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Abstract. We develop various aspects of the finite model theory of
L¥(3) and L%, (3). We establish the optimality of normal forms for
Lﬁow(ﬂ) over the class of finite structures and demonstrate separations
among descriptive complexity classes within Lﬁow(ﬂ). We establish neg-
ative results concerning preservation theorems for Lk(El) and Lﬁow(ﬂ).
We introduce a generalized notion of preservation theorem and establish
some positive results concerning “generalized preservation theorems” for
first-order definable classes of finite structures which are closed under
extensions.

1 Introduction

In this paper we investigate the status of preservation theorems in finite model
theory. We focus our attention on classes of finite structures which are closed
under extensions and their definability in fragments of the infinitary language
L% .- The language LY  was introduced by Barwise [4] in connection with the
investigation of inductive definability over infinite structures. Recently, the study
of L% , has played a central role in analyzing the behavior of fixed-point logics
over the class of finite structures (see [, 13]). Of particular interest from the
point of view of our current investigation are the works of Kolaitis and Vardi [12]
and Afrati, Cosmadakis, and Yannakakis [1] which exploit existential fragments
of LY, in analyzing the expressive power of Datalog.

The starting point for our investigation is the well-known failure of the preser-
vation theorem of Los and Tarski over finite structures. Recall that the Los-
Tarski Theorem states that any first-order definable class of structures which is
closed under extensions is definable by a first-order existential sentence. Scott
and Suppes conjectured that this theorem generalizes to the finite case, that
is, if Mods(¢) (the collection of finite models of the first-order sentence ¢) is
closed under extensions, then Mod;(¢) = Mod (), for some first-order existen-
tial sentence . Tait [18] showed that this conjecture fails; Gurevich and Shelah
[9, 10] gave simpler counterexamples employing universal-existential first-order
sentences.

* We would like to thank Maria Bonet, Yuri Gurevich, and Steven Lindell for valuable
discussions on the subject of this paper.
** Supported in part by NSF-STC SBR-8920230.
*** Supported in part by NSF CCR-9403447.



In light of the failure of the Los-Tarski Theorem over finite structures, it is
natural to inquire whether “generalized preservation theorems” might hold in the
finite case. In this paper, we investigate the prospects for such a positive approach
to preservation properties in the context of finite model theory. In particular,
we examine generalized versions of ordinary preservation theorems where an
algebraic restriction on a class of structures definable in a given language yields
information about the syntactic structure of formulas which define that class in
an extension of that language. In this spirit, we show that for certain classes of
first-order sentences @, if ¢ € ¢ and Mod;(y) is closed under extensions, then
Mod;(¢) = Mod; () for some 9 in the existential fragment of L% , (or even
in Datalog(#, —)). In contrast, we also establish the failure of the analog of the
Los-Tarski Theorem for L%, , itself, both over finite structures and over arbitrary
structures. That is, we show that there is a sentence ¢ of L% = such that both
Mod;(¢) and Mod(y) are closed under extensions, but neither of these classes
is definable by an existential sentence of L% .

The paper proceeds as follows. The next section introduces the languages
we will study and establishes a simple proposition which characterizes the rel-
ative expressive power of their existential fragments. Section 3 develops some
finite model theory for the existential fragments of L* and L* . In particu-
lar, we establish the optimality of a normal form for the existential fragment
of LF , over finite structures and demonstrate separations among descriptive
complexity classes within L* (3). In Section 4, we prove the failure of existen-
tial preservation for LY . Section 5 is devoted to establishing positive results
concerning generalized preservation theorems for fragments of first-order logic
over finite structures. In the final section, we discuss a number of open problems
and present without proof some related results concerning preservation under
homomorphisms. A full treatment of these results will appear in [17].

2 Preliminaries

Let F, be the collection of finite structures of signature o. We will assume
that the universe of any A € F, is an initial segment of N = {0,1,2,...}. We
will often use A, B, ... etc. to denote both a structure and its universe when no
confusion is likely to result. We assume that the signature o is finite and contains
no function symbols; we suppress mention of ¢ when no confusion 1s likely to
result. A boolean query C C F is a class of finite structures that is closed under
isomorphisms. We use C to range over boolean queries. In what follows, we will
focus attention on boolean queries which are closed under extensions.

Definitionl. EXT={CC F |VA,BeC(, if A€ C and A C B, then B € C}.

Let L be a logical language and let ¢ be a sentence of L. Mod(y) = {4 |
A E ¢} is the L-class determined by ¢ and Mod;(¢) = {A € F | A |E ¢} is the
boolean query expressed by ¢. We say that C is L-definable, just in case it is the
boolean query expressed by some sentence ¢ € L. We will often use L to denote
the set of L-definable boolean queries. We let FO denote first-order logic, Loy,



the usual infinitary extension of first-order logic which allows conjunction and
disjunction over arbitrary sets of formulas, L*, the fragment of FO consisting of

those formulas all of whose variables both free and bound are among z1, ..., zg,
and similarly L* the k-variable fragment of Le,; L%, = Urew Lt .. We

let FO(3J) denote the set of existential formulas of FO, that is, those formulas
obtained by closing the set of atomic formulas and negated atomic formulas
under the operations of conjunction, disjunction, and existential quantification.
We define Loy, (3), the set of existential formulas of Lo, similarly, but require,
in addition, closure under infinitary conjunction and disjunction. We let L*(3)
consist of the formulas common to FO(3) and L* and we define L%  (3) and
LY . (3) similarly. A Datalog(#, =) program P is a collection of rules of the form

No<—mMmM,..., k-

Such a rule has a head, 1y, and a body, 11, ..., ;. Each of the 5; is either an in-
equality or a literal over the signature o Ut where ¢ and 7 are disjoint; o consists
of the extensional relations and constants of P and 7 consists of the intensional
relations of P. The heads of all rules are built from intensional relations and in-
tensional relations occur only positively throughout P. The program contains a
distinguished intensional relation R of arity n > 0 and determines an n-ary query
over structures in F ;. The value of this query for a given A € F, is the value of
R when the program is viewed as determining least-fixed points for each of the
intensional relations with respect to a simultaneous induction associated with
the program. The reader may consult [1, 12] for further details and discussion.
As with logics, we use Datalog(#, =) to refer to the class of queries computed by
Datalog(#, ) programs as well as to the class of programs themselves. Datalog
programs are defined similarly except that all the 7; are restricted to be positive
literals, even those built from extensional relations. Observe that Datalog(#, —)
is contained in the least fixed-point extension of first-order logic (FO+LFP).

In our current notation, the failure of the Los-Tarski Theorem over finite
structures may be expressed as:

FONEXT ¢ FO(3).

This raises the question of whether FO N EXT is contained in the existential
fragment of some stronger logic. The following proposition completely charac-
terizes the relative expressive power of the existential fragments of the logics in
which we are interested.

Proposition 2.
FO(3) C Datalog(#,—) C L%, (3) C Leow(3) = EXT.

