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(Received 20 September 2010; accepted 4 January 2011; published online 20 January 2011)

We studied the two-dimensional freezing transitions in monolayers of microgel colloidal spheres
with short-ranged repulsions in video-microscopy experiments, and monolayers of hard disks, and
Yukawa particles in simulations. These systems share two common features at the freezing points:
(1) the bimodal distribution profile of the local orientational order parameter; (2) the two-body excess
entropy, s2, reaches −4.5 ± 0.5 kB . Both features are robust and sensitive to the freezing points, so
that they can potentially serve as empirical freezing criteria in two dimensions. Compared with the
conventional freezing criteria, the first feature has no finite-size ambiguities and can be resolved
adequately with much less statistics; and the second feature can be directly measured in macroscopic
experiments without the need for microscopic information. © 2011 American Institute of Physics.
[doi:10.1063/1.3545967]

I. INTRODUCTION

Empirical criteria for melting and freezing have been
proved important for assigning phase transition points1, 2 be-
cause free energies are often not directly measurable in many
experimental systems. One famous example is the Lindemann
criterion3 which has been widely used in three-dimensional
(3D) melting. For two-dimensional (2D) freezing, the fol-
lowing five phenomenological criteria have been proposed:
(1) the 2D version of the Hansen–Verlet (HV) freezing
rule,4 (2) the 2D dynamic Löwen–Palberg–Simon (LPS)
criterion,5, 6 (3) the split of the second peak of the radial
distribution function,7, 8 (4) the bimodal distribution pro-
file of the shape factor of Voronoi polygons,9 and (5) the
zero residual multiparticle entropy (zero-RMPE) criterion.10

Criteria (1) and (2) have been tested in both equilibrium
and nonequilibrium simulations11 with various particle in-
teractions. Criterion (3) has a 5% ambiguity around the
freezing points for hard disks,8 Lennard-Jones systems7 and
colloidal microgel spheres with short-range repulsions.12

Criterion (4) consistently underestimates the freezing points
for hard disks9, 13 and microgels by 6% volume fractions.12

Criterion (5) has been tested in hard disks,14 2D and 3D
Lennard-Jones systems14, 15 and even rods at nematic–smectic
transitions in 3D,16 but was found to be more ambiguous
in systems with short-range repulsions,17 and attractions15 at
high densities.18 Recently, we have observed two new fea-
tures at the freezing point of a monolayer of microgel spheres,
namely, the divergent peak of the orientational susceptibility
and the percolation of caged particles.12 These two features
could potentially be used as new criteria for 2D freezing if
they hold universally for various particle interactions.

a)Electronic mail: yilong@ust.hk.

Besides empirical criteria, fundamental theories have
been formulated for 2D melting.19–22 However these theo-
ries apply to single-crystal melting without surface or grain-
boundary effects, and so often cannot be applied directly
to freezing experiments. In practice, homogenous nucleation
during the freezing often produces polycrystalline solids,
whose grain boundaries break both the translational and
orientational orders studied in 2D melting theories. Such
polycrystals certainly have no hexatic phase predicted by
Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) the-
ory because grain boundaries break all the possible long or
quasilong ranged orders. In contrast, the empirical freezing
criteria remains valid in polycrystalline freezing.12

2D freezing has been experimentally studied in
colloids,23, 24 dusty plasmas,25, 26 and driven granular
systems.13 These experiments focused on local structures,
dynamics, and the initial nucleation processes rather than
the freezing criteria. Recently, some of us experimentally
tested the freezing criteria (1)–(4) in a thermal system for
the first time.12 In the current study, we observed two more
new features at the freezing points of this experimental
system12 and two simulation systems with different particle
interactions. Hence the two features could serve as new
freezing criteria, if they universally hold in all systems.

