in monetary units and that the coe¢ cient on net

tuition is normalized to one. Third, application costs are identi�ed mainly from the

variation in the numbers of applications, using the restriction that C (�) is the same

across students.11 Finally, the fraction of admitted students who chose not to attend

any college serves as the major identi�cation source for �� , the standard deviation of

the outside option shock.

3.3.2 College-Side Parameters

The identi�cation of capacity parameters � follows directly from the equilibrium col-

lege capacities calculated based on b�1, and the identi�cation of n bP (sjA)o is facili-
tated by the restriction that signal distribution is the same across colleges. However,

the vector of ability values ! is not point identi�ed, even after normalizing !1. The

reason is as follows: each college j faces discrete (s; SAT ) groups of applicants and

its admissions policy depends on the rankings of these groups in terms of their condi-

tional expected abilities j(�). These relative rankings remain unchanged for a range

of !�s, implying that ! cannot be point identi�ed. Consequently, I set up a grid of

!�s and implement the second step estimation given each of these !�s. The best �t

11For example, by comparing V (fjg) and V (;), I can identify
�
uj (A;Z)� C(1)

pj(SAT;A)

�
: Then I

can separately identify uj and C(1) because application cost is independent of SAT:
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occurs with !�s around [1; 2; 3]0, therefore, I �x b! = [1; 2; 3]0. At other values of !

around [1; 2; 3]0, the estimates for the other parameters in steps two and three will

change accordingly. However, the counterfactual experiment results are robust to

these changes.12

12The appendix shows counterfactual experiment results with alternative !�s around [1; 2; 3]0:
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Chapter 4

Data

4.1 NLSY Data and Sample Selection

The National Longitudinal Survey of Youth 1997 consists of a sample of 8984 youths

who were 12 to 16 years old as of December 31, 1996. There is a core nationally

representative random sample and a supplemental sample of blacks and Hispanics.

Annual surveys have been completed with most of these respondents since 1997. A

college choice series was administered in years 2003-2005 to respondents from the 1983

and 1984 birth cohorts who had completed either the 12th grade or a GED at the

time of interview. Respondents provided information about each college they applied

to, including name and location; any general �nancial aid they may have received;

whether each college to which they applied had accepted them for admission, along

with �nancial aid o¤ered. Information was asked about each application cycle.1 In

every survey year, the respondents also reported the college(s), if any, they attended

during the previous year.2 Other available information relevant to this paper includes

SAT=ACT score and �nancial-aid-relevant family information (family income, family

1An application cycle includes applications submitted for the same start date, such as fall session
2004.

2The NLSY97 geocode (restricted-use) data provide information on the names and locations of
the colleges related to the student.

28



assets, race and number of siblings in college at the time of application). The sample

I use is from the 2303 students within the representative random sample who were

eligible for the college choice survey in at least one of the years 2003-2005. To focus

on �rst-time college application behavior, I de�ne applicants as students whose �rst-

time college application occurred within 12 months after they became eligible. Under

this de�nition, 1756 students are either applicants or non-applicants.3 I exclude

applications for early admission (21 obs.).4 I also drop observations where some

critical information, such as the identity of the college applied to, is missing (89

obs.). The �nal sample size is 1646.

4.2 Aggregation of Colleges

Two major constraints make it necessary to aggregate colleges. One is computational

feasibility: with a large number of colleges, solving the student optimal portfolio

problem and/or computing the equilibrium poses major computational challenges.5

Another major constraint is sample size: without some aggregation, the number of

observations for each option would be too small to obtain precise parameter estimates.

Consequently, I aggregate colleges into groups by observed characteristics and treat

each group as one college in the estimation. By doing so, I abstract from some idio-

syncratic factors such as regional preferences that may be important at a disaggregate

level but are less likely to be important at a more aggregate level.

3I exclude students who were already in college before their �rst reported application. If a
student is observed in more than one cycle, I use only her/his �rst-time application/non-application
information.

4There is no direct information on early admission; I identify early admission according to the
rules speci�ed in the appendix.

5The choice set for the student application problem grows exponentially with the number of
colleges. Moreover, a �xed point has to be found for each college�s admissions policy in order to
solve for the equilibrium.
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The aggregation goes as follows: �rst, I divide all four-year colleges into private

and public categories, and then I use the within-category rankings from U.S. News

and World Report 2003-2006 for further division. Since 1983, U.S. News and World

Report has been publishing annual rankings of U.S. colleges and is the most widely

quoted of its kind in the U.S.6 Each year, seven indicators are used to evaluate the

academic quality of colleges for the previous academic year.7 The report years I use

correspond to the years when most of the students in my sample applied to colleges,

and the rankings had been very stable during that period. Table 4.1 shows the detailed

grouping: I group the top 30 private universities and top 20 liberal arts colleges into

Group 1, the top 30 public universities into Group 2, and all other four-year private

(public) colleges into Group 3 (Group 4).

To accommodate the aggregation of colleges, the empirical de�nitions of appli-

cation, admission and enrollment in this paper are as follows: a student is said to

have applied to group j if she applied to any college within group j; is said to have

been admitted to group j if she was admitted to any college in group j; and is said

to have enrolled in group j if she enrolled in any college in group j. With these

de�nitions, this paper is meant to capture the behavior of the majority of students:

60% of applicants in the sample applied to no more than one college within a group;

on the other hand, cross-group application is a signi�cant phenomenon in the data.

Table 4.2 shows, conditional on applying to the college group in the row, the fraction

6With the exception of 1984, when the report was interrupted.

7These indicators include: assessment by administrators at peer institutions, retention of stu-
dents, faculty resources, student selectivity, �nancial resources, alumni giving, and (for national
universities and liberal arts colleges) "graduation rate performance", the di¤erence between the
proportion of students expected to graduate and the proportion who actually do. The indicators
include input measures that re�ect a school�s student body, its faculty, and its �nancial resources,
along with outcome measures that signal how well the institution does its job of educating students.

30



Table 4.1: Aggregation of Colleges
Variable Group 1 Group 2 Group 3 Group 4
Num. of colleges (Potentiala) 51 32 1921 619
Num. of colleges (Appliedb) 37 32 312 292
Capacityc (%) 1:0 4:6 11:2 24:4
Group 1: Top private colleges; Group 2: Top public colleges;

Group 3: Other private colleges; Group 4: Other public colleges.

a. Total number of colleges in each group (IPEDS).

b. Number of colleges applied to by some students in the sample.

c. Capacity = Num. of students in the sample enrolled in group j/sample size.

Table 4.2: Applications|Applied to a Certain Group
% Group 1 Group 2 Group 3 Group 4
Group 1 100:0 32:7 70:9 40:0
Group 2 12:2 100:0 39:9 52:7
Group 3 13:0 19:6 100:0 47:2
Group 4 4:1 14:5 26:4 100:0
Conditional on applying to the group in the row,

the fraction that applied to each group in the column.

of applicants that applied to each of the college groups in the column. For example,

32:7% of Group 1 applicants also applied to Group 2. Moreover, among the applicants

who applied to both groups within the public/private category, very few applied to

cross-group colleges that are close in ranking.8

I also adjust the de�nitions of tuition and �nancial aid to college aggregation.

I use the within-group average tuition as the group tuition, based on the tuition

information from the Integrated Postsecondary Education Data System (IPEDS). If

a student got �nancial aid o¤ers from more than one college within the group she

enrolled in, the �nancial aid from the attended college is viewed as the aid she got

from this group; if she was o¤ered aid from more than one college within a group she

8Among the applicants who applied to both groups within the public/private category, I de�ne a
student as a "close applicant" if the ranking distance is less than 10 between the best lower-ranked
college and the worst top college she applied to. For Group 1-and-Group 3 applicants, 10% are close
applicants. For Group 2-and-Group 4 applicants, none are close applicants.
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Table 4.3: Student Characteristics
Variable Non-Applicants Applicants Attendees
Female 43:2% 53:0% 54:1%
Black 17:7% 13:3% 12:1%
Family Incomea 39835:5 68481:1 70605:61

(32361:0) (51337:0) (51279:3)
Incb= 1 34:5% 13:7% 12:7%
Inc = 2 50:8% 48:9% 47:6%
Inc = 3 14:7% 37:5% 39:7%
SAT c= 1 79:8% 16:5% 13:7%
SAT = 2 17:0% 59:7% 60:6%
SAT = 3 3:2% 23:8% 25:7%
Observations 899 747 678
a. in 2003 dollars
b. Inc=1 if family income is below 25th percentile (group mean $10,017)
Inc=2 if family income is in 25-75th percentile (group mean $45,611)

Inc=3 if family income is above 75th percentile (group mean $110,068)

c. SAT=1 if SAT or ACT equivalent is lower than 800.10

SAT=2 if SAT or ACT equivalent is between 800 and 1200.

SAT=3 if SAT or ACT equivalent is above 1200.