Proof. Tt is easy to see that every query in FO(3) can be expressed by a program
in Datalog(#, ) which makes use of no recursion. It is well-known that this
inclusion is strict, for example, the query (s,t)-connectivity is expressible in
Datalog but not in FO. The inclusion of Datalog(#, —) in LY, (3) has been noted
by Afrati, Cosmadakis, and Yannakakis [1] (see also [12]); the argument to show



this is a variant of the proof that least fixed-point logic is contained in LY, over

the class of finite structures (see [14]). Afrati, Cosmadakis, and Yannakakis [1]
also exhibit queries which witness the separation of Datalog(#, ) and L%, (3),
even over the class of polynomial time computable queries. The identity between
Leow(3) and EXT has been noted by Kolaitis and independently by Lo (see [1]
and [15]). Finally, it is easy to construct polynomial time computable boolean
queries in EXT which are not in LY, . For example, let C be the query over the
signature {F, 5,1} of source-target graphs that says that there is an E-path from
s to t whose length is less than half the cardinality of the structure. It is clear
that C € EXT. Tt is also easy to verify that C is not in L% (and therefore not
in L% (3)) by a straightforward application of the k-pebble Ehrenfeucht-Fraisse
game which we review below. ]

The above proposition together with the failure of the Los-Tarski Theorem
in the finite case suggests the following questions.

1. Is FO N EXT C Z¢,,(3)?
2. Is FONEXT C Datalog(#, —)?
3. Is L, NEXT C L%, (3)?

Clearly a positive answer to the second or third question would imply a positive
answer to the first. In Section 4, we provide a negative answer to the third
question. In Section 5, we provide partial positive answers to the first and second
questions. Before proceeding to these results, we develop some of the finite model
theory of L*(3) and L% (3) in the next section.

3 Basic Finite Model Theory for L*(3) and L* (3)

In this section, we present some basic model theory for L* L% = L*(3), and
LY (). After a brief discussion of game-theoretic characterizations of equiv-
alence and definability in these languages, we proceed to consider questions of
finite axiomatizability and normal forms.

Let L be one of the logical languages we consider. Given a structure A, the L-
theory of A is the collection of sentences of L which are satisfied by A. We say that
A is L-equivalent to B, if and only if, the L-theory of A is equal to the L-theory
of B and we say that A is L-compatible with B, if and only if, the L-theory of A is
contained in the L-theory of B. Note that if L is closed under negation, then the
relations of L-equivalence and L-compatibility coincide, whereas for languages
like L*(3) and L% ,(3) these relations are distinct. We use the notations =*,
=k ., =% and =%  for L*-equivalence, L% -equivalence, L*(3)-compatibility,
and L%, (3)-compatibility, respectively. The main tool for studying these rela-
tions are refinements of the Ehrenfeucht-Fraisse game. Barwise [4] characterized
L -equivalence in terms of partial isomorphisms, while Immerman [11] and
Poizat [16] provided related pebble game characterizations of L¥-equivalence.
Kolaitis and Vardi [12] characterized compatibility in the negation free fragment

of L*_,(3) both in terms of collections of partial homomorphisms as well as in



terms of a one-sided, positive version of the pebble game. Below we use a minor
variant of the approach in [12] to characterize L% (3)-compatibility.

A collection I of partial isomorphisms from A to B is said to have the £-
[back-and-]forth propertyif for all f € T such that the domain of f has cardinality
< k, and all @ € A [b € B], there is a function ¢ € I such that f C ¢ and a €
dom(g)[b € rng(g)]. (That is, the k-forth property is the one-sided version, going
forth from A, of the k-back-and-forth property.)

Barwise [4] proved the following proposition which gives an algebraic char-
acterization of LF, _-equivalence.

Proposition3 (Barwise [4]). Let A and B be structures of signature o and
let h be the map with dom(h) = {c* | ¢ € ¢} such that h(c*) = c? for allc € 0.
The following conditions are equivalent.

1. A= B.

2. There is a non-empty set I of partial isomorphisms from A to B such that
(a) Iis closed under subfunctions;
(b) T has the k-back-and-forth property;

(¢) forall f € I, fUR is a partial isomorphism from A to B.

In a similar spirit, Kolaitis and Vardi [12] gave an algebraic characterization
of the compatibility relation for the negation free fragment of L, (3) in terms
of collections of partial homomorphisms with the k-forth property. We adapt
their approach to the case of L*  (3) in the following theorem.

Proposition4 (Kolaitis and Vardi [12]). Let A and B be structures of sig-
nature o and let h be the map with dom(h) = {c¢? | ¢ € o} such that h(c?) = ¢
for all ¢ € o. The following conditions are equivalent.

1. A=k B.

2. There is a non-empty set I of partial isomorphisms from A to B such that
(a) Iis closed under subfunctions;
(b) I has the k-forth property;
(¢) forall f € I, fUR is a partial isomorphism from A to B.

Both Propositions 3 and 4 can be expressed more colorfully in terms of pebble
games. This approach to L¥-equivalence was introduced by Immerman [11] and
Poizat [16] and as an approach to L¥ (3)-compatibility by Kolaitis and Vardi
[12]. In order to state the relevant results in a suitably refined form, we require
the notion of the quantifier rank of a formula. We state this definition for formulas
of Lo since all the languages we consider are fragments of it.

Definition 5. The quantifier rank of ¢ € Loo, (qr(y)) is defined by the following
induction.

1. qr(e) = 0 if ¢ is atomic;
2. qr(=p) = ar(p);
3. ar(A @) = ar(V @) = sup({ar(p) [ ¢ € 2});



4. qr(Jze) = qr(Vee) = qr(e) + 1.

The n-round, k-pebble Ehrenfeucht-Fraisse game on A and B is played be-
tween two players, Spoiler and Duplicator, with k pairs of pebbles, (a1, 51), ...,
(ak, Ar). The Spoiler begins each round by choosing a pair of pebbles («y, 5;)
that may or may not be in play on the boards A and B. He (by convention, the
Spoiler is male, the Duplicator female) either places «; on an element of A, or f;
on an element of B. The Duplicator then plays the remaining pebble on the other
model. The Spoiler wins the game if after any round m < n the function f from
A to B, which sends the element pebbled by «; to the element pebbled by 3; and
preserves the denotations of constants, is not a partial isomorphism; otherwise,
the Duplicator wins the game. The n-round 3*-game is the one-sided version
of the n-round, k-pebble Ehrenfeucht-Fraisse game in which the Spoiler is re-
stricted to play a pebble «; into A at every round while the Duplicator responds
by playing 3; into B; the winning condition remains the same. Both the k-pebble
Ehrenfeucht-Fraisse game and its one-sided variant have infinite versions, which
we call the eternal k-pebble Ehrenfeucht-Fraisse game and the eternal 3*-game.
In these games, the play continues through a sequence of rounds of order type
w. The Spoiler wins the game, if and only if, he wins at the n*’-round for some
n € w as above; otherwise, the Duplicator wins. In describing the play of pebble
games below, we will often use S to refer to the Spoiler and D to refer to the
Duplicator. We will also often use «;, §;, etc. to refer to both pebbles and the
elements they pebble at a given round of play.

The foregoing n-round games may be used to characterize equivalence and
compatibility of structures with respect to L* sentences and L*(3) sentences
of quantifier rank n, and the eternal games may be used to characterize equiva-
lence and compatibility of structures with respect to L*.  sentences and L¥,_(3)
sentences. Given structures A and B we let A=*"B, if and only if, A and B
satisfy the same sentences of L* of quantifier rank < n and we let A<F7B, if
and only if, every sentence of L*(3) of quantifier rank < n, which is true in 4, is
also true in B. The following two propositions use the n-round pebble games to
characterize these relations. The first is due to Immerman [11] and Poizat [16]
and the second is essentially due to Kolaitis and Vardi [12].