II. EXPERIMENTAL AND SIMULATION SYSTEMS

The experiment employed isopropyl acrylamide (NIPA)
microgel spheres whose diameters can be temperature
tuned.27 Thus the freezing or melting transition can be driven
by a modeterate temperature change in a single sample.28, 29

The NIPA spheres were sterically stabilized and the electro-
static repulsion between these weakly charged spheres was
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negligible in the aqueous buffer solution. The softness of
the particles yields short-range repulsive pair potentials.29

The pair potentials were directly quantified by measuring
the radial distribution function, g(r ), in a dilute (i.e., area
density ρ ∼10%) monolayer of spheres,30–32 and the small
bright-field image artifact due to the image overlap of adja-
cent particles33 has been corrected by the method described
in Ref. 32. The diameters of soft particles are ambiguous.
Here we define the effective diameter σ as u(σ ) = 1kB T ,
and the area fraction ρ = ρnπσ 2/4 where ρn is the num-
ber density. The measured effective diameter of the NIPA
spheres varied linearly from 0.71 μm at 29.5 ◦C to 0.92 μm at
24.1 ◦C. The sample consisted of a monolayer of NIPA
spheres confined between two parallel glass slides, see the
details in Ref. 12. The uniform monolayer of spheres nucle-
ated homogenously, and flows were not detected during the
experiment. The thermal motions of particles were observed
under a microscope with a 100× objective and recorded by
a 14-bit low-noise charge-coupled device (CCD) camera at
3.57 frames/s. Each frame contained about 23 000 spheres in
a 1392 × 1040 pixels (i.e., 147.3 × 110.2μm2) field of view.
The temperature control on the microscope had a resolution
of 0.1 ◦C. We decreased the temperature from 29.5 to 24.1◦C
at a rate of 0.3 ◦C/step and recorded 20 min video at each tem-
perature after 10 min of equilibration. Waiting a few minutes
or 1 h for equilibration appeared to produce little difference
since the temperature change is only 0.3 ◦C. The particle po-
sitions in each frame were identified using the standard image
analysis algorithms.34

Besides the experiments, we performed two simulations
with different particle interactions. The first one was an event-
driven molecular dynamics (MD) simulation of 22 500 hard
disks. The particle number chosen for the simulation is very
close to the actual particle number obtained in the experiment.
In contrast to the polycrystalline solids in the experiments,
the hard disks in the simulation homogenously froze into a
single crystal due to the slow quenching rate, the small system
size, and the periodic boundary condition. The area fraction ρ

was changed from 0.754 to 0.660 at 0.0785/step. Note that
temperature is not defined in hard-disk systems so that only
area fraction is used to characterize them.

The second simulation was a Brownian dynamics (BD)
simulation of 22 500 particles with a Yukawa pair potential.35

The Yukawa potential, i.e., the screened-Coulomb potential,
characterizes the interaction between charge-stabilized col-
loidal particles.36 It is defined as

u(r ) = U0
r0

r
exp

(
−λ

r − r0

r0

)
, (1)

where U0 is the energy scale, r0 is the length scale, r is the
distance between particles, and λ is the screening parame-
ter. We set λ = 8, U0 = 1, σ = 1.0, ρn = N/V = 1.0, and
T ∗ = kB T/U0 in the reduced unit. In our simulation, r0, U0,
ρ, and λ were fixed and the reduced temperature, T ∗, was
changed from 0.70 to 0.52 at 0.03/step (area fraction from
0.849 to 0.904 at ∼0.01/step). In this temperature range, the
potential is rather soft, see Fig. 1. We performed the stan-
dard BD simulation which is based on the Langevin equation

FIG. 1. The Yukawa potential used in our Brownian dynamic simulation.
The effective diameter σ changed from 1.04 at the reduced temperature
T ∗ = 0.70–1.07 at T ∗ = 0.51.

of particle i

ξ ṙi (t) = Fi (t) + R(t), (2)

where i = 1, . . . , N labels the N particles. The friction coef-
ficient ξ = 1 in the reduced unit, R(t) is the random thermal
force in the solvent, and Fi (t) is the total interparticle force on
particle i . The hydrodynamic interactions were ignored. Par-
ticles homogenously froze into a single crystal in a box with
aspect ratio of 2 :

√
3 under the periodic boundary condition.