Score conversion follows SAT -ACT Concordance Tables (College Board).

did not enroll in, the highest �nancial aid from that group is used.9

4.2.1 Summary Statistics

Table 4.3 summarizes characteristics among non-applicants, applicants and attendees.

There are clear di¤erences between non-applicants and applicants: the latter are

much more likely to be female, white, with higher SAT scores and with higher family

income. Conditional on applying, attendees and non-attendees are not signi�cantly

di¤erent. Similar patterns have been found in other studies using di¤erent data.11

9Given the assumption that all colleges are identical within a group, the highest �nancial aid
from the group together with the non-pecuniary utility from that group is the highest bid for the
student from that group.

11For example, Howell (2005), using data from National Education Longitudinal Study of 1988,
and Arcidiacono (2005), using data from the National Longitudinal Study of the Class of 1972,
report similar patterns.
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Table 4.4: Distribution of Portfolio Sizes
% Size= 0 Size= 1 Size= 2 Size= 3 Size= 4
All 54:6 31:0 11:2 2:9 0:3
White 53:3 31:6 11:7 3:1 0:3
Black 61:6 27:9 8:1 1:9 0:3
SAT = 1 85:4 12:7 1:4 0:5 0:0
SAT = 2 25:5 50:0 19:0 5:0 0:3
SAT = 3 14:0 49:8 28:0 6:8 1:4
Inc = 1 75:2 19:7 3:6 1:0 0:5
Inc = 2 55:6 32:4 10:3 1:7 0:0
Inc = 3 32:0 39:6 20:4 7:3 0:7

Table 4.4 summarizes the distribution of application portfolio size. Fifty-�ve per-

cent of students did not apply to any four-year college. Among applicants, 67%

applied to only one group, and only 7% of applicants applied to three groups or more.

Relating portfolio size to student characteristics: whites, students with higher SAT

and students with higher family income are not only more likely to apply but also

more likely to apply to more groups.

Table 4.5 shows group-speci�c application rates and admissions rates. The ap-

plication rate, de�ned as the fraction of applicants that apply to a certain group,

increases as one goes from Group 1 to Group 4.12 But relative to their capacities

as shown in Table 4.1, top colleges still receive disproportionately higher fractions of

applications than lower-ranked colleges. For example, Group 4 is almost 25 times as

big as Group 1, but the application rate for Group 4 is only 10 times as high as that

for Group 1. Consistently, the admissions rate increases monotonically from 58% in

Group 1 to 96% in Group 4. The appendix includes further summary statistics by

race, by SAT and by family income.

12Application rates across groups do not need to add up to 100%; since some students applied to
multiple college groups.
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Table 4.5: Application and Admission: All Applicants
% Group 1 Group 2 Group 3 Group 4
Application Rate 7:4 19:8 40:3 72:0
Admission Rate 58:2 76:4 91:7 95:7
Num of all applicants: 747

Application rate=num. of group j applicants/num. of all applicants

Admission rate=num. of students admitted to group j/num. of group j applicants

Table 4.6: Final Allocation of Admitted Students (in percentage)
Group 1 Group 2 Group 3 Group 4 Outside

2:2 10:6 25:6 55:7 6:0
Num. of students with at least one admission: 720.

Table 4.7: Tuition and Financial Aid
Group 1 Group 2 Group 3 Group 4 General aid

Tuitiona 27009 5347 17201 3912 N=A
Fraction of Aid Recipientsb 42:4% 32:8% 67:1% 46:6% 39:9%
Mean Aid for Recipients 12836:1 8967:9 11346:6 5344:8 4325:6
a. Tuition and aid are measured in 2003 dollars.

b. Fraction of aid recipients= Num. of aid recipients in the sample
Num. of admitted students in the sample
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Table 4.6 shows the �nal distribution of students who obtained at least one admis-

sion. Over 80% of them attended lower-ranked colleges, with Group 4 accommodating

56%: By contrast, only 2% attended colleges in the top-ranked private Group 1. Six

percent of admitted students rejected all admissions and chose the outside option,

suggesting the existence of post-application shocks.

Table 4.7 summarizes tuition and �nancial aid. Private colleges are about four to

�ve times as costly as public colleges of similar ranking. Within the public/private

category, the higher-ranked colleges are more costly. Financial aid information is

shown in the last two rows. The �rst four columns show the fraction of �nancial aid

recipients among those admitted to each group and the average amount of �nancial

aid obtained. Relative to students admitted to top groups, a higher fraction of stu-

dents admitted to lower-ranked groups receive college �nancial aid. Conditional on

obtaining some aid, the amount of aid is monotone in the tuition cost.13 As shown

in the last column, 40% of admitted students receive some outside �nancial aid that

helps to fund college attendance in general, but the average amount of general aid is

lower than that of any college-speci�c aid.

13Financial aid can exceed tuition, since it may also cover other expenditures necessary for college
attendance.
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Chapter 5

Empirical Results

This section presents structural parameter estimates (with standard deviation in

parenthesis) and model �ts. I allow for six types of students, with (A;Z) 2 f1; 2; 3g�

f1; 2g, three SAT levels, SAT 2 f1; 2; 3g, and three signal levels, s 2 f1; 2; 3g:1 I al-

low the tuition weight vector m to di¤er across public and private categories, but

restrict it to be the same within the public/private category. The discount factor �

is �xed at 0:95:

5.1 Student-Side Parameter Estimates

5.1.1 Preference Parameter Estimates

Table 5.1 reports the estimates of preference parameters. Rows 1 to 3 show the

mean values attached to colleges by type Z = 1 students with A = 1 to A = 3,

respectively.  j(A)�s shown in the next two rows are the additional values attached

to each college group by type Z = 2 students relative to type Z = 1 students,

conditional on ability. That is, uj(A;Z = 2) = uj(A;Z = 1)+  j(A).
2 The next

three rows report uj(A;Z = 2). Within the same Z type, students of di¤erent ability

1A; SAT and s go from low to high as the levels go from 1 to 3:

2I restrict  j(1) =  j(2):
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levels have very di¤erent valuations for colleges. An average student of the lowest

ability (A = 1) derives large negative utility from any college; i.e., the outside option

is preferable to any college option for her, and her college utility levels are universally

much lower than those of higher-ability students. For students of the two higher

ability levels, some college options are better, while some are worse than the outside

option. Moreover, their valuations of colleges are not universally monotone in ability:

on average, A = 3 students have higher valuations for top colleges (Groups 1,2)

and lower valuations for lower-ranked colleges (Groups 3,4) than A = 2 students do.

Holding ability constant, Z = 2 type value private colleges much more and public

colleges much less than Z = 1 type.

The next row of Table 5.1 shows the standard deviations of idiosyncratic tastes:

even within T type, students are still very di¤erent in their tastes for colleges.

For example, although college 1 is worth only $124; 188 for an average student in

(A = 3; Z = 2) type, this value becomes $271; 618 at the 90th percentile.3 The last

row shows the estimate of the standard deviation of the ex post shock to the outside

option. Relative to the variation in permanent tastes, the variation in the ex post

shocks is smaller: the major driving force in a student�s decision is her permanent

taste. However, together with the ex post �nancial aid shocks, the ex post shock

to the outside option introduces non-trivial uncertainty into a student�s application

problem. For example, ex post, a student might opt out even with some admissions

in hand.

3Table 7.2 in the appendix illustrates the importance of within-type taste dispersion by showing
the mean evaluations of colleges among all students, applicants and attendees, from a simulated
example.
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Table 5.1: Preference Parameter Estimates
Group 1 Group 2 Group 3 Group 4

uj(A = 1; Z = 1) �233937:51 �287044:58 �216980:82 �119861:20
(79801:99) (18949:38) (8143:23) (4483:13)

uj(A = 2; Z = 1) �222379:95 �97657:36 �20898:31 81493:20
(43606:00) (9341:44) (3203:74) (1096:97)

uj(A = 3; Z = 1) �57506:06 59719:85 �52037:77 11025:54
(3536:88) (6397:90) (6164:44) (4629:37)

 j(A = 1; 2) 159977:95 �22777:16 155710:58 �124851:87
(40945:39) (10115:50) (4188:71) (6790:05)

 j(A = 3) 181694:72 �66612:01 89018:65 �115946:48
(26718:71) (7528:33) (9597:78) (21069:53)

uj(A = 1; Z = 2) �73959:56 �309821:73 �61270:24 �244713:07
uj(A = 2; Z = 2) �62402:00 �120434:52 134812:27 �43358:67
uj(A = 3; Z = 2) 124188:65 �6892:15 36980:88 �104920:94
��j 115039:64 91646:92 77914:55 43567:67

(1164:68) (3807:92) (1964:19) (1506:58)
�� 10433:37

(2916:06)

uj(A;Z = 2) =uj(A;Z = 1)+ j(A)

In sum, there is signi�cant heterogeneity in students�preferences for colleges, both

across types and within each type. Not only do students attach di¤erent values to

the same college, but they also rank colleges di¤erently.4 It would be misleading to

assume that all students value colleges in the same way or that students�bene�ts

from attending colleges are monotone in ability. Rather, the preference parameter

estimates suggest that the college market is highly horizontally di¤erentiated, with

each option (including the outside option) best catering to some groups of students.