Proposition6 (Immerman [11], Poizat [16]). For all structures A and B,
the following conditions are equivalent.

1. A=Frp.
2. The Duplicator has a winning strategy for the n-round, k-pebble Ehrenfeucht-
Fraisse game on A and B.

Proposition 7 (Kolaitis and Vardi [12]). For all structures A and B, the
following conditions are equivalent.

1. A=brp,
2. The Duplicator has a winning strategy for the n-round 3*-game on A and
B, with the Duplicator playing on B.



The next proposition gives a characterization of the infinitary equivalence

and compatibility relations in terms of the eternal games. It is essentially due to
Kolaitis and Vardi [14, 12].

Proposition 8 (Kolaitis and Vardi [14, 12]). 1. For all structures A and
B, the following conditions are equivalent.
(a) A=*  B.
(b) The Duplicator has a winning strategy for the eternal k-pebble Ehrenfeucht-
Fraisse game on A and B.
2. For all structures A and B, the following conditions are equivalent.
(a) A=* B.
(b) The Duplicator has a winning strategy for the eternal 3*-game on A and
B, with the Duplicator playing on B.

Kolaitis and Vardi [14, 12] observed that over finite structures infinitary
equivalence and compatibility coincide with their finitary analogs.

Proposition9 (Kolaitis and Vardi [14, 12]). 1. Lel A or B be a finite struc-
ture. Then, the following conditions are equivalent.
(a) A=F  B.
(b) A=*B.
2. Let B be a finite structure. Then, the following conditions are equivalent.
(a) A=* B.
(b) A<*B.

The foregoing propositions yield the following corollaries concerning defin-
ability.

Proposition10 (Kolaitis and Vardi [12]). For allC C F, the following con-
ditions are equivalent.

1. C is L%, (3)-definable.

2. For all A€C and B ¢C,A4*  B.

3. For all A€C and B ¢ C,A4*B.

4. For all A € C and B & C, there is an n € w such that the Spoiler has
a winning strategy for the n-round 3*-game on A and B with the Spoiler
playing on A.

Let L and L’ be logical languages and let T' be a collection of sentences of L.
We say that T is finitely aziomatizable in L', if and only if, there is a sentence
¢ € L' such that Mod(7T') = Mod;(¢). Dawar, Lindell and Weinstein [5] prove
that the L% -theory of any finite model is finitely axiomatizable in L*. As a
corollary, they obtain a simple normal form for L*  over F, in particular, they
show that every sentence of L*  is equivalent to a countable disjunction of
sentences of L* and is also equivalent to a countable conjunction of sentences of
L*. In contrast, we show below that there are finite models whose L*(3)-theories
are not finitely axiomatizable in L*(3). Building on this result, we prove that the

normal form for L% over F (every sentence of L% is equivalent over F to a



countable disjunction of countable conjunctions of sentences of L*) exhibited by
Kolaitis and Vardi [14] is optimal when considered as a normal form for L*._(3)
sentences over L*(3).

We begin by proving that there are models whose L*(3)-theories are not
finitely axiomatizable in L*(3). Our argument exploits the k-extension azioms,
which we now describe briefly. Let ¢ be a purely relational, finite signature. A
basic k-type m over the signature ¢ is a maximal consistent set of literals over o in
the variables z1,..., zy. A k-extension aziom of signature o is a sentence of the
form Vay ... 2p_13ep (A 7™ — A7), where 7 is a basic (k — 1)-type of signature
o, © is a basic k-type of signature o, and 7 C #’. Over a fixed signature o, the k-
Gaifman theory, I'y, s the set of all k-extensions axioms of signature o. It is easy
to see that, for each k, there are only finitely many k-extension axioms. Gaifman
[7] showed that the theory T" = | J, I'x axiomatizes an w-categorical model called
the random structure. Fagin [6] proved the 0-1 law for first-order logic by showing
that every extension axiom is almost surely true over F. Fagin’s result implies
that almost every A € F satisfies the k-Gaifman theory. Immerman [11] showed
that any two models of the k-Gaifman theory are LF-equivalent and Kolaitis and
Vardi [14] made use of the k-Gaifman theory in their proof of the 0 — 1 law for
L% . We make the following easy observation.

Propositionl1l. Let A |= I, and let B be any (finite or infinite) model. Then
B=F A, Bquivalently, for all € L* (3), if ¢ is satisfiable, then A |= .

Proof. The proof follows easily from Proposition 8 by considering the eternal
JF¥-game on B and A with the Duplicator playing on A. The k-Gaifman axioms
essentially say that D can extend a partial isomorphism with domain of size < k
in every possible way. Therefore, she has a winning strategy for the game. [ |

We observe that this result yields a compactness theorem over finite struc-
tures and a finitary analog of the Lowenheim-Skolem Theorem for L%, (3).

Corollary 12. For every k € w, there is an ny € w such that for every set @ of
sentences of L (3), @ is satisfiable, if and only if, every finite subset of @ is
satisfiable, if and only if, @ is satisfied in a model of size ny,.

The next proposition establishes that there are finite structures whose Lk(EI)—
theory is not finitely axiomatizable in L*(3).

Proposition13. For all k > 2, there is a model A, € F such that the L*(3)-
theory of Ay is not finitely aziomatizable in L*(3).

Proof. Let Ap be any finite model of the k-Gaifman theory over the language
of graphs. We show that for any n € w, there is a B} such that A,=<*"B2
and Akﬁk’”‘HBg. This implies that the theory of A; cannot be axiomatized
by L*(3) sentences of quantifier rank < n and, therefore, that it is not finitely
axiomatizable in L*(3).

For the purpose of defining the models B}, we require the following notion
and notation. A basic k-type 7 satisfies the distinctness condition if for every



| < k, the formula z; # xp € 7. Let {m1,..., 75} be a set of basic (k — 1)-types
such that

1. every basic (k — 1)-type is equivalent to some m; and
2. if ¢ # j, then m; is not equivalent to ;.

Similarly, for each 1 <7 <'s,let {m; 1,..., T @)} be aset of basic k-types each
of which extends m; and satisfies the distinctness condition such that

1. every basic k-type which extends w; and satisfies the distinctness condition
is equivalent to some 7; ; and
2. if j # j/, then 7; ; is not equivalent to m; ;.

We proceed to define the models B?. Let Bj be the graph on two vertices
with exactly one loop and no other edges. Thus B} realizes both basic 1-types.
Given that B} has been defined, we now define BZ‘H as an extension of BJ.
For each (k — 1)-tuple b of elements of By, let 7(b) be the unique ¢ such that
BY | mi[b], and let X7 = {b”+1 | 1 <j < n(r(b))} be a set of distinct objects

disjoint from B} . We suppose that for any distinct pair of (k — 1)-tuples @ and
b of elements of B, Xgn X3 = = (). Let X be the union of all the sets X7 We
let the universe of BZ‘H = B,’; U X. The edge relation of BZ‘H 1s obtained from
that of B} by adding the minimal number of edges so that each k-tuple b * bg;’l

satisfies T It is easy to see that each BZ‘H is well-defined. We say that the
hetght of an element b introduced in this construction is the least n such that
be B.