The time step dt = 0.001τ where τ = σ 2ξ/U0 was the time
scale used in the simulation. The system usually reached equi-
librium after 10–20τ and the data were typically acquired dur-
ing 50–60τ . Around the freezing point, the equilibration time
was longer so that the data were acquired during 110–120τ .

III. FREEZING POINTS ASSIGNMENT

We identified the freezing transition point with the tra-
ditional 2D HV freezing rule [criterion (1)] and the diver-
gence of the susceptibility. The HV freezing rule states that
a 2D liquid freezes when the amplitude of the first peak of
the structure factor, S(k), exceeds a critical value of approx-
imately five. For different particle interactions, this critical
value varies from 4.4 to 5.5.4, 7, 37 Despite this ambiguity, the
freezing point can usually be accurately identified because the
amplitude of the first peak changes rapidly around the freez-
ing point.

The divergence of the susceptibility is a feature asso-
ciated with the phase transition38 rather than being just an
empirical feature. The 2D freezing transition corresponds to
the divergence of the susceptibility of the orientational order
parameter.12 The local orientational order parameter20, 39 of
particle i is

ψ6i = 1

nni

nni∑
j=1

e6iθi j , (3)

where θi j is the angle of the bond between particle iand its
neighbor j . nni is the number of the nearest neighbors identi-
fied from the Delaunay triangulation. The global orientational
order parameter ψ6 = 〈ψ6i 〉 = (

∑N
i=1 ψ6i )/N is the average

of the local order parameters over all N particles. ψ6 char-
acterizes the sixfold symmetry in 2D. ψ6 = 1 for a perfect
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triangular lattice, and ψ6 = 0 for a random liquid. The orien-
tational susceptibility

χ6 = lim
A→∞

A
(〈|ψ2

6 |〉 − 〈|ψ6|〉2
)
, (4)

is the time fluctuation of the global orientational order param-
eter ψ6 in area A. We calculated χ in different sized sub-areas
and extrapolated to the infinite-size limit.29 Without such ex-
trapolation, the freezing point can still be correctly measured
since the position of the divergence peak is robust for areas of
different sizes as long as the area is not too small. Hence the
χ6 criterion has less finite-size ambiguities29 and does not de-
pend on an empirical critical value as do the freezing criteria
(1), (2), and (5).

Besides using the above two methods to assign the freez-
ing points, we also calculated the freezing criterion (3) which
states that the second peak of the radial distribution function,
g(r ), develops a shoulder at the freezing point. Although this
criterion is less accurate,7, 8, 12 we measured it since g(r ) was
also used in the measurement of the excess entropy as de-
scribed in Sec. V.

Figures 2–4[(a)–(c)] show the results of the 2D HV
freezing rule, the susceptibilities and the radial distribution
functions in the five systems, respectively. The three cri-
teria yielded almost consistent results except for Yukawa
particles. The Yukawa potential in Fig. 1 was very soft so
that the second peak of g(r ) is smeared out at the freezing
point in Fig. 4(c). The obtained freezing points were 27.7 ◦C
(ρ = 0.747) for the NIPA-freezing experiment; ρ = 0.683 for
the hard-disk simulation; the reduced temperature T ∗ = 0.61
(ρ = 0.874) for the Yukawa-particle simulation. These
area fractions are comparable to the freezing points of
0.695 ± 0.003 for hard disks,40–43 0.77 for r−12-potential

FIG. 2. Freezing of a monolayer of NIPA spheres. (A) The first-peak am-
plitude of the structure factors, S(k), at different temperatures. According
to the 2D HV freezing criterion, the freezing point is at 27.7◦C. (B) Orien-
tational susceptibilities at different temperatures. The position of the peak
corresponds to the freezing point of 27.7 ◦C. (C) The radial distribution func-
tions. The split of the second peak corresponds to the freezing point. (D) The
area fraction as a function of temperature.

FIG. 3. The MD simulation of the freezing of hard disks. (A) The first-peak
amplitudes of the structure factors at different temperatures. According to the
2D HV freezing criterion, the freezing point is near the area fraction 0.683.
(B) Orientational susceptibilities at different temperatures. The position of
the peak corresponds to the freezing point of 0.683. (C) The radial distribu-
tion functions. (D) The equation of state. The van der Waals loop indicates
that the freezing area fraction is around 0.683.

particles4 and 1.188 for r−6-potential particles.44 The trend
of softer particles with higher freezing area fractions can be
clearly resolved.