5.1.2 Type Distribution Parameter Estimates

4In line with the �nding from this paper, Dale and Krueger (2002) also �nd that "a more selective
school is not the income-maxmizing choice for all students".
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Table 5.2: Ordered Logit Ability Distribution
cuta1 cuta2 Family Income SAT = 2 SAT = 3
2:4782 5:4100 0:00001 2:8052 3:6927

(0:1555) (0:2220) (0:000002) (0:16147) (0:2297)
a. cut1; cut2 are the cuto¤ parameters for the ordered logit.

Table 5.3: Z Type Distribution
A = 1 A = 2 A = 3

Pr (Z = 1jA) 0:8347 0:7359 0:6313
(0:0695) (0:0265) (0:0814)

Pr (Z = 2jA) 0:1636 0:2641 0:3687

Table 5.2 shows the parameter estimates for the ordered logit distribution of ability

conditional on family income and SAT . Students with higher SAT scores and those

with higher family income are more likely to be of higher ability. Table 5.3 shows

the distribution of Z types by ability: at all ability levels, most students are of type

Z = 1 (78% of all students), but the fraction goes down as ability goes up. In other

words, higher-ability students are more likely to be of the type that values private

colleges over public colleges.

Based on the estimates in Tables 5.2 and 5.3, I simulate a population of students

and report their type distribution in Table 5.4. Of all students, 57% are of ability

1, and only 9% are of ability 3. Conditional on being a type Z = 2, the ability

distribution �rst order stochastically dominates that conditional on being a type

Z = 1. The ability distribution among SAT 1 students is distinctively di¤erent from

that among higher-SAT students: over 88% of SAT 1�s are of ability 1 and fewer

than 1% of them are of ability 3. Between SAT 2 and SAT 3 students, the ability

di¤erence is less obvious: the majority of students of both SAT levels are of ability 2,

but SAT 3 students are less likely to be of ability 1 and more likely to be of ability 3

than SAT 2 students. SAT , as a noisy measure of student ability, is more powerful in
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Table 5.4: Ability Distribution: Simulation
% A = 1 A = 2 A = 3
All 57:2 33:9 8:9
Z = 1 60:9 31:9 7:2
Z = 2 43:5 41:3 15:2
SAT = 1 88:6 10:7 0:7
SAT = 2 28:3 58:3 13:4
SAT = 3 12:7 57:8 29:5
Inc = 1 76:7 20:5 2:8
Inc = 2 59:7 33:4 6:9
Inc = 3 32:4 48:3 19:3

distinguishing ability 1 students from the others, but less so in distinguishing between

ability 2 and ability 3 students. Finally, the last three rows of Table 5.4 illustrate

the relationship between family income and ability. The majority of students from

both low- and middle-income families are of ability 1, with the fraction being 77% for

those from low-income families. By contrast, only 32% of students from high-income

families are of ability 1. Although ability 3 students are in the minority at all family

income levels, their fraction goes up steeply with family income levels.5

5.1.3 Application Costs and Financial Aid

One of the major features of this model is that applications are costly for the student,

which is con�rmed by Table 5.5. The cost for the �rst application is $6; 477, which is

higher than the annual tuition of public colleges. But as the number of applications

goes up, the marginal cost goes down very fast, suggesting the existence of some

economies of scale.

5As stated earlier, ability in this paper refers to college preparedness rather than innate ability.
These estimates suggest that students from higher-income families are better prepared.

40



Table 5.5: Application Costs
n = 1 n = 2 n = 3 n = 4

C(n) 6477:40 7977:17 8335:54 8589:00
(323:92) (188:42) (202:62) (213:22)

Table 5.6: Financial Aid
General aid College-Speci�c Aid

Coe¢ cient Std. Error Coe¢ cient Std. Error
Constant �4907:82 (817:06) �13664:32 (1756:28)
Black 1490:72 (915:24) 3277:25 (1033:22)
Family Income �0:0253 (0:0107) �0:0461 (0:0092)
Family Asset �0:0041 (0:0027) �0:0045 (0:0024)
SAT = 2 3993:10 (854:49) 8141:64 (1837:64)
SAT = 3 6081:56 (1079:32) 15227:48 (1843:60)
Sibling in Collegea 4336:62 (897:90)
(SAT = 2)� public �4068:05 (2487:06)
(SAT = 3)� public �7821:93 (2563:67)
Group 2 3993:83 (2870:72)
Group 3 9511:52 (1811:92)
Group 4 6854:97 (2278:03)
�� 8034:08 (169:34) 9758:76 (285:86)
a: Whether the student has some siblings in college at the time of application.
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Table 5.6 displays the estimated parameters for the Tobit speci�cations of �nancial

aid.6 The left panel reports parameter estimates for general aid. Being black and

having higher SAT scores increases one�s expected �nancial aid, while higher family

income and/or assets reduces it. These patterns also hold for college-speci�c aid, as

shown in the right panel. However, the e¤ect of SAT is greater in private colleges than

in public colleges. Having siblings in college at the time of application also increases

college-speci�c �nancial aid. Top colleges are less generous in giving out �nancial aid,

especially Group 1, although it charges the highest tuition. By contrast, Group 3 is

most generous in giving out �nancial aid. The last row shows the standard deviations

of �nancial aid: there is a signi�cant amount of uncertainty involved in the �nal

realization of �nancial aid, adding to the total uncertainty faced by the student upon

application.

5.2 College-Side Parameter Estimates

The overall chi square goodness of �t statistic is 41:06 for the second-step SMDE.7 Ta-

ble 5.7 reports parameter estimates for signal distribution conditional on ability. By

sending out signals, the highest ability students can successfully distinguish them-

selves from the others: they are much more likely to send the highest signal, and

almost never send out the lowest signal. Ability 2 students are most likely to send

the medium signal, and they distinguish themselves from ability 1 students mainly

because of their lower probability of sending out the lowest signal. However, their

chance of obtaining the highest signal is almost the same as ability 1 students. As a

6The explanatory variables are chosen based on published �nancial aid policies and on Tobit
regressions using only �nancial aid data: insigni�cant regressors are omitted. The results reported
in Table 10 are estimated jointly with other student-side parameters via SMLE.

7�227;0:05 = 40:11:
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Table 5.7: Signal Distribution
P (s = 1jA) P (s = 2jA) P (s = 3jA)

A = 1 0:2210 0:3851 0:3939
(0:0769) (0:0954)

A = 2 0:0253 0:5807 0:3940
(0:0047) (0:0810)

A = 3 0:000001 0:2876 0:7124
(0:0577) (0:0575)

Table 5.8: Capacities
�1 �2 �3 �4

0:0096 0:0459 0:1082 0:2456
(0:0015) (0:0013) (0:0009) (0:0021)

result, it is hard to distinguish between the two lower-ability types by signals.

The estimated expected capacity of each college group is given in Table 5.8: the

more selective colleges and private colleges are smaller than their counterparts. These

capacity estimates closely match the capacities observed in the data shown in Table

4.1.

Finally, Table 5.9 shows the results for tuition weights, where tuition is measured

in $1; 000. Besides using their tuition to compete for better students, colleges have

positive but bounded incentives to raise tuition. If we do not consider the e¤ect of

tuition on enrollee ability, the "monetarily optimal" tuition is around $26; 400 for

private colleges, and $5; 700 for public colleges.

Table 5.9: Tuition Weights
j 2 f1; 3g private j 2 f2; 4g public
mj1 mj2 mj1 mj2

0:0674 �0:0013 0:0073 �0:00063
(0:002) (0:0004) (0:0034) (0:00015)

Tuition is measured in thousands of dollars.
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Table 5.10: Distribution of Portfolio Sizes (in percentage)
Size Data PE AE SPNE
0 54:6 54:9 55:1 55:7
1 30:9 29:6 30:9 31:5
2 11:2 11:8 10:7 9:6
3 2:9 3:3 3:0 2:9
4 0:3 0:2 0:3 0:2

�2 Stat 2:95 0:47 5:64
PE: Partial Equilibrium Model
AE: Application-Admission Equilibrium
ME: Market Equilibrium Model
�24;0:05= 9:49

5.3 Model Fit

Given the parameter estimates, I �rst �x tuition pro�le at the data level and simu-

late the student-side partial equilibrium model (PE) and the application-admission

equilibrium model (AE). Then I endogenize tuition and simulate the whole subgame

perfect Nash equilibrium model (SPNE). This section shows model �ts for the whole

sample; the appendix reports the �ts by race, by SAT and by family income.

