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Classical Theory of Optical Nonlinearity in Conducting Nanoparticles

Abstract
We develop a classical theory of electron confinement in conducting nanoparticles. The theory is used to
compute the nonlinear optical response of the nanoparticle to a harmonic external field.
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Classical Theory of Optical Nonlinearity in Conducting Nanoparticles

George Y. Panasyuk, John C. Schotland, and Vadim A. Markel*
Departments of Bioengineering and Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

(Received 10 August 2007; published 29 January 2008)

We develop a classical theory of electron confinement in conducting nanoparticles. The theory is used
to compute the nonlinear optical response of the nanoparticle to a harmonic external field.

DOI: 10.1103/PhysRevLett.100.047402 PACS numbers: 78.67.Bf, 42.60.Rn, 42.65.Sf, 72.20.Ht

Fundamental and applied research in the area of plas-
monic nanodevices and of engineered materials con-
structed from plasmonic nanoparticles is at the center of
modern optics [1,2]. Most theoretical approaches to such
systems are based on the classical electrodynamics of
continuous media. However, in the case of nanoparticles
whose linear dimensions are not dramatically larger than
the atomic scale (a factor of�10 is typical), finite-size and
quantum corrections are of importance [3]. Previously, the
above two terms have been used interchangeably, and it is
accepted that the small-size effects are quantum mechani-
cal in origin. Thus, they can be understood by considering
discrete electron states in a nanoparticle [4,5] or reduction
of interband screening and electron spillover near the nano-
particle surface [6,7]. In this Letter, we demonstrate that
there is an additional, purely classical mechanism that
leads to finite-size effects and, in particular, to nonlinearity
of the electromagnetic response of conducting nanopar-
ticles. We refer to this mechanism as the classical confine-
ment effect.

In this work, we develop a theory of classical confine-
ment of electrons in conducting subwavelength-sized nano-
particles and derive nonlinear polarizabilities in 1D (slab)
and 3D (sphere) geometries. Our theory is nonperturbative
and fully accounts for electron-electron interactions within
the accuracy of the quasistatic approximation. The pre-
dicted effects differ from other optical nonlinearities, most
importantly, by the unusual dependence of the nonlinear
response on the intensity of the incident laser beam.

The size-dependent nonlinear susceptibilities of a con-
ducting nanoparticle were theoretically calculated in
Refs. [4,5] from first principles. A conducting nanosphere
was modeled as a degenerate electron gas placed in an
infinitely high confining potential and subjected to a time-
harmonic external electric field. In this model, the optical
nonlinearity is a consequence of the saturation of optical
transitions between discrete electronic states; however, the
confinement effect that we discuss in this Letter is not
taken into account. Thus, for example, in Ref. [5], a
Hamiltonian was used with the interaction term V � er �
E where E � fEext, Eext being the external field and f �
�1� ��� 1�=3	�1 the Lorentz factor. In other words, it
was assumed that the electrons move in an electric field
that is obtained from the solution to the Laplace equation,

which does not account for finite-size effects. We further
note that in the quantum theory of Ref. [5], there are two
different contributions to polarization of the nanosphere:
one due to off-resonant transitions between electron states
near the Fermi surface and the other due to resonant
transitions between states separated by the energy gap
@!. In our model, only the first (Drudean) contribution is
taken into account. As a result, the relaxation constant �
introduced below is size independent. We can, however,
take into account its size dependence phenomenologically
by writing � � �1 � vF=a, where �1 is the respective
value in a bulk conductor and vF is the Fermi velocity.

We begin by noting that the classical electrodynamic
theory of conductors is based on the implicit assumption
that the volume density of free charge is infinite. More
specifically, the atomic lattice is assumed to be rigid and to
carry a uniform positive volume charge while free elec-
trons form a negatively charged compressible fluid. If we
apply an external field Eext, the two volume charges shift
with respect to each other by a distance �, which results in
the formation of a surface charge with density �. From the
linearity of the Laplace equation, it follows immediately
that � / � / Eext. However, the volume charge densities
are assumed to be so large that, irrespective of the magni-
tude of the external field, the shift � is much smaller than
any other physical scale in the problem. This assumption is
exceedingly accurate for macroscopic conductors. But in
nanoparticles, a nonzero value of � can result in experi-
mentally observable nonlinearity.