We did not use the other criteria to assign the freez-
ing points because they are either not always measurable or
not accurate in our systems. The 2D LPS freezing criterion

FIG. 4. The BD simulation of the freezing of Yukawa disks. (A) The first-
peak amplitudes of the structure factors at different temperatures. According
to the 2D HV freezing criterion, the freezing point is near the reduced tem-
perature 0.60. (B) Orientational susceptibilities at different temperatures. The
position of the peak corresponds to the freezing point of 0.61. (C) The radial
distribution functions. (D) The area fraction as a function of temperature.
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[criterion (2)] states that a 2D liquid freezes when the ratio
of the averaged long-time diffusion coefficient to the aver-
aged short-time diffusion coefficient is larger than a critical
value ranging between 0.07 and 0.1, depending on particle
interaction.6, 45 In contrast to other static criteria, this is a dy-
namic criterion for Brownian particles. However the diffu-
sions at short-time and long-time limits span a large time scale
which cannot be measured easily in MD and BD simulations
and some of the video-microscopy experiments. Criterion (4)
states that the shape factors of Voronoi polygons defined in
Ref. 9 exhibit a bimodal distribution profile at the freezing
point. The criterion appeared to underestimate the freezing
points by 6%.9, 12, 13 Criterion (5) regarding the residual mul-
tiparticle entropy is difficult to measure because it involves
many-body correlations (see Sec. V for more details). One
candidate freezing criterion suggested in Ref. 12 states that
the caged particles percolate at the freezing transition. A par-
ticle is defined as caged if it cannot slip out of the triangle of
three of its neighbors, see Refs. [12 and 46]. Hence the caging
depends on the definition of the diameter which is somewhat
ambiguous for soft spheres. If we use the effective diameter
σ defined as u(σ ) = 1kB T , then the caged particles percolate
within 5% of the volume fraction around the melting points in
all the systems. Hence this criterion roughly holds. Here we
suggest two new freezing criteria in Secs. IV and V, respec-
tively. They are more accurate, less ambiguous, and easier to
measure.

IV. BIMODAL DISTRIBUTION OF THE ORDER
PARAMETER

We observed two common features shared by the five sys-
tems at their freezing points. The first feature is the bimodal
distribution of the order parameter. The 2D local order pa-
rameter defined in Eq. (3) characterizes the sixfold orienta-
tional order of particle i relative to its nearest neighbors, i.e.,
the first-layer neighbors. In practice, however, |ψ6i | does not
provide sufficient information to distinguish unambiguously
between crystal-like and fluidlike particles,47 hence a slightly
different order parameter

n6i = |ψ∗
6i 〈ψ6 j 〉 j |, (5)

was introduced.47 The subscript j represents a first-layer
neighbor of particle i . 〈 〉 j is the average over all first-layer
neighbors of particle j . Hence this order parameter involves
the neighbors of the neighbors and reflects the orientational
order in two layers of neighbors. n6i ranges between 0 and 1.
A solidlike particle has more ordered neighbors so that its n6i

is close to 1, while a liquidlike particle has more disordered
neighbors so that its n6i is close to 0. In Fig. 5(a), the distri-
butions of n6i exhibit a peak near 1 in the solid phase, a peak
near 0 in the liquid phase, and a bimodal profile at 27.7 ◦C
which is exactly the freezing point identified in Fig. 2.

This bimodal distribution at the freezing point exists in
all five systems as shown in Fig. 5. In Fig. 5, black circles
denote the freezing points, triangles denote the liquids and
squares denote the solids next to the freezing points. The
histograms of n6i in Fig. 5(c) do not have a bimodal dis-
tribution, which suggests that the freezing point is between

FIG. 5. The distributions of the orientational order parameter n6i . (A) The
NIPA-freezing experiment. The bimodal profile emerges at the freezing point
27.7 ◦C obtained in Fig. 2. (B) The hard-disk simulation. The bimodal profile
emerges between the area fractions ρ = 0.691 and 0.700. (C) The Yukawa-
particle simulation. The bimodal profile emerges at the reduced temperature
T ∗ = 0.60 which is close to the freezing point obtained in Fig. 4.