Table 5.10 shows the �t for the distribution of portfolio sizes: all three models �t

the data well, with SPNE slightly understating the fraction of multiple applications.

Table 5.11 displays the �t of application and admissions rates among applicants. The

�rst set of rows show that all three models closely match application rates, except

that the SPNE model under-predicts the application rate for Group 4. The �t for

admissions rates is shown in the second set of rows: PE closely matches the admissions

rates for all groups. AE and SPNE under-predict the admissions rate for Group 1

and over-predict that for Group 3. Table 5.12 displays the �ts of student allocation.

The �rst set of columns shows the allocation for all students, and the second set of

columns shows that for students with at least one admission: all models closely �t
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Table 5.11: Application and Admission: All Applicants (in percentage)
Application Rate Data PE AE SPNE

Group 1 7:4 7:6 7:1 7:4
Group 2 19:8 21:1 19:9 20:2
Group 3 40:3 41:4 41:2 41:9
Group 4 72:0 72:5 70:8 67:0�

Admission Rate
Group 1 58:2 54:2 44:1� 43:6�

Group 2 76:4 80:2 81:9 82:0
Group 3 91:7 90:9 95:3� 98:6�

Group 4 95:7 95:0 95:0 97:1
� �2 > �21;0:05

the allocation patterns, with SPNE �t being the best.

Finally, Table 5.13 contrasts SPNE predicted tuition levels with the data. The

model �ts Group 4�s tuition almost perfectly, but it under-predicts College 2�s tuition

and over-predicts College 3�s tuition by about 10%. The deviation of the SPNE tuition

from data tuition comes mainly from the SPNE structure. Table 7.13 in the appendix

shows each college�s tuition as the best response to others�equilibrium (data) tuition

(i.e., the �t for the third-step estimation), which closely matches the data. We can also

compare the SPNE tuition with the monetarily optimal tuition ($26; 400 for private

colleges and $5; 700 for public colleges). All groups charge less than they would if

tuition policies do not play a strategic role in the subsequent application-admission

game. Moreover, the under-pricing is more signi�cant for lower-ranked groups than

for top groups. Although within the public/private category colleges share the same

monetary incentives for tuition, lower-ranked colleges have to resort to much lower

prices than top colleges so as to attract enough quali�ed applicants.
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Table 5.12: Final Allocation of Students (in percentage)
All Students Students With Some Admission

Data PE AE SPNE Data PE AE SPNE
College 1 1:0 1:1 1:0 1:0 2:2 2:7 2:2 2:2
College 2 4:6 4:5 4:3 4:5 10:6 10:6 10:1 10:5
College 3 11:2 10:7 11:3 11:1 25:6 24:9 26:4 25:8
College 4 24:4 23:5 24:0 24:3 55:7 54:8 55:9 56:3
Outside 58:8 60:2 59:4 59:1 6:0 7:0 5:3 5:1
�2 Stat. 2:11 0:54 0:12 1:93 1:54 1:45
�24;0:05= 9:49

Table 5.13: Tuition
Group 1 Group 2 Group 3 Group 4

Data 27009 5347 17201 3912
SPNE 26162 4555 19173 3925
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Chapter 6

Counterfactual Experiments

With the estimated model, which �ts the data reasonably well, I conduct three coun-

terfactual experiments. Comparisons are made between the baseline SPNE and the

new SPNE, simulated using the same set of random draws.

6.1 Perfect Signals

To quantify the impact of incomplete information on the equilibrium, I conduct a

counterfactual experiment where signals measure student ability perfectly, i.e., for all

A, P (s = AjA) = 1:1

Table 6.1 contrasts the distributions of portfolio sizes. Perfect signaling elimi-

nates the admission uncertainty in most cases and enables students to target their

applications better.2 Students without a chance of getting admitted are discouraged

from applying at all; hence fewer students apply. Moreover, when admission is cer-

tain, multiple applications remain meaningful only as a way to guard against ex post

1With perfect signals, SAT no longer a¤ects any decision.

2With perfect signals, students would face admission probabilities of either 1 or 0 in most cases.
But a student is still subject to rationing if a college�s remaining capacity cannot accommodate all
applicants in her ability group.
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Table 6.1: Perfect Signals: Distribution of Portfolio Sizes
% Size = 0 Size = 1 Size = 2 Size = 3 Size = 4
Base SPNE 55:7 31:5 9:6 2:9 0:2
New SPNE 57:0 34:3 7:7 0:9 0:1

Table 6.2: Perfect Signals: Admission Rates
% Group 1 Group 2 Group 3 Group 4
Base SPNE 43:6 82:0 98:6 97:1
New SPNE 99:3 97:4 97:4 98:2

shocks, which leads to fewer applications sent by applicants.

Table 6.2 shows the changes in admissions rates: as student applications get better

targeted, colleges face only well-quali�ed applicants and all admissions rates increase

to near 100%, with Group 1�s admissions rate being the highest. Obviously, in this

case, "selectivity" as re�ected by admissions rate bears no indication about a college�s

quality, as measured by the ability of its students, which is shown in Table 6.3. The

perfect ability measure enables the top groups to �ll their capacities with (almost)

only the highest-ability students. The lower-ranked groups, although losing some of

the highest-ability students, are (almost) free of the lowest-ability students. As a

result, the average student ability increases in all college groups.

Table 6.3: Perfect Signals: Ability Distribution Within Each Destination
% Group 1 Group 2 Group 3 Group 4 Outside
Base SPNE
A = 1 3:7 0:2 7:4 0:9 94:9
A = 2 6:5 15:7 80:9 91:9 3:0
A = 3 89:9 84:1 11:7 7:2 2:1

New SPNE
A = 1 0:0 0:0 1:8 0:0 96:4
A = 2 0:0 0:2 86:6 94:0 2:4
A = 3 100:0 99:8 11:6 6:0 1:2
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Table 6.4: Perfect Signals: Tuition
Group 1 Group 2 Group 3 Group 4

Base SPNE 26162 4555 19173 3925
New SPNE 26409 3307 16579 2956

Table 6.5: Perfect Signals: Mean Student Welfare
Base SPNE ($) New SPNE($) Change ($) Change (%)

All 41402 43860 2458 5:94
A = 1 677 162 �515 �76:07
A = 2 98630 103373 4743 4:81
A = 3 84673 97453 12780 15:09

Table 6.4 shows the changes in tuition under the new SPNE. Given perfect signals,

colleges no longer need to use tuition as a screening tool. All colleges but Group 1

lower their tuition. Relative to the number of students with highest ability and a

strong preference for Group 1, the slots in Group 1 are still scarce. When the signal

is perfect, not only does Group 1 admit only the highest-ability students, but it also

charges its monetarily optimal tuition. Other colleges do not enjoy the same preferable

market position: the perfect signal makes their competition for better students more

severe, which drives down their tuition.

Finally, changes in student welfare are reported in Table 6.5. The lowest ability

students lose signi�cantly, since they are denied admission to almost any college.

However, all other students gain, and the highest-ability students bene�t the most.

On average, student welfare increases by 6%, 24% of which comes directly from the

changes in tuition.
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Table 6.6: Funding Cuts: Tuition
Group 1 Group 2 Group 3 Group 4

Base SPNE 26162 4555 19173 3925
New SPNE 26401 5034 19355 4801

6.2 State Budget Crisis: Funding Cuts

Now I use the model to address the concern about funding cuts: what would happen

to the college market if the government cuts funding for public colleges? I �x all the

other parameters at their original levels and increase m1 for public colleges by 10%.

As a result, the monetarily optimal tuition for public colleges is increased by 10%

from $5; 700 to $6; 270:

The new equilibrium tuition levels are shown in Table 6.6. Top public colleges

(Group2) increase their tuition by about 10%, but the response from lower-ranked

public colleges (Group 4) is more dramatic: they increase their tuition by 22%. The

overall increase in public tuition is 20%. In response, private colleges also increase

their tuition, but only by less than 1%:

Higher tuition lowers the payo¤ from attending college, and students react by

reducing their applications, as shown in Table 6.7. Table 6.8 reports that both groups

of public colleges increase their admissions rates after the big increases in their tuition.

On the one hand, higher admissions rates compensate students for the higher tuition

to keep public colleges attractive. On the other hand, lower-ability students, whose

payo¤s from colleges are lower, self-select out when tuition is increased, which also

contributes to the higher admissions rates in public colleges.

Table 6.9 examines the changes in the composition of students within each des-

tination. All colleges except Group 4 end up with an unambiguously higher-quality

pool of enrollees, due to the screening e¤ect of higher tuition. Group 4, although it
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Table 6.7: Funding Cuts: Distribution of Portfolio Size
% Size = 0 Size = 1 Size = 2 Size = 3 Size = 4
Base SPNE 55:7 31:5 9:6 2:9 0:2
New SPNE 55:9 31:8 9:2 2:9 0:2

Table 6.8: Funding Cuts: Admission Rates
% Group 1 Group 2 Group 3 Group 4
Base SPNE 43:6 82:0 98:6 97:1
New SPNE 43:5 83:2 98:6 98:5

gets rid of some of the lowest-ability students, also loses some of the highest-ability

students, as a result of its tuition increase of over 20%.