We first show that Akjk’”B,?. By Proposition 7, it suffices to describe a
winning strategy for D in the n-round F*-game with D playing on B? and S
playing on A;. The strategy we describe for D will allow her to play her m!”
move on some b € BJ*, for each m < n. In round 1, D answers the first move
of S by playing her pebble on the appropriate element of B{ C BZ to create
a partial isomorphism. Suppose that D has played only onto elements of B}
through round m, where m < n. Let S choose pebble pair (a7, 5;) to play in
round (m+1). We consider two cases. If S plays oy on the same element as some
ap, for I # ', then D must play 3; onto the element pebbled by 3. Doing so, she
obviously maintains a partial isomorphism and succeeds in playing within B;”'H .
On the other hand, suppose that S plays a; on a distinct element such that the
elements pebbled by @+ a; on A after the round satisfy m; ; (we may need to pad
the tuple pebbled by @ to a tuple of length (k—1) by repeating its last element, if
all the pebbles are not in play at this round). Before D plays her (m+1)*" move,
the pebbles 3 are on a tuple b (similarly padded, if necessary) that satisfies ;.
She then plays §; on the element bm]‘I'1 € Bm‘i'1 thereby maintaining a partial

isomorphism. This strategy enables her to win the n-round game.

Next, we show that AjA&* n+1 Bt By Proposition 7, it suffices to show that
S can win the (n + 1)-round game With D playing on B} and S playing on Ay.
We describe a strategy for play by S which forces D to pebble an element of
height at least m by the end of round m to avoid losing at that round. It follows



that S wins the (n + 1)-round game since all elements of B} have height < n.
S plays as follows. He first places his k-pebbles on a set of k distinct elements
which form a k-clique, that is, for every pair of distinct pebbled elements a and
a', Ay E E(a,d’). S may play in this way since Ay = I';. By our construction
above, if b, b’ € B} are distinct elements of the same height, B} £ E(b, V). It
follows immediately that any r-clique in B} contains an element of height at
least r. Therefore, if S has not won by round %k, D has pebbled an element of
height at least & by the end of that round. Note that in case (n+ 1) < k, we are
done, since at round (n+ 1), D will be unable to play onto an element of height
at least (n 4+ 1) to form an (n 4 1)-clique.

We proceed to describe the strategy for S’s continuing play under the as-
sumption that & < (n + 1). Suppose that through round m, k <m < (n+1), D
has played a pebble onto an element of height at least m, and that the k& pebbles
S has played lie on distinct elements of Ay which form a k-clique. We show how
S can play to ensure that D must play onto an element of height at least (m+1)
at round (m + 1), if she is to prevent S from winning at this round, and leave
the round with a k-clique pebbled. Suppose that 5; is pebbling an element & of
height greater than the height of any other element pebbled in B} at round m.
By our hypothesis, the height of b is at least m. Pick j # ¢ (recall that 2 < k)
and let @ € Ay be the element pebbled by «;. S picks up «; and places it on an
a' € Ay such that

1. Ay E F(a,a) — —FE(d’,d') and
2. for every a” € Ay on which one of the remaining (k — 1) pebbles lies, a’ # a”
and Ay E E(d',d") AN E(d”,d).

The existence of such an a’ follows from the fact that A = I';,. We claim that
to avoid losing at this round, D must play her pebble 8; onto an element b’ of
height greater than the height of b, and hence of height at least (m + 1). Let b
be the element pebbled by &; at round m. By our construction, each element of
B} is connected to at most (k — 1) elements of lesser height. Therefore, from the
hypotheses that S had pebbled a k-clique at round m, and that b is an element
of maximal height pebbled by D at that round, we may conclude that the only
element of height < the height of b adjacent to b onto which D could play 5;
is b’ itself. But this play would fail to maintain a partial isomorphism with the
elements S has now pebbled at round (m 4 1) by the first condition we have
imposed on the choice of @’ above. Therefore, to avoid losing at round (m + 1),
D must pebble an element of height at least (m + 1). [ |

The next result follows immediately.

Corollary 14. There are infinitely many formulas of L*¥(3) which are pairwise
mequivalent over F.

We now consider L% (3)-theories and normal forms for L% (3) sentences
over F. We let ThE(A) denote the L (3)-theory of A. Before proceeding, we
define the following fragments of L% (3).



Let A\ LF(3) =
Let \/ LF(3)

Let A(V L*(
Let \/(A L*(

Proposition15. For all finite structures A, there is a § € A\ L*¥(3) such that
Mod;(6) = Mod;(Th%(A)).

A @, for some & C LF(3)}.
=\ &, for some ® C LF(I)}.
| 6 = \ @, for some countable & C \/ L*(3)}.
| 6 =\/ @, for some countable ® C A L*(3)}.

| 6
| 6

{0
{0
) =
)

BN
Ll

) = {0
) = {0

Proof. Observe that Mod;(Thi(A)) = {B € F | A=k B}. Let C4 = F —
Modf(Thg(A)). By Proposition 9, for each B € Cy4, there is a sentence pp €
L¥(3) such that A |= ¢p and B}~ op. Let 0 = Ageo, eB. It is easy to verify
that Mod;(0) = Mod;(Th4(A)). [

Kolaitis and Vardi [12] obtained a normal form for the negation free fragment
of LX (3) over F. It is easy to extend their result to L*  (3) and to provide a
dual normal form as well. We codify these normal forms in the next proposition.

Proposition16 (Kolaitis and Vardi [12]). For each ¢ € L% (3), there is
a0 € \V(ALFQ)) and a ¢ € ANV L*(3)) such that Mod;(¢) = Mods(0) =
Mod; (¢).

Proof. Let ¢ = Mods(y). By Proposition 10, for each A € ¢,B € F — C,
there is a sentence 64 p € L*(3) such that A fap and B [ 04 5. Let

6 = VAGC(/\BQC fa,p) and let ¢ = /\Bgc(\/Aec 64 p). It is easy to verify that
the proposition holds for this choice of # and (. [ |

Next we show that the fragments A L*(3) and \/ L*(3) are closed under
finite conjunction, finite disjunction, and existential quantification over F. This
means that if an L¥  (3)-definable query cannot be expressed in either A L*(3)
or \/ L¥(3), then it is only definable using both an infinitary conjunction and an
infinitary disjunction.

Proposition17. The languages A\ L*(3) and \/ L*(3) are both closed under fi-
nite conjunction, finite disjunction, and existential quantification over F.

Proof. Let ® = {¢;(z,7) | i € w} be a set of formulas of L*(3). We show that if
0(y) = 3z A D, then 0(y) is equivalent over F to some formula ¢'(y) € A L*(3).
(The other closure conditions may be easily verified.) Let ¢, = Agcicpm, €1(2,7)
and let 0'(§) = A,,co 32¢m. We show ' is equivalent to 6. It is obvious that 6
implies #'. Let A € F and @ € A be such that A = #'[a]. Because A is finite,
there is some a’ € A such that for arbitrarily large m, A | ¢, [a’,@]. Therefore
AE Nphew ¥mla’, @], and 6 implies 6. [ ]

Below we show that the query classes A L*(3) and \/ L*(3) are proper subsets
of A(\/ L*(3)) and that neither of A L*¥(3) and \/ L*(3) is a subset of the other.

We first give necessary and sufficient conditions for classes to be definable in

A L*(3) and \/ L*(3).



Proposition18. 1. A class C is definable in A\ L*¥(3) iff for all B € C, there is
a pp € L¥(3) such that B | o5 and for all A€ C, A= pp.

