When Is Word Sense Disambiguation Difficult? A Crowdsourcing Approach

Krishna N. Kaliannan
University of Pennsylvania

Follow this and additional works at: http://repository.upenn.edu/wharton_research_scholars

Part of the Business Commons

http://repository.upenn.edu/wharton_research_scholars/116

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/wharton_research_scholars/116
For more information, please contact repository@pobox.upenn.edu.
When Is Word Sense Disambiguation Difficult? A Crowdsourcing Approach

Abstract
We identified features that drive differential accuracy in word sense disambiguation (WSD) by building regression models using 10,000 coarse-grained WSD instances which were labeled on Mturk. Features predictive of accuracy include properties of the target word (word frequency, part of speech, and number of possible senses), the example context (length), and the Turker’s engagement with our task. The resulting model gives insight into which words are difficult to disambiguate. We also show that having many Turkers label the same instance provides at least a partial substitute for more expensive annotation.

Disciplines
Business
Abstract

We identified features that drive differential accuracy in word sense disambiguation (WSD) by building regression models using 10,000 coarse-grained WSD instances which were labeled on Mturk. Features predictive of accuracy include properties of the target word (word frequency, part of speech, and number of possible senses), the example context (length), and the Turker’s engagement with our task. The resulting model gives insight into which words are difficult to disambiguate. We also show that having many Turkers label the same instance provides at least a partial substitute for more expensive annotation.

1 Introduction

Word sense disambiguation (WSD) is the process of identifying the meaning, or “sense,” of a word in a written context. In his seminal survey,Navigli (2009) considers WSD an AI-complete problem — a task which is at least as hard as the most difficult problems in artificial intelligence.

There has been a flurry of interest in using pools of anonymous naive human labor, also known as “crowdsourcing,” for WSD, especially in situations that are most difficult for algorithms. A thriving pool of crowdsourced labor is Amazon’s Mechanical Turk (MTurk), an Internet-based microtask marketplace where the workers (called “Turkers”) do simple, one-off tasks (called “human intelligence tasks” or “HITs”), for small payments. See Callison-Burch (2010) for MTurk’s use in NLP and Chandler and Kapelner (2010) and Mason and Suri (2011) for further reading on the platform.

Following Akkaya et al. (2010), Parent (2010), and Passonneau et al. (2011), we perform a coarse-grained WSD study on MTurk; we had 1,000 disambiguation instances (“tasks”) done by 10 unique Turkers each. We echo previous results that demonstrate Turkers are respectably accurate and that spam is virtually non-existent. We then use regression to identify a variety of factors that effect accuracy: frequency, length, part-of-speech and number of alternative senses of the target word, length of the contextual example, and number of words describing the correct sense. (See figure 1 for an illustration.)

Figure 1: Number of senses vs. predicted accuracy for a sample of the words in our study. Nouns are blue; verbs are red. The densities are smoothed histograms of the noun and verb predicted accuracies.
2 Methods and Data Collection

We selected a subset of the OntoNotes data (Hovy et al., 2006), the SemEval-2007 coarse-grained English Lexical Sample WSD task training data (Pradhan et al., 2007). We picked 1,000 contextual examples (“snippets”) at random from the full set of 22,281. Our sample consisted of 590 nouns and 410 verbs. For each snippet, ten WSD instances were completed by ten unique Turkers.

2.1 The WSD HIT

We designed a simple WSD task that rendered inside an MTurk HIT. The Turker read one “snippet” with the target word emboldened, and then picked the best choice from among a set of coarse-grained senses (see Figure 2). We gave a blank text box for soliciting optional feedback and there was a submit button below. We term a completed WSD HIT a “disambiguation.”

We employed anti-spam and survey bias minimizing tricks to obtain better data. We faded in each word in the snippet and the sense choices one-by-one at 300 words/min. Additionally, we randomized the display order of the sense choices. This reduces “first response alternative bias” as explained in Krosnick (1991), but may decrease accuracy vis-a-vis displaying the senses in descending frequency order (Fellbaum et al., 1997). We also limited workers to be from the US to ensure fluency in English.

3 Results and Data Analysis

We recruited 595 Turkers to work on our tasks and we yielded an average accuracy of 73.4%, which is in line with previously reported experiments. We measured inter-tagger agreement (ITA) using the alpha-reliability coefficient (Krippendorff, 1970) to be 0.664 which comports with Chklovski and Mihalcea (2003)’s Open Mind Word Expert system. However, this task was specially designed by Hovy et al. (2006) to have 90% ITA. Our measure is significantly less. Naive Turkers should not be expected to be experts.

Due to the high degree of variability in the responses, we were interested in (1) combining Turker responses to boost accuracy (2) evaluating heterogeneity in worker performance (3) investigating which features in the target word, the snippet text, and the text of the sense choices affect accuracy and (4) understanding which characteristics in the Turker’s engagement of the task affect accuracy.