Last but not least, Table 6.10 reports changes in student welfare: all students lose,

and the mean welfare decreases by $700. If the government uses the increased public

tuition revenue on a one-for-one basis to save on its education expenses, it could save

$234 per student, which is only 1=3 of the welfare loss su¤ered by students. Over

all colleges, the increase in tuition revenue is $257 per student. As a result, most of

the student welfare loss is due to the indirect non-tuition distortions imposed by the

funding cut.

Table 6.9: Funding Cuts: Ability Distribution Within Each Destination
% Group 1 Group 2 Group 3 Group 4 Outside
Base SPNE
A = 1 3:7 0:2 7:4 0:9 94:9
A = 2 6:5 15:7 80:9 91:9 3:0
A = 3 89:9 84:1 11:7 7:2 2:1

New SPNE
A = 1 3:6 0:2 7:0 0:7 95:1
A = 2 6:4 15:5 81:2 92:3 2:8
A = 3 90:0 84:3 11:8 7:0 2:1
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Table 6.10: Funding Cuts: Mean Student Welfare
Base SPNE New SPNE($) Change ($)

All 41402 40703 �699
A = 1 677 649 �28
A = 2 98630 97018 �1612
A = 3 84673 83149 �1524

6.3 Creating More Opportunities

Finally, I use the model to answer the long-run policy question: to what extent

can the government further expand college access simply by increasing the supply of

colleges? I conduct two series of experiments: in one series, I increase the capacity

of the lower-ranked private colleges (Group 3) by growing magnitudes while keeping

the capacities in other groups �xed; in the other, I do the analogous experiments

with the capacity of the lower-ranked public colleges (Group 4). The response of

college enrollment to the increase in supply is the same for either series and is shown

in Figure 6.1. At the beginning, there is a one-to-one response of college enrollment

to the increase in supply. Then, enrollment reaches a satiation point where there is

neither excess demand nor excess supply of colleges in the enlarged group and the

equilibrium outcomes remain the same thereafter. The following tables report the

case when Group 3�s (Group 4�s) supply is at the satiation point, labeled SPNE3

(SPNE4).

Table 6.11 reports changes in tuition. To attract enough students, the enlarged

Group (Group 3 in SPNE3, Group 4 in SPNE4) dramatically lowers its tuition, and

its closest competitor, i.e., the other lower-ranked group (Group 4 in SPNE3, Group

3 in SPNE4), also lowers its tuition.3 For example, in SPNE4, Group 4 cuts its tuition

3Colleges do not have to �ll their capacities, and they can charge high tuition and leave some
slots vacant. However, under the current situation, it is not optimal for them to do so.

52



0
.5

1
1.

5
2

2.
5

3
3.

5
4

4.
5

5
In

cr
ea

se
 in

 e
nr

ol
lm

en
t %

0 .5 1 1.5 2 2.5 3 3.5 4 4.5 5
Increase in available slots %

Expand Capacity of LowerRanked Colleges

Figure 6.1: State and Local Gov. Spending on Higher Education (Per Capita in 2006
Dollar)

Table 6.11: Increasing Supply: Tuition
Group 1 Group 2 Group 3 Group 4

Base SPNE 26162 4555 19173 3925
SPNE3 26306 7245 13426 3162
SPNE4 27549 6473 17394 136

from $3; 925 to an almost negligible level of $136. Its private counterpart, Group 3,

also lowers its tuition by about 9%. However, in both SPNE3 and SPNE4, the two

top groups increase their tuition.

Table 6.12 indicates that in both SPNE3 and SPNE4, admissions rates increase

in all colleges and reach (almost) 100% except for Group 1. The major driving

forces for the increased admissions rates are likely to di¤er across college groups. For

lower-ranked groups, higher admissions rates and lower tuition re�ect their e¤orts to

enroll enough students. Top groups increase their admissions rates mainly because

they are faced with a better self-selected applicant pool: the increased tuition in top

groups push, and the tuition and admissions policies in lower-ranked colleges pull

lower-ability applicants toward lower-ranked groups.
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Table 6.12: Increasing Supply: Admission Rates
% Group 1 Group 2 Group 3 Group 4
Base SPNE 43:6 82:0 98:6 97:1
SPNE3 47:3 99:0 100:0 99:7
SPNE4 47:7 99:0 99:1 100:0

Table 6.13: Increasing Supply: Attendance
% Base SPNE SPNE3 SPNE4 All Open&Free
All 40:9 43:0 43:0 51:1
A = 1 1:9 3:4 3:2 14:9
A = 2 94:7 97:5 97:7 99:4
A = 3 86:4 90:1 90:3 98:6

Table 6.13 shows the allocation e¤ect. The �rst row displays the attendance rate

over all students: regardless of the 100% admissions rate and the dramatically lowered

tuition in the enlarged group, in either SPNE3 or SPNE4, only 2:1% more students

can be drawn into colleges. Since there will be an excess supply of colleges in the

enlarged group if its capacity is further increased, this 2:1% increase represents the

upper limit to which the government can increase college attendance by supplying

more of the lower-ranked colleges, private or public. To further understand these

equilibrium results, I conduct a partial equilibrium experiment where all colleges are

open and free, and the attendance rate is reported in the last column of Table 6.13:

only 51%, or 10% more students, would attend colleges. Therefore, neither college

capacity nor tuition is a major barrier to college access. A vast majority of students

who do not attend colleges under the base SPNE prefer the outside option over any

college option. Among them, most are of low ability. In fact, as indicated in the last

three rows of Table 6.13, only 2% of the lowest-ability students attend college in the

base SPNE, and fewer than 15% of them would attend college even if colleges were
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free and open. By contrast, the majority of students of higher ability attend college

in the base SPNE, and almost all of them would attend college if colleges become free

and open. The major limit to college access, therefore, is ability and the associated

preferences, which is in line with �ndings from earlier research.4

4For example, Cameron and Heckman (1998) and Keane and Wolpin (2001).
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Chapter 7

Conclusion

In this paper, I have developed and structurally estimated an equilibrium model of

the college market that incorporates tuition setting, applications, admissions and en-

rollment. In the model, students are heterogeneous in their abilities and preferences.

They face uncertainty and application costs when making their application decisions.

Colleges, observing only noisy measures of student ability, compete for more able stu-

dents via tuition and admissions policies. I have shown that a subgame perfect Nash

equilibrium exists for the college market. I have estimated the structural model via a

three-step estimation procedure to cope with the complications caused by potential

multiple equilibria. The empirical results suggest that the model is able to replicate

most of the patterns in the data well.

The estimated structural model has been used to conduct three counterfactual

experiments that examine, respectively, the distortion imposed on the market by in-

complete information, the equilibrium impacts of funding cuts to public colleges, and

the extent to which the government can further expand college access by increasing

the supply of lower-ranked colleges. The results suggest that (1) neither tuition cost

nor college capacity is a major obstacle to college access, (2) a large fraction of stu-

dents, mainly low-ability students, prefer the outside option over any college option,
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and (3) expanding the supply of colleges only draws at most 2:1% more students into

colleges.

Several extensions of this model would be interesting to pursue. First is to control

for additional sources of observed heterogeneity, such as minority status. There are

di¤erent ways to incorporate such heterogeneity into the model. For example, a¢ r-

mative action, in terms of more preferable admissions rates for minority groups, may

result from colleges�pursuit of racial diversity, or race-speci�c ability distributions, or

some combination of both. All of these conjectures would lead to di¤erent equilibrium

results, which could be brought to confront the data.

The second extension is to endogenize capacity constraints and to study the long-

run equilibrium. One approach is to introduce a cost function for college education,

assuming free entry to the market. Equilibrium of the model would then depend on

the form of the cost function. Estimation of such a model may require additional

data on college expenses and non-tuition revenues.

The third extension is to endogenize �nancial aid. Treating �nancial aid as an

equilibrium object together with applications and admissions is a great challenge for

future research.
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Appendices

Appendix A: Model Details

A.1 College Admission Problem:

Calculation of �j(s; SAT jt; e�j; Y; d) and j(s; SAT jt; e�j; Y; d) :

All objects de�ned in A.1 depend on ft; e�j; Y; dg, unless explicitly speci�ed oth-

erwise, but to save notation, the dependence is suppressed. Given ft; e�j; Y; dg, let

Pr(acceptjX;SAT; �; �; j) be the probability of acceptance by a student with charac-

teristics (X;SAT; �; �) that applies to j. Let F (X; �; �js; SAT; j) be the distribution

of (X; �; �) conditional on (s; SAT ) and application to j. The probability that an

applicant with (s; SAT ) accepts j�s admission is:

�j(s; SAT ) =

Z
Pr(acceptjX;SAT; �; �; j)dF (X; �; �js; SAT; j).