2. A class C is definable in \/ L*(3) iff for all A € C, there is a 4 € L*(3)
such that A= w4 and for all BEC, B = wa.

Proof. To prove 1., suppose that C is defined by the sentence /\n€w ¥, and that
B ¢ C. Then there is some 1, such that B [ ,,. Let vg be this 1,,. In the
other direction, observe that the sentence ¢ = /\Bgc ¢p defines C. The proof of
2. 1s similar. ]

Proposition19. For each k > 2, there is a polynomial time computable boolean
query C € A L*(3) — \/ L*(3).

Proof. Let k > 2 be given and let the graph A be a model of the k-Gaifman
theory. Let T' be the L*(3)-theory of Ay and let § = A T. Clearly, 6 € A L*(3).
Let C = Mod;(f). It is easy to see that C = {B € F | Ay=<*B}. It then follows
immediately from the fact that the relation <* is polynomial time computable
(see Kolaitis and Vardi [12]), that C is polynomial time computable. In the proof
of Proposition 13, we showed that for every satisfiable ¢ € L¥(3), Mod;(p) € C.
It follows immediately that C # Mod;(3) for every sentence ¢ € \/ L*(3). ]

Proposition20. There is a polynomial time computable boolean query C €
\/ L2(3) such that for all k € w, C & A\ L*(3). In consequence, for each k > 2,
there is a class C € \/ L*(3) — A L*(3).

Proof. Over the signature 0 = {Es,t},let C = {A | there is a path from s to t},
the class of (s,t)-connected graphs. This class is clearly in \/ L?(3). As noted
earlier, it is in Datalog, and, hence, polynomial time computable. From Proposi-
tion 18, to show that C ¢ A L*(3), it suffices to show that there is a B ¢ C such
that for all n € w, there is an A, € C such that A, <""B. This latter condition
is equivalent to D’s possessing a winning strategy for the n-round 3*-game on
A, and B. We construct B to give her the greatest possible freedom in choosing
her moves. Let M be any graph such that M = I'41, and let M, (resp. My) be
obtained from M by requiring that s (resp. t) denote a loop-free element. We
define B to be the disjoint union of M, and M, thus insuring that B ¢ C.

For each n, let A,, be the simple chain from s to t of length 2”2, The basic
idea is that by choosing the chain to be long enough, S will not be able to witness
the existence of a path from s to ¢ in only n moves. Let d(x,y) be the natural
distance function on A,,.

We now describe D’s strategy. In each round m, D chooses to play on an
element of M iff S just played a pebble on a € A,, such that either (i) d(s,a) <
2(n+2)=m o (ii) there is a j such that B; is on an element of M, and d(«;,a) <
2(n+2)=m _Ghe then plays her pebble on an element of the appropriate component
of B so that she maintains a partial isomorphism among the pebbles on that
component. It is easy to see that this 1s possible because M and M; are models
of Fk+1.

In order to establish that this is a winning strategy, it suffices to verify the
following two claims.



1. In each round ! < n, if D plays a pebble 3; on M, then «; is not adjacent
to t on A,,. Similarly for M; and s.

2. After each round [, for all pairs of pebbles {«;, o; }, if A, |E E(a, ), then
B; and §; are on the same component of B.

We argue, by induction, that if D plays 8; on M in round m, then d(s, a;) <
(20nH2)=1 poolnd2)=2 g olnd2)=my < 9n+2 | Since d(s,t) = 27F?) this
establishes that A4, & E(a;,t). In round 1, D plays 3; on M iff d(s, ;) <
2(7+2)=1 Quppose that in round m+1 D plays 3; on M,. Then either d(s,aq) <
2(n+2)=m o there is an «; such that 8; is on M, d(ay, ;) < 2(n+2)=(m+1) "and,
by induction hypothesis, d(s, «;) < (20 +2)=1  o(42)=2 1y 9(42)=my Ty
both cases, the induction condition is maintained. The second part of Claim 1
follows from the fact that in round m, if D plays 8; on My, then S must have
played a; such that d(s, o;) > 2(n+2)=m ~ 1 To prove Claim 2, observe that at
each round m, if 8; € M,, and §; € M;, then d(w;, o) > 2(n+2)=m - 1 The
details are similar to the previous argument. ]

The next result shows that the normal form for L%  (3) over F given in
Proposition 16 is optimal.

Proposition21. Forallk > 2, there is a class C C F such that C € \/(\ L*(3))—
(NLFE) UV LF ().

Proof. The proof of this proposition is a synthesis of the proofs of the pre-
ceding two results. We define a set of models {4, A, ...} which are pairwise
L*(3)-incompatible such that for each i, the L¥(3)-theory of A; is not finitely
axiomatizable in L*(3). We then let ¢ = {B | Ji(A;<*B)}. The arguments to
show that this class is neither in \/ L¥(3) nor in A L*(3) are minor variants of
the proofs of Propositions 19 and 20.

We define each model A; as an expansion of a homeomorphic image of a
graph which is a model of the (k + 1)-Gaifman theory. Let R be a finite graph
that satisfies Iy y1; observe that R also verifies I. Each A; is obtained from R
by replacing all edges which are not loops by pairwise disjoint paths of length i.
Where there is a two-way, undirected edge, a single undirected path is inserted,
rather than two directed paths. To clarify the exposition, we also add a unary
predicate V to the signature to label the original ‘vertices’ of R.

To verify that C is not in \/ L*(3), it suffices to show that there is a model
A € Cand asequence B!, B?, ... disjoint from C, such that for each n, A<*"B".
Let A be Ay, and let each B™ be obtained from the model B} from the proof of
Proposition 13 by putting every element into the extension of the predicate V.
From that proof it is immediate that, for all n, A;<%"B" but A; £* B". For all
2 < i, A; = 3z—Vx and, consequently, A;A* B". This establishes that each B"
is not in C.

In order to show that C ¢ A L*(3), we now define a single B’ ¢ C such
that for all n, there is an Af(,) such that Af(n)jk’”B’. By Proposition 18,
this will establish that C ¢ A L*(3). Let RT be an expansion of R obtained
by labeling exactly one looped element with the predicate V; and let R~ be



obtained similarly by labeling a loop-free element. Here the predicate V' plays
the same role as the constants s and ¢ in the proof of Proposition 20. We define
B’ to be the disjoint union of k copies of both Rt and R~ and let f(x) = 27+2.
It is easy to see that B’ € C. As in the proof of Proposition 20, the Duplicator
wins the n-move 3¥-game on Ayn42 and B’ because the labeled vertices of Aqynaz
are too far apart for S to distinguish the models by witnessing that they are
actually connected. [ |

Finally, we prove the following separation.
Proposition22. Over F, for k > 3, L*(3) C (A L*(3))n (V L*(3)).