3.1 Combining Data to Optimize Prediction

We can combine the 10 unique disambiguation responses for each of the 1000 snippets to yield higher accuracy. Our algorithm is naive — we take the plurality vote and arbitrate ties randomly. This yields an accuracy of 85.7% which is in the ballpark of the measured inter-tagger agreement (ITA) using the alpha-reliability coefficient (Krippendorff, 1970) to be 0.664 which comports with Chklovski and Mihalcea (2003)’s Open Mind Word Expert system. However, this task was specially designed by Hovy et al. (2006) to have 90% ITA. Our measure is significantly less. Naive Turkers should not be expected to be experts.
best supervised statistical learning techniques which boast almost 90%.\(^3\) We were also interested in determining the marginal accuracy of each Turker, so we simulated random subsets of two Turkers, three Turkers, etc and employed the same plurality vote. We also simulated the accuracy of the algorithm of collecting data until a plurality is reached. Table 1 illustrates these results.

3.2 Spammers, Superstars, Turker Equality, and Learning Effects

In order to compare our task to previous WSD systems, we investigate the presence of spammers, superstars, and learning effects by plotting the number of disambiguations correct by the number of disambiguations completed in figure 3. To test the null hypothesis that all workers are equal (and thus, average), each worker’s total contributions are assumed to be drawn from independent Binomial random variables with probability of success \(p = 73.4\% \). Does the worker’s confidence interval (CI) contain \(p \)? Figure 3 reveals that every worker has approximately the same capacity for performing coarse-grained WSD (except for two superstars and two spammers). We echo Akkaya et al. (2010), Snow et al. (2008), and Singh et al. (2002) and conclude there is minimal spammer contribution. Further, we did not detect any learning effects since accuracy does not increase over time.

3.3 WSD Performance and Characteristics of Target Word, the Snippet, and Senses

What makes WSD difficult for naive Turkers? Are there too many senses to choose from? Is the snippet difficult to read? With 10,000 instances across 600 workers, we can attempt to answer these questions.

We first construct the features of interest. For the target word, we use the variables part-of-speech, length (in characters), and log frequency in American English from Davies (2008). For the snippet text, the number of characters. For the correct sense definition text, the number of characters and a feature that tallies the number of definition rephrasings.

\(^3\)See table 3 in Pradhan et al. (2007) for a comparison of all algorithms in the SemEval conference. However, note that these supervised algorithms were given all the training data and then evaluated upon the test data while Turkers were not given any previous examples.

\(^4\)We also ran a variety of fixed and random effects linear and logit models, all of which gave the same significance results.
and number of senses, accuracy still suffers. The more prevalent the word in our language, the more likely it will have overlapping senses.

3.4 Turker Characteristics

Are there any characteristics about the Turker’s engagement with our task that impacts accuracy? We create the following predictors: time spent on task, the number of words in their optional feedback message, and the number of disambiguations that worker completed. To control for the difficulty of each task, we added 1,000 fixed intercepts — one for each unique task and to control for correlation among the workers, we added a fixed intercept for each worker.

Via OLS,⁴ we found that leaving comments does not correspond to higher accuracy, contrary to Kapelner and Chandler (2010), and the number of tasks completed does not impact accuracy (this is as expected; see the discussion in section 3.2). Surprisingly, spending more time on the disambiguation task associates with a significant reduction in accuracy ($p < 0.001$).⁵ Note that this is after we non-parametrically control for instance difficulty and worker ability. For every minute spent, a Turker is 3.6% less likely to answer correctly. We posit two theories: (1) taking breaks leads to loss of concentration (2) the “knee-jerk” response is best to retain (ruminating should be discouraged). It is, of course, also possible that we fail to control for individual differences in instance difficulty – maybe some instances are hard for particular workers, as evidenced by their taking longer on them.

4 Discussion

We ran a study where American MTurk participants disambiguated words among coarse senses in a sample of the OntoNotes data. Our conclusions about Turker ability are (1) they are as accurate as expected from naive raters but worse than experts (2) they are all roughly equal in ability (3) spam is negligible (4) they do not improve with experience (5) more than ten Turkers must be pooled if we wish to get accuracies that compete with the best machine algorithms. This study indicates that for under $20,000, one could build a system to accurately disambiguate 2-7 million words.

Furthermore, we now have insight into features that induce difficulty in WSD. One should expect worse results if the snippet or the correct sense definition are long, if the correct sense does not provide many synonym examples, if there are many senses to choose from, if the target is a common vocabulary word, or if the target is a verb. Further, it seems that time pressure may increase accuracy. A future experiment that proves this causally may be fruitful.

A Replication

The code, raw data, and analysis scripts are available under GPL2 at github.com/anonymized.

Acknowledgments

We thank anon, anon, anon for helpful comments and discussions. Anon thanks the National Science Foundation for the Graduate Research Fellowship that made this work possible.
References

C Callison-Burch. 2010. Creating speech and language data with Amazon’s Mechanical Turk.