We now proceed with detailed calculations. As a first
step, consider the one-dimensional problem schematically
illustrated in Fig. 1(a). Here an external field Eext � �E0 is
directed perpendicularly to a slab of thickness L. If E0 > 0,
the free charge is distributed inside the slab as follows. The
surface that is opposite the field direction (as shown in the
figure) acquires a negative surface charge �2 � �E0=4�.
Near the other surface, a positively charged layer of depth
h � E0=4�� is formed, where � � Ze=‘3 is the back-
ground positive volume charge density. Here Z is the
number of free electrons per atom, e is the electron charge,
and ‘ is the lattice constant; we have assumed a cubic
lattice and neglected surface roughness. We thus see that
the slab is separated into two regions. The first region is
characterized by zero conductivity due to the absence of

PRL 100, 047402 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
1 FEBRUARY 2008

0031-9007=08=100(4)=047402(4) 047402-1 © 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.100.047402


free carriers [this region is dashed in Fig. 1(a)] while the
second region is conducting. In static equilibrium, the local
field in the second region must be zero, while there is no
such requirement for the first region. We note that the field
inside the conducting region, which is produced by the
positively charged layer, is 2��1 where �1 � E0=4�, the
same as would be produced by a surface charge of density
�1. Thus, the depolarizing field inside the conducting layer
is Edep � 2���1 � �2� � E0 and the total local field
Eloc � Eext � Edep is zero.

Next, consider a time-varying external field ~Eext�t� �
E0 exp��i!t�. Here and thereafter, we denote the complex
representation of physical observables by a tilde; the cor-
responding real quantities are obtained by adding a com-
plex conjugate, i.e., E � ~E� ~E
. The positively charged
layer can now appear on either side of the slab. It is
convenient to introduce the following notation: let the total
charge per unit area that accumulates near the left face of
the slab be �1 and the similar quantity near the right face
be �2. Here we do not distinguish between a true surface
charge and a surface layer of finite depth. It follows from
charge conservation that �1 � ��2. We then can write
�1 � ��, �2 � ��, where � can be either positive or
negative, depending on the phase of the oscillations. The
depolarizing field in the conducting region is given at any
time by Edep � �4�� and the total local field by Eloc �

Eext � Edep. Then the equations of motion for a negative
test charge inside the conducting region can be written as

 m� _v� �v� � �e�Eext�t� � 4��	; _� � ��v: (1)

Here v, m, and e are the electron velocity, mass, and
charge, respectively, and � is a phenomenological friction
term; the first equation in (1) is Newton’s second law while
the second is the continuity equation. The oscillatory so-
lution to the above system of ordinary differential equa-
tions is

 4�~��t� � !2
pE0e

�i!t�!2
p �!

2 � i�!	�1; (2)

where !p �
�������������������
4�e�=m

p
is the plasma frequency. We can

further compute the local field Eloc and the current j �

��v inside the conducting region and verify that the ratio
~j�t�= ~Eloc�t� yields the classical Drude conductivity
i!2

p=4��!� i��.
So far, the results appear to be conventional. Finite-size

effects and the nonlinearity of the optical response become
apparent when we compute the dipole moment per unit
area of the slab, P � �d=�S. A straightforward calcula-
tion yields P �t� � ��t��L� h=2	. Thus, the effective
width of the slab is reduced by h=2 where h � j�j=�
(note that h is related to the absolute value of the real-
valued quantity �). We now find that P �t� � ��t��
�L� �1=2��j��t�j	. We further note that the field ampli-
tude E0 can always be chosen to be real so that ��t� �
�2���1E0��!� cos���, where � � !t� ’, tan’ �
�!=�!2

p �!
2�, the resonant factor ��!� is given by

 ��!� � !2
p=

���������������������������������������������
�!2

res �!
2�2 � ��!�2

q
; (3)

and the resonance frequency (specific to the planar geome-
try) is !res � !p. We then write the final result as