Proof. Let Path(x,y) express the binary query ‘there is an E-path from » to y.’
For signature ¢ = {F, s}, we define C = {4 | J=( Path(s, z) and Path(x, z))}.
Let 0,,(x,y) be an L3(3) formula that defines the binary query ‘there is a path
of length n from = to y.” It is easy to see that C is in \/ L*(3). Also observe that
© = Npew 3Ty(s = x A0, (x,y)) defines C. Finally, there are arbitrarily large
minimal models in C, that 1s, models A € C such that for all proper submodels
B C A, B ¢ C. This immediately implies that C & FO(3) and, a fortior:, not in
L*(3). |

4 The Failure of Existential Preservation for Le

In this section we prove that LY NEXT ¢ L (3). Indeed, we establish that
there is a sentence § € LY  such that Mod(@) is closed under extensions, but
there is no ¢ € L¥  (3) such that Mod;(#) = Mod;(v). Thus, § witnesses the
failure of existential preservation for L% = simultaneously over the class of finite
structures and over the class of all structures. The central lemma on which this
result relies is of interest in itself. It says that for all k¥ > 3, the finitary language
LF* fails in a strong way to satisfy an existential preservation property. Andreka,
van Benthem, and Nemeti [3] showed that for every k& > 3, there is a sentence
¢or € L* which is preserved under extensions, but which is not equivalent to
any sentence of L*(3). For k > 3, the sentence @ they construct uses a relation
symbol of arity £ — 1 and has the property that it is equivalent to a sentence of
L*¥+1(3). They state the following open problems.

— For any k > 3 and n € w, find sentences ¢, € L* which are preserved under
extensions, but which are not equivalent to any sentence of L¥*7(3).

— For k > 3, is there a formula of L* containing only (one) binary relation
symbols which is preserved under extensions, but is not equivalent to any
sentence of L*(3)?

The next proposition settles both these open problems. The main result of the
section follows easily from the proof of this proposition.

Proposition23. For each k < w, there is a sentence 0 € L3, containing a
single binary relation, such that



1. Mod(fy) is closed under extensions, but
2. Mod;(0)) # Mod; () for all p € L¥(3).

Proof. Before presenting the full proof, we sketch the basic outline. Let the
k-pyramid of B, P*(B), be the smallest class of (finite and infinite) models
containing B that is closed under substructures and L*-equivalence. For each
k > 3, we define finite structures Ay and Bj with the following properties:

1A=L, Br;
2. P3(By) is L3-definable;
3. Ay € P3(By).

Let ¢ € L? be such that Mod(pr) = P3(By), and let 8 = —py. It is obvious
that Mod(f;) is closed under extensions, that A, = 65, and that By & 0.
Suppose ¢ € L¥(3) is such that Ay = ¢. Since Az=* By, this implies that
By = ¢, and therefore that ¢ is not equivalent to .

We define structures Aj and By in terms of simpler submodels. For f <t let
the [t, f]-flag, F[t, f], be the directed chain of length ¢ with one additional vertex
attached to the f link. That is, the vertex set of FI[t, f]is {0,1,...,1,t+1}, and
the edge relation is {(¢,i+1) | ¢ < t}U{(f,t+1)}. Ay is the digjoint union of the
k+1flags—F[2k+2, k+1], F[2k+2,k+2], ..., F[2k+2,2k+1]. Let the [k, j]-tree,
Tk, j], be the tree obtained from A by fusing the i'* nodes of each flag, for all
¢ < j. This tree has height 2k 4+ 2 and the node at height 7 has outdegree k& + 1.
Then By is the disjoint union of the k trees— Tk, 0], T[k,1],..., Tk, k — 1].

First we show that Ay=<F By by describing a winning strategy for D in
the eternal Elk—game on A; and Bj. A component of a model is a maximal
connected submodel. Observe that every component of A is embeddable in
every component of By. Call a component of either Ay or By wacant at round
n if there is no pebble located on any element of that component before the
players make their n'* moves. We consider two cases of moves for S. First,
suppose that in some round n, S plays pebble a; on a vacant component A"
of Aj. Since there are only k pairs of pebbles, and since pebble §; is not on
the board, there is a vacant component B™ of By, and an isomorphic injection
hp + A" — B". D will play pebble 8; on A, («;). In the other case, S plays on a
non-vacant component A”. There is some m < n such that A” has been occupied
continuously since round m and either m = 1 or A™ was vacant at round m — 1.
Thus A” = A™, and there are previously defined B™ and h,,. D now plays §; on
hm(a;). By this condition, every pair of pebbles (a7, 51) on components A™ and
B™ satisfies the condition that hy,(a;) = 5. In both cases, it is clear that D has
maintained a partial isomorphism. By Proposition 8, it now follows immediately
that A;=<%  By.

Next, we show that P3(By) is definable in L3. Consider the following prop-
erties:

1. A contains no chains of length > 2k 4 2.
2. A contains no cycles of length < 2k + 2.



3. No element a € A has indegree > 2, that is, A | —JedyIz(x # y A Exz A
Fyz).

It is easy to show that each property is expressible in L3, is closed under substruc-
tures, and holds of By. From this it follows immediately that each B’ € P3(By)
possesses all three properties. Consequently, every member of P3(By,) is a forest
consisting of directed trees of height < 2k + 2.

Next we note the following facts:

Lemma24. Let A and B be the disjoint unions of components {Ay,... An}
and {By, ..., By}, respectively. For k >3, A=* B if and only if for each com-
ponent A; [B;], either the number of components of A that are L*-equivalent to
it is equal to the number of components of B that are L*-equivalent to it or both

numbers are > k.

This result can be proved by a simple pebble game argument.

Lemma 25. For each h, and each k > 3, up to equivalence in L* there are only
finitely many trees of height < h.

The proof proceeds by induction on k. The case where h = 1 is obvious. Given
a tree T, call a proper subtree that contains a node ¢ of height 1 and all of its
descendents a 1-treeof T'. For h > 1, we claim that two trees 77 and 75 of height
at most h are L*-equivalent if and only if for each 1-tree 7/ C T}, the number of
1-trees of T} that are LF-equivalent to 7" equals the number of 1-trees of 75 that
are LF-equivalent to 77, or both numbers are > k. The argument is just like the
proof of the preceding lemma. From the claim, the lemma follows immediately.

Corollary 26. For cach h, and each k > 3, up to equivalence in LF there are
only finitely many forests of height < h.

This is an immediate consequence of the preceding lemmas.

These observations establish that there are only finitely many complete L*-
theories that are satisfiable in P3(By). Moreover, each such theory has a finite
model. By [5], every such theory is axiomatized by a single L* sentence. Hence,
if we let op be the disjunction of these sentences, we have Mod(yy) = P3(By)
as desired.

Finally, we argue that Ay € P3(By). By the definition of P3(By), for every
B’ € P3(By), there is an m € w and a sequence (Fo, D1, Ey,..., Dy, Ey) of
structures, with By = Fy and B’ = E,,, such that:

1. Forall1<:<m,D; C E;_.
2. Forall 1 <i<m, D; =3 F;.

It suffices to show that for any such sequence, Aj cannot be embedded in any
E;. Let g : P3(Bi) — {0,1,...,k + 1} be the function such that g(D) is the
maximum number of components of A; that can be embedded in D pairwise
disjointly. We show that for each ¢ < m, g(F;) < k+ 1. In fact, we show that g is



monotonically decreasing on the aforementioned sequence. Because each D; 1s a
submodel of F;_1, it is clear that g(D;) < ¢(E;—1). It remains to establish that
¢(Br) < k+ 1 and that g(E;) < g(D;).

Observe that any embedding of a flag F'[2k 4 2, f] into a component C' of any
B’ € P3(B) must map the root of the flag to the root of C'. This implies that
no two flags of A can be disjointly embedded into any such component and,
since By has only k components, that g(Bg) < k + 1.

From Lemma 24, it follows that every £; can be obtained from D; by repeated
application of the following three operations. First, replace some component with
a component that is L3-equivalent to it. Second, add a disjoint copy of a tree
that is L3-equivalent to at least 3 components. Third, remove a component that
is L3-equivalent to at least 3 other components. Thus, it suffices to argue that
no such operation performed on some B’ € P3(By) can yield a B” such that
g(B"”) > g(B'). Tt is obvious that removing a component cannot increase the
value of g¢.