Let Pr(O�jjA; SAT ) �
Y
l2Onj

pl(A; SAT )
Y

k2Y nO

(1 � pk(A; SAT )) be the probability of

admission set O for a student with (A; SAT ), with college j admitting her for sure,

let I(�) be the indicator function, then

Pr(acceptjX;SAT; �; �; j) =X
O�j�Y (X;SAT )nfjg

Pr
(A;SAT )

(O�jjA; SAT )I(j = d(X;SAT; �; �; O));

that is, the student will accept j�s admission if j is the best post-application choice
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for her. The distribution F (X; �; �js; SAT; j) is given by

dF (X; �; �js; SAT; j) = P (sjA)I(j 2 Y (X;SAT ))dF (X; �; �jSAT )R
P (sjA)I(j 2 Y (X;SAT ))dF (X; �; �jSAT ) ;

where F (X; �; �jSAT ) = P (T jSAT;B)G(�; �; �)H(BjSAT ) is exogenous. Finally, the

expected ability of applicant (s; SAT ) conditional on acceptance is

j(s; SAT ) =

R
A� Pr(acceptjX;SAT; �; �; j)dF (X; �; �js; SAT; j)

�j(s; SAT )
:

A.2 Proof of Proposition 1 (Existence of Application-Admission

Equilibrium)

To ease illustration, I will prove existence of equilibrium in a simpler model, but

the idea applies to the more complicated model. Assume there are two colleges j 2

f1; 2g, a continuum of students divided into two types de�ned by ability: A 2 f1; 2g.

The utility of outside option is normalized to 0. The utility of attending college 1 is

u1(A) for everyone with ability A, and the utility of attending college 2 is u2(A) + �,

where � is i.i.d. idiosyncratic taste. There are two SAT levels:f1; 2g and two signal

levels s 2 f1; 2g, with conditional distribution P (sjA). There is no ex-post shock.

Proof. Some notations to be used: for an (A; SAT ) group, let the fraction of students

that do not apply to any college be �0A;SAT , the fraction of those applying to college

j only be �jA;SAT and let �
12
A;SAT be the fraction applying to both. For each (A; SAT )

group, �A;SAT 2 �, a 3-simplex; and for all four (A; SAT ) groups, � 2 � � �4. On

the college side, each college chooses admissions policy ej 2 [0; 1]4, where 4 is the

number of (s; SAT ) groups faced by the college.

Step 1: The application-admission model can be decomposed into the following sub-

mappings:
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Taking the distribution of applicants, and the admissions policy of the other college

as given, college j�s problem (2:6) can be viewed as the sub-mapping

Mj : �� [0; 1]4 � [0; 1]4;

for j = 1; 2. Taking college admissions policies as given, the distribution of students

is obtained via the sub-mapping

M3 : [0; 1]
4 � [0; 1]4 � �:

An equilibrium is a �xed point of the mapping:

M : �� [0; 1]4 � [0; 1]4 � �� [0; 1]4 � [0; 1]4

s:t:(�; e1; e2) 2M(�; e1; e2);

where

� 2M3(e1;e2)

ej 2Mj(�; ek) j; k 2 f1; 2g; j 6= k:

Step 2: Show that Kakutani�s Fixed Point Theorem applies in this mapping and

hence an equilibrium exists.

1) The domain of the mapping, being the product of simplexes, is compact and non

empty.

2) It can be shown that the correspondenceMj(�; �) is compact-valued, convex-valued

and upper-hemi-continuous, for j = 1; 2. In particular, the (s; SAT )0th component of

Mj(�; ek) is characterized by (2:8) and (2:9), where j(s; SAT )� �j is continuous in

(�; ek):
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3)Aggregate individual optimization into distribution of students with di¤erent port-

folios.

It is easy to show that, generically, each student has a unique optimal application port-

folio as the solution to (2:5). Moreover, for given (A; SAT ), there exist ��(e) � ���(e),

both continuous in e, such that:

For � � ��(e), Y (A; SAT; �) =
�
f2g if C(2)� C(1) > k1(e)
f1; 2g otherwise ;

for � 2 [���(e); ��(e)); Y (A; SAT; �) = f1; 2g; and

for � < ���(e), Y (A; SAT; �) =
�
f1g if C(1) � k2(e)
; otherwise ,

where k1(e) and k2 (e) are continuous in e: Therefore, given e, the (A; SAT ) popula-

tion can be mapped into a distribution �A;SAT 2 �, and this mapping is continuous

in e. Because the mapping from [0; 1]4 � [0; 1]4 into the individual optimal portfolio

is compact-valued, convex-valued and upper-hemi-continuous, and the mapping from

the individual optimization to the distribution � is continuous, the composite of these

two mappings, M3, is compact-valued, convex-valued and upper-hemi-continuous.

Given 1)-3), Kakutani�s Fixed Point Theorem applies.

A.3 Proof of Proposition 2 (Existence of SPNE in the College Mar-

ket)

Proof. Since for every t, AE(t) exists in the subsequent game, a SPNE exists if a

Nash equilibrium exists in the tuition setting game. Let tj denote some large positive

number, such that for any t�j, the optimal tj < tj. It is easy to �nd such a tj, since

the expected enrollment, hence college j�s payo¤, would go to 0, when tj becomes

too high. Now de�ne the strategy space for college j as [0; tj], which is nonempty,

compact and convex. The objective function of college j is continuous in t, since

the distribution of applicants, and hence the total expected ability, is continuous in
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t. Given certain regularity conditions, the objective function is also quasi-concave in

tj:
1 The general existence proof for Nash equilibrium applies.

Appendix B: Data Details

B.1 Empirical De�nition of Early Admission:

1) Applications were sent earlier than Nov. 30th, for attendance in the next fall

semester and

2) The intended college has early admissions/ early decision/ rolling admissions/

priority admissions policy,2 and

3) a. Either one application was sent early and yielded admission or

b. some application(s) was (were) sent early but rejected, and other application(s)

was (were) sent later.

Appendix C: Detailed Functional Forms

C.1 Conditional Ability Distribution

For a = 1; 2; 3

Pr(Ai = a) =
1

1 + e�cuta+�1yi+�2I(SATi=2)+�3I(SATi=3)

� 1

1 + e�cuta�1+�1yi+�2I(SATi=2)+�3I(SATi=3)

where yi denotes family income of i, I(�) is the indicator function, cut0 = �1 and

cut3 = +1:

1One counter example occurs when mj1 and mj2 are both positive and large, which is not
supported by the estimation result.

2Data source for college early admission programs: 1) Christopher et. al. (2003), and 2) web
information posted by individual colleges.
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C.2 Financial Aid

(1) General Aid:

f0(SATi; Bi) = �00 + �01I(racei = black) + �02I(SATi = 2)

+ �03I(SATi = 3) + �04yi + �05asseti

f0i = maxff0(SATi; Bi) + �0i; 0g;

where �0i~i:i:d:N(0; �2f0):

(2) College-Speci�c Financial Aid:

fj(SATi; Bi) = �10 + �11I(racei = black) + �12I(SATi = 2) + �13I(SATi = 3) + �14yi

+ �15asseti + �16I(nsib > 0) + �
1
7I(SATi = 2)I(j 2 public)

+ �18I(SATi = 3)I(j 2 public) + �19I(j = 2) + �110I(j = 3)

+ �111I(j = 4)

fji = maxffj(SATi; Bi) + �ji; 0g

where nsib denotes the number of siblings in college at the time of i�s application and

�ji~i:i:d:N(0; �
2
f1
):

C.3 Preferences

Preferences for colleges uj(A;Z = 1) are fully non-parametric and uj(A;Z = 2) =

uj(A;Z = 1) +  j(A), with the restriction that  j(1) =  j(2):
3

Appendix D: Estimation and Identi�cation

D.1 Details on MLE

3This restriction is imposed to save the number of parameters. The restricted model cannot be
rejected at 10% signi�cance level.
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(1) To form the individual likelihood, I need to calculate the following integration:4Z
I(YijT; SATi; Bi; �)I(dijOi; T; SATi; Bi; �; �; �)dG(�; �; �): (7.1)

One alternative is to use the frequency simulator, which converges to the true proba-

bility when the number of simulation draws gets to in�nity. However, this simulator

is not smooth and will lead to poor performance of the optimization routine. In this

paper, the integration is approximated via a kernel smoothed frequency simulator.