 P �t� � �2���1L��!�E0�cos�� � cos�j cos���j	; (4)

where � � ��2���1��!�jE0j=2�L � ��2���1��!��
�‘=2L�jE0=Eatj and we have introduced the atomic field
Eat � Ze=‘2. Thus it can be seen that the theory has two
small parameters: E0=Eat and ‘=L. The first parameter is
typical in nonlinear optics. The second small parameter,
‘=L, is negligibly small for macroscopic conductors.
However, for L� 5 nm and ‘� 0:5 nm (silver), the ratio
is �1=10.

Note that (4) is not an expansion but is exact as long as
h < L or, equivalently, max�j�j�< �L. The important
feature of the obtained solution is that P �E0� is not an
analytic function and cannot be expanded into a Taylor
series. This mathematical property is closely related to the
existence of a finite limit limE0!1

P �E0� (in the saturation
model of Refs. [4,5] this limit is zero).

We now consider the problem of a three-dimensional
conducting sphere. It turns out that accounting for classical
confinement in this case leads to a formidable mathemati-
cal problem. We will use, however, certain physical in-
sights that will allow us to obtain a nonperturbative
analytical theory. Consider a conducting sphere of radius
a, a constant background positive volume charge �, and a
free charge whose integral over the sphere volume is
�4�a3�=3; an infinitely high spherical potential barrier
that prevents ionization is assumed. We seek to find the
dipole moment of the sphere in an external field ~Eext �
ẑE0 exp��i!t�, where ẑ is a unit vector pointing in the
direction of the z axis. As before, we recognize that the
sphere is separated at all times into two regions: one region
has no free carriers and is nonconducting while the other
region has a constant nonzero conductivity; this conduct-
ing region is doubly dashed in Fig. 1(b). The existence of a
well-defined boundary between the conducting and non-
conducting regions is a consequence of the quasistatic

FIG. 1. Illustrating the geometry of the 1D (a) and 3D (b)
problems.
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limit, as follows from the Maxwell equation r � P � 0 (P
is the macroscopic polarization), which is valid every-
where inside the particle except for its boundary and the
surface that separates the conducting and nonconducting
regions, at which surfaces the medium properties change
abruptly.

The first physical observation that we make is that in the
quasistatic problem with a time-harmonic external field,
the motion of charges is such that, at any time t, both the
volume and the surface charge densities correspond to a
static equilibrium obtained for an external field
A�!�Eext�t0�, which is taken at a different time t0 and
multiplied by a frequency-dependent real-valued factor
A�!�. Thus, the system goes through states of static equi-
librium that are phase shifted with respect to the external
field. Mathematically, this statement follows from the line-
arity of the equations of motion. In static equilibrium, the
electric field in the conducting region is zero. In the dy-
namic problem, the latter is nonzero but proportional to the
difference Eext�t� �Eext�t0�. We assume here that Eext is
spatially homogeneous over the volume of the sphere. The
only motion of the free charge inside the conducting region
that is consistent with this condition is one-dimensional
motion along the z axis. From this, we find that the surface
that separates the conducting and nonconducting regions is
a sphere. The center of this sphere is denoted by O0 and is
shifted from the center of the original sphere by a distance
� along the z axis, where � can be both positive and
negative [see illustration in Fig. 1(b)]. We thus can char-
acterize the dynamics of the system by a single scalar
parameter �.