We claim that it suffices to consider the effect of the other two operations on
components of height = 2k 4+ 2. If trees 7" and 7" are L3-equivalent, then they
have the same height. Also, no component F'[2k + 2, f] of Aj can be embedded
in any tree of height < 2k + 2. This establishes that the presence of shorter
components in a model B does not affect the value of g(B).

Observe that for all trees T and T such that T'=3 T’ F[t, f] can be embed-
ded in T iff it can be embedded in 7”. This is because the following property
can be expressed in L3: there is an element z such that (i) there is a y such that
there is a path of length f from y to #; (ii) # has outdegree 2; (iii) there is a y
such that there is a path of length ¢ — f from z to y. Over trees, this property
says that the model embeds F[i, f]. Consequently the operation of replacement
cannot increase the value of g¢.

It remains to establish that adding an additional component to a model
B € PS(Bk) does not change the value of g. We observe that Bj has the
following properties:

1. For each (2k +2)-chain contained in By there is at most one j,0 < j < k—1,
such that the j'* link of the chain has outdegree > 1.

2. For each (2k + 2)-chain contained in By, there is at most one jk+ 1< j <
2k + 1, such that the j'* link of the chain has outdegree > 1.

These properties are closed under substructures and L3-equivalence; consequently,
they hold of every model B’ € P3(By). Let C1, C2, and C3 be L3-equivalent com-
ponents of B’ of height 2k + 2. The above argument establishes that each C; is
either some F'[2k + 2, f], or the simple (2k 4 2)-chain. Let B" be the extension
of B’ obtained by adding a component Cj4. Observe that, in fact, all four com-
ponents must be isomorphic, and embed at most one isomorphism type of flag.
Therefore, the image of any embedding h : A; — B’ can contain vertices from
at most one of these four components. This demonstrates that g(B’) = g(B"),
and completes the proof. [ |

The following result establishes the failure of existential preservation for L%, .



Theorem 27. There is a sentence 6 € LY = such that both

oW

1. Mod(6) is closed under extensions.

2. For all o € LY, (3),Mod;(8) # Mod¢ ().

Proof. We claim that it suffices to show that for each & € w there is a sentence
0, € L? and a pair of finite models A;, and By, such that

1. Mod(6}) is closed under extensions.
3. Ap=F  By.
4. For all j, A; E 05.

Let 8 = A, 6x. It is clear that # is closed under extensions and that it has finite
models, since it is true in each Aj. Suppose that ¢ is a sentence in L, (3) such
that 6 implies ¢. Then Ap | ¢, and therefore By | ¢. But for all [, B; |~ 6.
Therefore, Mod;(8) # Mod;(¢).

The sentences 63 and the models A; and B from the proof of Proposition
23 fail to meet condition 4 because for j < k, A; £ 65. To see this, observe that
A; will always be a submodel of By. To fix this defect, it suffices to construct
A%, By, and 6, as in the proof of Proposition 23 that also satisfy the additional
condition that, for all j and k, A} ¢ P3(B,). In order to accomplish this, we add
simple ‘gadgets’ to the models. Let the k-cycle, Cy, be the graph on k vertices
whose edge relation forms a simple, directed cycle of length k. Then let A} and
B, be obtained from Ay and By, respectively, by adding a disjoint copy of C.
By slightly modifying the proof of Proposition 23, we can show that A} <% B,
and that there is a #}, € L? satisfied by exactly the models in the complement
of P3(B,) such that A} | 6. Finally, it is easy to verify that for j # k, the
j-cycle cannot be embedded in any B € P3(Bj,) and, therefore, Al 0. [ ]

5 Generalized Preservation Theorems in the Finite Case

In this section, we prove some generalized preservation theorems for fragments
of FO. Our results are of the form

LNEXTCL

for certain quantifier prefix classes L C FO and L' = L% (3) or Datalog(#, —).
Recall that Tait [18] showed

FONEXT ¢ FO(3),
and that Gurevich and Shelah [9, 10] gave examples showing that
FOV*T*| N EXT € FO(3).
Compton observed that
FO[F*V' ] NEXT C FO(3),



which shows that these examples are best possible in terms of quantifier alter-
nation prefix (see [9]). Kolaitis and Vardi (see [2]) observed that the example
of Gurevich and Shelah [9] can be defined in Datalog(#, —). Theorem 29 below
establishes that

FO[3"VI) N EXT C Datalog(#, ).

It follows that all the examples in the literature witnessing the failure of the Los-
Tarski Theorem in the finite case are definable in Datalog(#, —), since all these
examples are in the prefix class FO[3"V3T] (a sequence of existential quantifiers
followed by one universal quantifier followed by one existential qunatifier). The
next theorem establishes a slightly more general result with LY (3) in place of

Datalog(#, -).
Theorem 28. FO[F*VI*|NEXT C L%, (3).

Proof. Let ¢ € FO[F*VI*]NEXT. That is, ¢ € FO[3*V3*] and Mod;(¢) € EXT.
Let C = Mod;(y). We proceed to show that C € L%  (3). By Proposition 10, it
suffices to show that there is a k such that, for each A € C and B ¢ C, there is
afap € L* . (3) such that A = fap and B £ 04 B.

Let ¢ = Jzq...2;Vy3zr ... 29¢(F, y,Z), where ¢ is quantifier free, and let
k = i+j+1 (we suppose, without loss of generality, that ¢ > 0). We now describe
a winning strategy for S in the eternal 3*-game on A and B, for A € C and B ¢ C,
which establishes, by Proposition 8, the existence of 64 p € Lt ., (3) with the
desired properties. There are two stages. Let @ = (ay,...,a;) be a sequence of
elements of A such that A = Vy3zy(a, y,z). If D has not lost after h rounds, for
h < i, S plays pebble ap41 on element ap41. If S has not won after 2 moves, and
D has played her pebbles on b = (by,...,b;), then B |= Jy¥z-wi(b,y,Z) (since
B o).

The goal of the second part of S’s strategy is to force D to play a peb-
ble on some element b’ such that B |= VzZ—(b,b’,Z), without removing any of
the pebbles «aq, ..., a; which ‘fix the interpretation’ of the variables z{,..., z;
on both A and B. Regardless of the element a’ on which S will have played
his corresponding pebble, A | Iz¢(a,d’,Z), so that he can then win eas-
ily. In order to describe S’s strategy, we first define a sequence of subsets of
the universe of B. Let Iy = {b' | b € B and B = Vz=(b,H',Z)}. Observe
that B | JyVz—e(b,y,2), and therefore Iy is non-empty. Given Iy, ..., I,
if (Uien 1) N b = 0, then let B,,41 be the submodel of B whose universe is
(B — U<,y I1)- Let Iyy1 = {b' | V' € Byyq1 and Bpy1 | V(5,0 9)}. For
each By, since B,, C B, we have that By, | VZ3y¥z—¢(T,y,Z). In particular,
By, | 3y¥Z—1(b, y, %) and thus, as above, I}, 11 is non-empty. Since B is finite,
there is some n such that I, Nb # 0, and some element by € I, N b pebbled
by B;. Then B is partitioned into the sets I, ..., I,_1, B,. We also have that
AE 3zY(@, ap,7), and B, = VZ—(b, b, 7).