For each student (SATi; Bi), I draw shocks f(�ir; �ir; �ir)gRr=1 from their joint dis-

tribution G(�):5 These shocks are the same across T for the same student i, but are

i.i.d. across students. All shocks are kept �xed throughout the estimation. Let

vir(j) be the ex-post value of college j for studentir with (T; SATi; Bi; �ir; �ir; �ir),

let vir� = maxf0; fvir(j)gj 2 Oig, let Vir(Y ) be the ex-ante value of portfolio Y for

this student, and Vir� = maxY � JfVir(Y )g, (see the next subsection for details of

this calculation). (7:1) is then approximated by:

1

R

RX
r=1

exp[(Vir(Yi)� V �
ir)=�1]P

Y�J exp[(Vir(Y )� V �
ir)=�1]

exp[(vir(di)� v�ir)=�2]P
j2Oi exp[(vir(j)� v�ir)=�2]

;

where �1; �2 are smoothing parameters, and when � ! 0, the approximation converges

to frequency simulator.

(2) Solving the optimal application problem for student (T; SATi; Bi; �ir) : Calcu-

lating the Emax

With rational expectation, the student�s application decision is based on her ex-

4I describe the situation where I do not observe any information about the student�s �nancial aid.
For students with some �nancial aid information, the observed �nancial aid replaces the random
draw of the corresponding �nancial aid shock.

5Since shocks are assumed to be independent, each shock is drawn from its marginal distribution.
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pectation of post-application values:

Vi(Y ) =
X
O�Y

Pr
i
(O)Evir(O)� C(jY j)

=
X
O�Y

Pr
i
(O)E(�;�)maxfu0ir;fujirgj2Og � C(jY j):

The Emax function has no closed-form expression and is approximated via simulation.

For each (T; SATi; Bi; �ir), draw M sets of shocks f(�m; �m)gMm=1. For each of the M

sets of (T; SATi; Bi; �ir; �m; �m), calculatemaxfu0irm;fujirmgj2Og, where ujirm denotes

ujir evaluated at the shock (�m; �m): The Emax is the average of these M maximum

values.

D.2 Details on Second-Step Estimation

(1) Targets to be matched: for each of the Groups 2; 3 and 4, there are nine admis-

sions probabilities to be matched f(A; SAT )g(A;SAT )2f1;2;3g�f1;2;3g. For Group 1, there

are six admissions probabilities to be matched: since no one in SAT = 1 group ap-

plied to Group 1, the admissions probabilities to Group 1 for f(A; SAT = 1)gA2f1;2;3g

are �xed at 0, and are not included in the target set. The other four targets are the

capacities of the four groups simulated from the �rst step. In all, there are 37 targets

to be matched using college-side parameters: fP (sjA)g; f�jgj, 10 of which are free.

(2) Optimal Weighting Matrix:

Let �� to denote the true parameter values. The �rst-step estimates b�1, being
MLE, are asymptotically distributed as N(0;
1). It can be shown that the optimal

weighting matrix for the second-step objective function (3:3) is W = Q1
1Q
0
1, where

Q1 is the derivative of q(�) with respect to b�1, evaluated at �b�1;��2�. The estimation
of W involves the following steps:

1) Estimate the variance-covariance matrix b
1 : in the case of MLE, this is minus
the outer product of the score functions evaluated at b�1. The score functions are
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obtained via numerically taking partial derivatives of the likelihood function with

respect to each of the �rst step parameters evaluated at b�1:
2) Obtain preliminary estimates e�2 � argmin�2fq(b�1;�2)0fWq(b�1;�2)g, wherefW is any positive-de�nite matrix. The resulting e�2 is a consistent estimator of ��2:
3) Estimate Q1 by numerically taking derivative of q(�) with respect to b�1, eval-

uated at
�b�1; e�2�. In particular, let �m denote a vector with zeros everywhere but

the m�th entry, which equals a small number "m. At each
�b�1 +�m; e�2�, I simulate

the student decision model and calculate the targets for the second-step estimation;

then holding student applications �xed, I solve for college optimal admissions and

calculate the distance vector q
�b�1 +�m; e�2�. The m�th partial component of Q1 is

approximated as [q
�b�1 +�m; e�2�� q

�b�1; e�2�]="m:
D.3 Identi�cation of A Mixture of Two Probits

Assume there are two unobserved types of individualsA 2 f1; 2g, and Pr(A = 1) =

�. Let the continuous variable z 2 Z � R be an observed individual characteristics

and f (�) be a di¤erentiable function of z. Let y 2 f0; 1g be the observed discrete

choice, which relates to the latent variable y� in the following way:

y(z) = 1 if only if y�(z) � f(z) + u1I(A = 1) + u2I(A = 2) + � > 0

where �~i:i:d:N(0; 1). The model implies that

P (z) � Pr(y(z) = 1) = ��(f(z) + u1) + (1� �)�(f(z) + u2) (7.2)

Theorem 7.1. Assume that 1) � 2 (0; 1), 2) there exists an open set Z� � Z such

that for z 2 Z�, f 0(z) 6= 0. Then the parameters � = (�; u1; u2)0 in (7:2) are locally

identi�ed.
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Proof. The proof draws on the well-known equivalence of local identi�cation with

positive de�niteness of the information matrix. In the following, I will show the

positive de�niteness of the information matrix for model (7:2) :

Step 1. Claim: The information matrix I(�) is positive de�nite if and only if there

exist no w 6= 0, such that w0 @P (z)
@�

= 0 for all z.

The log likelihood of an observation (y; z) is

L (�) = y ln(P (z)) + (1� y) ln(1� P (z)):

The score function is given by

@L

@�
=

y � P (z)

P (z) (1� P (z))

@P (z)

@�
:

Hence, the information matrix is

I(z) = E

�
@L

@�

@L

@�0
jz
�
=

1

P (z) (1� P (z))

@P (z)

@�

@P (z)

@�0
:

Given P (z) 2 (0; 1), it is easy to show that the claim holds.

Step 2. Show w0 @P (z)
@�

= 0 for all z =) w = 0:

@P (z)
@�

is given by:

@P (z)

@�
= �(f (z) + u1)� �(f (z) + u2)

@P (z)

@u1
= ��(f (z) + u1)

@P (z)

@u2
= (1� �)�(f(z) + u2)

Suppose for some w; w0 @P (z)
@�

= 0 for all z :

w1[�(f (z) + u1)� �(f (z) + u2)] + w2��(f (z) + u1) + w3(1� �)�(f(z) + u2) = 0

Take derivative with respect to z evaluated at some z 2 Z�

w1[�(f (z) + u1)� �(f (z) + u2)]f
0(z) + w2��

0(f (z) + u1)f
0 (z) (7.3)

+ w3(1� �)�0(f(z) + u2)f
0 (z) = 0
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De�ne  (z) = �(f(z)+u1)
�(f(z)+u2)

, divide Equation (7:3) by �(f (z) + u2) :

w1[ (z)� 1]� w2�(f (z) + u1) (z)� w3(1� �)(f(z) + u2) = 0

 (z) [w1 � w2�(f (z) + u1)]� [w1 + w3(1� �)(f(z) + u2)] = 0 (7.4)

Since (z) is a nontrivial exponential function of z, (7:4) hold for all z 2 Z� only if

both terms in brackets are zero for each z 2 Z�, i.e.

w1 � w2�(f (z) + u1) = 0 (7.5)

w1 + w3(1� �)(f(z) + u2) = 0:

Take derivative of (7:5) again with respect to z, evaluated at z 2 Z� :

w2�f
0 (z) = 0

w3(1� �)f 0(z) = 0;

which implies

w2� = 0

w3(1� �) = 0

Since � 2 (0; 1), w = 0.

Appendix E: Additional Tables
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Table 7.1: Conditional Distributions of SAT and Income
% SAT = 1 SAT = 2 SAT = 3 Inc = 1 Inc = 2 Inc = 3
SAT = 1 36:0 52:1 11:9
SAT = 2 15:2 47:8 37:1
SAT = 3 9:2 47:3 43:5
White 47:2 38:6 14:2 19:6 52:3 28:1
Black 71:7 24:4 3:9 54:3 37:2 8:5

Table 7.2: Application, Admission: Applicants by Race
(%) Group 1 Group 2 Group 3 Group 4
White Applicants

Application Rate 8:2 21:3 40:3 70:5
Admission Rate 58:5 77:5 92:7 95:6

Black Applicants
Application Rate 2:0 10:1 40:4 81:8
Admission Rate 50:0 60:0 85:0 96:3

Num of applicants: whites (648), blacks (99)

Application rate=num. of applicants to group j/num. of all applicants

Admission rate=num. of admissions to group j/num. of applicants to j

Table 7.3: Application, Admission: Applicants by Race
% Group 1 Group 2 Group 3 Group 4
SAT = 1 Applicants

Application Rate 0 7:3 42:3 66:7
Admission Rate N=A 33:3 82:6 87:8

SAT = 2 Applicants
Application Rate 4:5 16:6 37:9 79:1
Admission Rate 45:0 72:6 95:5 96:0

SAT = 3 Applicants
Application Rate 19:7 30:9 44:9 57:9
Admission Rate 65:7 89:1 93:8 100:0