The second observation will allow us to find the depola-
rizing field inside the conducting region. As we have
argued above, the total electric field inside that region is
spatially homogeneous and directed along the z axis. The
external field does satisfy this condition and so must the
depolarizing field Edep. The latter is a superposition of the
field produced by a positively charged meniscus and the
negative surface charge �, which we have not yet deter-
mined. We notice, however, that a field with the required
properties is created by two oppositely charged menisci of
the same shape, which are shown in Fig. 1(b) as single-
dashed regions. Indeed, the field produced by the two
menisci is the same as the field of two oppositely charged
spheres shifted with respect to each other by a distance �.
Inside the conducting region, this field is given by Edep �

4���ẑ=3. With the understanding that this field is created
by the positively charged meniscus and by a yet unknown
negative surface charge � whose field in the conducting
region is the same as that of the hypothetical negatively
charged meniscus, we write the equation of motion as

 m� ��� � _�� � �e�ẑ � Eext�t� � 4���=3	: (5)

The oscillatory solution to (5) is

 

~��t� � ��e=m�E0e
�i!t�!2

F �!
2 � i�!	�1; (6)

where !F � !p=
���
3
p

is the Frohlich frequency. In the
conventional approach, the dipole moment of the sphere
is computed as ~d � �4��a3 ~�=3. Evaluation of this ex-
pression leads to the linear polarizability 	 � a3���
1�=��� 2� with � � 1�!2

p=!�!� i��. We, however,
intend to take into account the presence of the meniscus
and the fact that the surface charge density can deviate
from the usual / cos
 dependence. To this end, we write
dz � ẑ � d � �

R
V zd

3r�
R
S z�d

2r. Here the first integral
is over the volume of the positively charged meniscus
while the second term is the contribution of the negative
surface charge. After tedious but straightforward integra-
tion, we obtain

 

dz
2�
� �

��
3

�
a3 � j�j

�
3a2

4
�
�2

16

��
� a3�1; (7)

where �1 �
R
��cos
� cos
d cos
. We thus see that

knowledge of the first moment of the surface charge den-
sity suffices for the purpose of computing the dipole mo-
ment. We find �1 by considering the depolarizing potential
in the vicinity of the sphere origin, O. On one hand, we
know that the potential is given by � � �Edepz with
Edep � 4���=3. On the other hand, we can write the
same potential as an integral over the meniscus and the
surface of the sphere and expand the resultant formula
into scalar spherical harmonics rlYlm�r̂ � ẑ�. A straight-
forward calculation of the term l � 1, m � 0 yields
�10 � 2�f�1����=3��1��3j�j=8a�	gz. From the equal-
ity �dep � �10, it follows that �1 � ����=3��
�1� �3j�j=8a�	. We then substitute the above result into
(7) to find

 dz � �
4���a3

3

�
1�

9

16

j�j
a
�

1

32

�2j�j

a3

�
; (8)

where � � ~�� ~�
 and ~� is given by (6). We emphasize
that the above formula is not an expansion: it is exact as
long as j�j< a, the latter condition having been implicitly
used for computing �1.

The term / �3j�j in (8) can be neglected as small. The
term / �j�j describes the generation of odd-order fre-
quency harmonics. Indeed, let E0 be purely real, so that
�j�j / cos���j cos���j, where � � !t� ’, and consider
the following Fourier series:

 cos���j cos���j �
X

k�2n�1;n�0

8��1�n cos�k��

�k�4� k2�
: (9)

A similar series for cos3���j cos���j also contains only odd-
order harmonics. Note that even though the nonlinear
corrections are second order in E0, there is no second-
harmonic generation. Generation of the third harmonic
(n � 1) and nonlinear refraction (n � 0), which are tradi-
tionally associated with the third-order nonlinear suscep-
tibility ��3�, are manifest in the model to second order in
E0.
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Neglecting the third term in the square brackets in
Eq. (8) and using (6) for ~�, we find

 dz � �1=3�a3��!��2E0��cos�� � cos�j cos�j	; (10)

where ��!� is given by (3) with !res � !F and � �
��3=4�2��!�j2E0j=4��a. To obtain the nonlinear correc-
tion to the refractive index n, we retain only the k � 1 term
in the Fourier series (9). For a transparent medium of
refractive index n0 doped with randomly and sparsely
distributed metal nanospheres, we have

 n2 � n2
0

�
1� 3p

!2
F

!2
F �!

2 � i�!

�
1�

8�
3�

��
; (11)

where p is the volume fraction of the metal and we have
used the Maxwell-Garnett mixing rule. Note that although
we have assumed an infinitely high potential barrier around
the nanosphere so that its polarizability is formally inde-
pendent of n0, we can account for this dependence phe-
nomenologically by writing !2

F � !2
p=�2n2

0 � 1�.