The Spoiler can win by executing a substrategy that compels D to play in
sets [y, of successively smaller index. Let ¢ be a sequence of elements of length
J such that, A = (@, ay, ). S plays his next j moves on this sequence, until D
makes a losing move or plays a pebble 3, onto an element in [3,, for m <n —1.



We claim that one of these two possibilities must occur. For suppose that D
plays on a sequence d C B,,. Then B, = —(b,b;,d), and (T, y,Z) witnesses
that the function that takes @* a; * ¢ to b * b; * d and preserves the denotations
of constants is not a partial isomorphism.

Suppose that D has played some pebble 3, into some set I},. By the same
argument as above, reusing pebbles {a;41,..., a5} — {a,z}, S can either win or
force D to play into some I/, for some m’ < m. Iterating this procedure, S can
force D to play into [j, and then win by using the same procedure one more
time. ]

We remark the following two refinements of the foregoing theorem.

1. For each B ¢ C, there is a number mp such that for all A € C; S wins the
mp-round F*-game on A and B. (Here, mp is determined by the maximum
number of sets I' that get defined on B, for any choice of D’s first ¢ moves.)
It follows easily from Proposition 7 that this condition is equivalent to there
being a g € L*(3), with quantifier rank < mp, such that for all 4 € C,
Al0g,and B £ 6g. Then ¢ = /\Bgc O is equivalent to ¢ and is a single
infinite conjunction of L*(3) sentences. We know by Proposition 20 that not
all sentences of L% (3) can be expressed in this form. Indeed, it follows from
Theorem 29 below that if ¢ € FO[F*VI] N EXT, then ¢ is equivalent to a
formula in A L¥(3) N'\/ L*(3) for some k.

2. Suppose that ¢ is an L* sentence with quantifier type ¥3* (this notion of
quantifier type may be defined straightforwardly, and is distinct from the
notion of prefix class). In this case, we can show, by a modification of the
proof of Theorem 28, that ¢ is equivalent to an L% (3) sentence. This
contrasts with Proposition 23 above which established that for all %, there
is a sentence ¢, € L? such that Mod () € EXT, but ¢y is not equivalent
over F to any sentence in L% _(3).

Theorem 29. FO[F*VI] N EXT C Datalog(#, -).

Proof. Let ¢ = Juq ... 2;Vy3zB(T, v, 2), with 3(Z,y, #) quantifier free. Let ¢ =
(c1,...,¢p) be the sequence of constants in the signature of ¢ and let ¢ =
Mod;(g). For a € A, we say that a closes with parameters @ iff there is a
sequence ag(= a), a1, . ..,a, such that for alll < n, A |= (@, a;, a;+1) and there
is an m < n such that A |= (@, an, a;m). Note that this is equivalent to there
being an o’ such that there is a 5(@, y, z)-path from a to o', and a 3(a, y, z)-cycle
including a’.

We claim that A |= ¢ iff there is a j-tuple @ such that every element of aUT
closes with parameters @. Suppose that A does not satisfy these conditions. We
prove that A |= VZ3IyVz-4(Z,y, z)) where the latter sentence is equivalent to
—p. Let @ C A be a sequence of length j. By hypothesis, there is an o’ € aU®e
such that a’ does not close with parameters @. Since A is finite, this implies
that there is an m > 0 and a sequence o’ = ay, ..., al, such that for all [ < m,

m

A p(@,aj,apy 1) and A = V2=5(a, ap,, ), as desired.



In the other direction, let @ be such that every member of @ U ¢ closes with
parameters @. Let 5, = (apo(= an), ..., anm, ) and ty = (eno(= cn), ..., €nn,) be
sequences witnessing that each element of @ U¢ closes with parameters @. Let B
be the submodel of A with universe | J,;5; U U]' t;. Then it is easy to verify that
B E ¢ and, since Mod(¢) € EXT, it follows that A = ¢.

The following program, with T = (21, ..., x;), computes ¢:

($ Y,z )%P(I y,w ),P(E,M,Z)
Q — P($ax1ay1) ($ay1ay1)a"'aP(Ea$jayj)aP(anjayj)a
P(Z,c1,w1), P(T, w1, w1),..., P(T, ¢p,wp), P(T, wp, wp)

This can be easily converted into a Datalog(#, ) program. Let 5(Z,y,z) =
V; 6i, where each ¢; is a conjunction of literals. Replace the clause P(T,y, z) «—
B(Z,y, z) with the clauses P(%Z,y, z) — &, for all i. [ ]

6 Conclusion

In this section we discuss some open problems that are naturally suggested by
our investigations and we present some further results bearing on the problem
of preservation under homomorphisms in the finite case.

6.1 Open Problems

The first and most obvious question is the extent to which our results can be
generalized from fragments of FO to the entire language. In this connection, we
restate two of the problems mentioned earlier which remain open in light of our
study.

Problem 1. Is FO N EXT C Datalog(#, )7

Problem 2. Is FONEXT C L% (3)?

Obviously, a positive answer to the first of these questions implies a positive
answer to the second. Should the answer to these questions be negative, it would
be of interest to characterize the classes FONDatalog(#, —) and FON LY (3) in
some informative way. An example of a characterization of this kind is the follow-
ing theorem of Ajtai and Gurevich [2]. FO*(3) denotes the positive existential
fragment of FO.

Proposition30 (Ajtai and Gurevich [2]). FO N Datalog = FO*(3).

As remarked above, the Gurevich-Shelah counterexample to the Los-Tarski The-
orem in the finite case witnesses that FO N Datalog(#,—) # FO(3). Might
FO N Datalog(#, —) be contained in some level of the first-order quantifier al-
ternation hierarchy, be it not the lowest level? Should, on the other hand, the
answer to Problem 1 be positive, we might try to establish even stronger results
such as a positive answer to

Problem 3. Is (FO+LFP) N EXT C Datalog(#, )7



6.2 Preservation under Homomorphisms

In this subsection we briefly turn our attention to a different preservation prop-
erty. A homomorphism from A to B is a map h : A +— B such that for all
n-ary relation symbols R(Z), and for all n-tuples @ C A, if A | R(@), then
B E R(h(@)). A class of models C is closed under homomorphisms iff for all A
and B such that there is a homomorphism from A to B, if A € C, then B € C.
Let HOM denote the set of classes in F that are closed under homomorphisms.
A sentence ¢ in FO, L%, . etc. is positive, if and only if, it does not contain any
negations. The following well-known classical result 1s a direct consequence of the
Los-Tarski Theorem: for all ¢ € FO, Mod(y) is closed under homomorphisms,
if and only if, ¢ is equivalent to a positive existential sentence. This theorem
is one of a few classical results whose validity over F remains unknown. In our
current notation, we can formulate the question as the following open problem,
the interest of which has been emphasized by Gurevich [10] and Kolaitis (see
).

Problem 4. Is FONHOM C FOT(3)?
(To avoid confusion, it should be remarked that although [10] announces a so-
lution to Problem 4, this claim has been withdrawn.)

The following proposition yields some information about the homomorphism
preservation question. We direct the reader to [17] for its proof.

Proposition 31. Datalog(#, —) N HOM C Datalog.

Propositions 29, 30, and 31 yield as an immediate corollary the following special
case of the homomorphism preservation theorem.

Corollary 32. FO[3*VI] N HOM = FOT(3).
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