Num of applicants: SAT 1 (123), SAT 2 (446), SAT 3 (178)
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Table 7.4: Application, Admission: Applicants by Income
% Group 1 Group 2 Group 3 Group 4
Inc = 1 Applicants

Application Rate 3:9 14:7 37:2 72:5
Admission Rate 25:0 73:3 92:1 93:4

Inc = 2 Applicants
Application Rate 6:6 13:7 38:6 72:0
Admission Rate 66:7 76:0 90:1 95:1

Inc = 3 Applicants
Application Rate 9:6 29:6 43:6 71:8
Admission Rate 55:6 77:1 93:4 97:5

Num of applicants: Inc1 (102), Inc2 (365), Inc3 (280)

Table 7.5: Non Pecuniary College Value: A Simulated Example
All Applicants Attendeeseu1(A = 1; Z = 1) �234068:4 85945:8 99942:4

(115117:4) (30811:5) (34730:2)eu1(A = 2; Z = 1) �222834:1 117083:6 157089:1
(115493:2) (43664:9) (44945:0)eu1(A = 3; Z = 1) �57699:4 134435:5 159033:6
(115636:8) (58596:4) (58609:5)eu1(A = 1; Z = 2) �74090:3 108956:4 126051:4
(115117:4) (50605:7) (50773:6)eu1(A = 2; Z = 2) �62856:0 133911:5 158914:7
(115493:2) (57014:3) (58820:5)eu1(A = 3; Z = 2) 123994:5 187099:1 211289:7
(115637:1) (82266:7) (79100:2)
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Table 7.6: Model Fit: Distribution of Portfolio Size (by Race)
% White Black

Data SPNE Data SPNE
0 53:3 53:0 61:6 70:8
1 31:6 33:3 27:9 21:5
2 11:7 10:3 8:1 6:0
3 3:1 3:2 1:9 1:6
4 0:3 0:2 0:3 0:1
�2 Stat. 3:36 10:5
PE: Partial Equilibrium Model;

�2: Size 2-4 are combined due to small cell size in the sample.
�22;0:05= 5:99

Table 7.7: Model Fit: Distribution of Portfolio Size (by SAT)
% SAT = 1 SAT = 2 SAT = 3

Data SPNE Data SPNE Data SPNE
0 85:4 86:4 25:5 27:6 14:0 12:7
1 12:7 12:1 50:0 49:4 49:7 58:1
2 1:4 1:5 19:0 17:0 28:0 21:4
3 0:5 0:0 5:0 5:5 6:8 7:2
4 0:0 0:0 0:3 0:4 1:4 0:5
�2 Stat. 1:31 1:54 6:37
�2 : Size 2-4 are combined due to small cell size in the sample.
�22;0:05= 5:99

Table 7.8: Model Fit: Distribution of Portfolio Size (by Income)
% Inc = 1 Inc = 2 Inc = 3

Data SPNE Data SPNE Data SPNE
0 75:2 74:0 55:6 58:2 32:0 32:7
1 19:7 19:5 32:4 30:1 39:6 46:1
2 3:6 5:1 10:3 8:9 20:4 15:5
3 1:0 1:3 1:7 2:6 7:3 5:3
4 0:5 0:1 0:0 0:2 0:7 0:4
�2 Stat. 1:34 2:43 13:9
�2 : Size 2-4 are combined due to small cell size in the sample.
�22;0:05= 5:99
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Table 7.9: Model Fit: Application and Admission Among Applicants (by Race)
(%) Whites Blacks
Application Rate Data SPNE Data SPNE

Group 1 8:2 7:7 2:0 5:3
Group 2 21:3 20:9 10:1 14:0
Group 3 40:3 41:5 40:4 45:6
Group 4 70:5 66:8� 81:8 67:9�

Admission Rate
Group 1 58:5 44:2 50:0 35:7
Group 2 77:5 83:4 60:0 78:2
Group 3 92:7 98:8� 85:0 97:0�

Group 4 95:6 97:2� 96:3 96:9
� �2 > �21;0:05

Table 7.10: Model Fit: Application and Admission Among Applicants (by SAT)
% SAT = 1 SAT = 2 SAT = 3
Application Data SPNE Data SPNE Data SPNE
Group 1 0:0 0:0 4:5 7:4� 19:7 12:0�

Group 2 7:3 0:0� 16:6 20:8 30:9 31:5
Group 3 42:3 44:7 37:9 41:5 44:9 41:0
Group 4 66:7 66:2 79:1 70:7� 57:9 58:5

Admission
Group 1 N=A N=A 45:0 28:2 65:7 66:7
Group 2 33:3 N=A 72:6 72:8 89:1 99:4�

Group 3 82:6 91:7� 95:5 100� 92:8 100:0�

Group 4 87:8 96:2� 96:0 97:7 100:0 97:8
� �2 > �21;0:05
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Table 7.11: Model Fit: Application and Admission Among Applicants (by Income)
(%) Inc = 1 Inc = 2 Inc = 3
Application Data SPNE Data SPNE Data SPNE
Group 1 3:9 4:6 6:6 6:4 9:6 9:8
Group 2 14:7 12:9 13:7 17:6 29:6 26:1
Group 3 37:2 45:8 38:6 42:6 43:6 39:4
Group 4 72:5 67:3 72:0 68:2 71:8 65:3�

Admission
Group 1 25:0 35:6 66:7 42:6� 55:6 45:7
Group 2 73:3 78:8 76:0 81:7 77:1 84:8
Group 3 92:1 96:7 90:1 98:5� 93:4 99:5�

Group 4 93:4 96:9 95:1 97:4� 97:5 97:8
� �2 > �21;0:05

Table 7.12: Tuition Fit When m=0
Group 1 Group 2 Group 3 Group 4

Data 27009 5347 17201 3912
SPNE(m = 0) 36933 819 2935 69

Table 7.13: Tuition Fit in Step-3
Top Priv. Top Pub. Low Priv. Low Pub.

Data 27009 5347 17201 3912
Best Response 27579 4954 18010 3921
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Table 7.14: Robustness Check: Perfect Signal-Tuition
Group 1 Group 2 Group 3 Group 4

Base SPNE 26940 4773 19907 4392
New SPNE 27004 3825 17251 3718

All the tables showing robustness check assume ! = [1; 1:4; 2]0.
For other !�s around [1; 2; 3], the results are similarly robust.

Table 7.15: Robustness Check: Perfect Signal-Distribution of Portfolio Sizes
% Size = 0 Size = 1 Size = 2 Size = 3 Size = 4
Base SPNE 55:9 31:8 9:2 2:9 0:2
New SPNE 57:1 34:5 7:4 1:0 0:1

Table 7.16: Robustness Check: Perfect Signal-Admission Rates
% Group 1 Group 2 Group 3 Group 4
Base SPNE 44:1 82:7 99:0 98:2
New SPNE 93:8 97:7 97:5 99:2
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Table 7.17: Robustness Check: Perfect Signal-Ability Distribution Within Each Des-
tination

% Group 1 Group 2 Group 3 Group 4 Outside
Base SPNE
A = 1 3:4 0:2 7:4 0:8 95:0
A = 2 6:2 15:3 81:1 92:1 2:9
A = 3 90:4 84:5 11:5 7:1 2:1

New SPNE
A = 1 0:0 0:0 1:8 0:0 96:4
A = 2 0:0 0:1 86:6 94:2 2:3
A = 3 100:0 99:9 11:5 5:8 1:3

Table 7.18: Robustness Check: Perfect Signal-Mean Student Welfare
Base SPNE ($) New SPNE($) Change ($) Change (%)

All 41396 43575 2179 5:3
A = 1 670 161 �509 �76:0
A = 2 98248 102550 4302 4:4
A = 3 84550 95740 11190 13:2

Table 7.19: Robustness Check: Funding Cuts-Tuition
Group 1 Group 2 Group 3 Group 4

Base SPNE 26940 4773 19907 4392
New SPNE 27103 5394 20095 4821

Table 7.20: Robustness Check: Funding Cuts- Mean Student Welfare
Base SPNE New SPNE($) Change ($)

All 41396 40639 �757
A = 1 670 647 �23
A = 2 98248 96497 �1751
A = 3 84550 82903 �1647
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Table 7.21: Robustness Check: Increasing Supply-Tuition
Group 1 Group 2 Group 3 Group 4

Base SPNE 26940 4773 19907 4392
SPNE3 27386 7397 13862 3103
SPNE4 27534 6890 18176 98

Table 7.22: Increasing Supply: Admission Rates
% Group 1 Group 2 Group 3 Group 4
Base SPNE 44:1 82:7 99:0 98:2
SPNE3 48:7 95:3 100:0 99:4
SPNE4 47:3 95:3 99:8 100:0

Table 7.23: Robustness Check: Increasing Supply- Attendance Rate
Base SPNE SPNE3 SPNE4
40:9 43:0 43:0
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