The coefficient � can be written as � �
��������������
W=Wc

p
where

W is the power of the incident beam, Wc � 4��4=3�4�
�a=‘�2Wat=�2�!�, and Wat � cZ2e2=‘4. For silver, Z � 1,
‘ 
 0:5 nm, and Wat 
 1:2� 1015 W=cm2. The non-
linearity is maximized when � � �res �

���
3
p
!p=�. We

take into account the size dependence of � by writing
� � �1�1� a0=a�. For silver, a0 � vF=�1 
 50 nm
and !p=�1 
 500. For a � 10 nm, �2

res 
 2� 104.
Combining all the numerical factors, we find that Wc 

7:6� 1013 W=cm2. Thus, at the experimental power W �
10 kW=cm2 (easily attainable in nanosecond laser pulses),
the ratio of the magnitudes of linear and nonlinear polar-
izabilities is of the order of 10�5.

In the model of classical confinement, the nonlinear po-
larizability is proportional to

��������������
W=Wc

p
. Correspondingly,

intensity of the generated harmonics of all orders is pro-
portional to W=Wc. Therefore, the predicted effect can be
distinguished from other optical nonlinearities by investi-
gating the nonlinear response as a function of W. We note
that the experimental data of Ref. [8] for the dependence of
nonlinear absorption on W cannot be explained by the
conventional model of the third-order nonlinearity but is
in line with the theory developed above (the curve repre-
senting the nonlinear absorption as a function of W devi-
ates from a straight line and curves down resembling the
square-root dependence).

Next, we discuss the dependence of the nonlinear polar-
izabilities on the sphere radius, a. Apart from a trivial over-
all factor, we have � � �

��������������
W=Wc

p
/ ��!�‘=a. Far from

resonance, ��!� 
 !2
p=j!

2
F �!

2j and
��������������
W=Wc

p
/ ‘=a.

At resonance, a different dependence is obtained. Indeed,
for ! 
 !F, we have � 
 �res �

���
3
p
�!p=�1�=�1�

a0=a� and
��������������
W=Wc

p
/ ‘=�a� a0�. In Ref. [9], degenerate

four wave mixing was used to measure the effective non-
linear susceptibility ��3� for glasses doped with Ag and Cu
nanospheres of varying sizes (see also Ref. [10] where

these data were compared to the analytical model of
Ref. [5]). It was reported that ��3� tends to increase with
the radius. We, however, note that the quantity measured in
Ref. [9] cannot be easily related to the nonlinear polar-
izability derived here. On the other hand, one can argue on
physical grounds that any nonlinearity that is a conse-
quence of electron confinement should vanish in the limit
a! 1, as follows from our model.

To conclude, we mention some of the limitations of the
classical confinement model. First, it applies only to par-
ticles that contain many atoms and, therefore, can be
viewed as macroscopic. In the case of a silver nanosphere,
the theory is valid for radii larger than a few nanometers.
Second, our theory is quasistatic and does not take into
account retardation and radiative losses. Radiative correc-
tions to the quasistatic polarizabilities are important when
wave propagation in nonlinear media is considered and
must be included to ensure energy conservation, while
retardation effects can become important for higher-order
harmonic generation. Third, the theory does not account
for electron tunneling or ‘‘spillover’’ beyond the particle
boundaries. If the dynamics of free electrons is quantum, it
is possible to consider a potential barrier of finite height
that would allow such tunneling. However, if the dynamics
is classical, stability of the system requires that free charge
motion is restricted to the region occupied by the rigid
positively charged lattice of ions. As is typical in the
classical electrodynamics of continuous media, the confin-
ing potential is not electrodynamic in nature but is intro-
duced phenomenologically to guarantee the system’s
stability. Finally, the theory is not kinetic and does not
take into account Fermi statistics. As a result, it is inde-
pendent of Fermi’s energy, except for the phenomenologi-
cal dependence of the relaxation constant on the particle
size.
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