25.6 ◦C (ρ = 0.769) and 25.8 ◦C (ρ = 0.754). This is in ex-
cellent agreement with the melting point from the 2D HV
criterion in Fig. 3 which is also slightly below 25.8 ◦C.
Among the five systems, the hard disks exhibit the largest
discrepancy of only ∼1% area fraction, see Fig. 5(d). In
Fig. 5(d), the freezing point is between the area fractions
0.69 and 0.70, which is 1% higher than the 0.683 obtained in
Fig. 3, but closer to the freezing point of 0.695 ± 0.003 in the
literatures.40–43 Our underestimated freezing point from Fig. 3
could be due to the finite-size effect. Here n6i is a local param-
eter so that the area of the system does not affect its histogram
profile. In contrast, the 2D HV freezing rule needs a large area
for the small reciprocal lattice vector, k, at the first peak of
S(|k|). Hence the freezing point of ρ = 0.695 ± 0.005 from
the bimodal distribution in Fig. 5(d) might be more accurate
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FIG. 6. The percentages of solid particles defined in Eq. (6) as a function of
area fraction for the three systems. The solid symbols represent the freezing
points resolved from Figs. 2 to 4. They are close to the 50% fraction indicated
by the dotted horizontal line.

than the freezing point estimated from Fig. 3. Moreover, we
observed that the histograms of n6i need 5–10 times less
statistics than the other criteria.

n6i was originally used to distinguish solidlike and liq-
uidlike particles. The solidlike particles are defined by the
empirical criterion47

n6i + |ψ6i | > 1. (6)

We found that about 50% of the particles became solidlike
at the freezing point in all three systems, see Fig. 6. More
details are shown in the joint distribution of |ψ6i | and n6i in
Fig. 7. In the solid phase, most particles are solidlike and are
above the n6i + |ψ6i | = 1 line, while in the liquid phase, most
particles are below this line. This feature in the joint distribu-
tion of |ψ6i | and n6i has been observed in the experiments of
charge-stabilized polystyrene (PS) spheres47 and uncharged
polymethylmethacrylate (PMMA) spheres.48 At the freezing
point of 27.7 ◦C, both the solidlike and liquidlike particles are

FIG. 7. The scatter plots of the joint distributions of the first-layer orienta-
tional order parameter ψ6i and the two-layer orientational order parameter n6i

in the hard-disk simulation at area fraction (A) 0.675, (B) 0.683, (C) 0.691,
(D) 0.700.

about 50%, which is another common feature at the freezing
points across all three systems. This feature can be resolved
with even less statistics, about one fifth of the statistics used in
the bimodal histograms and about one fortieth of the statistics
used in other criteria.

V. TWO-BODY EXCESS ENTROPY

The thermodynamic entropy of a system can be written
as

S = S1 + S2 + S3 + ... = S1 + Sex , (7)

where Sn is the entropy contribution due to the n-particle spa-
tial correlation.49 The excess entropy, Sex , is defined as the
difference between the true entropy of the system S and that
of the ideal gas S1. The leading term in Sex is the two-body ex-
cess entropy S2. For example, S2 contributes ∼90% of Sex for
the Lennard-Jones system over a wide range of densities.50 S2

can be evaluated from the pair correlation function. For a 2D
homogeneous system, S2per particle is given by50, 51

s2 = S2/N = −πkBρn

∫ ∞

0
[g(r ) ln g(r ) − g(r ) + 1]rdr, (8)

where ρn is the number density. The integration above ten di-
ameters contributes little so that our measured g(r > 30σ )
have long enough range to result in an accurate s2. We ob-
served that s2 reaches −4.5 ± 0.5kB at the freezing points
in all five systems, see Fig. 8. Here the 0.5 kB uncertainty
corresponds to only 1% in area fraction since the slopes
are steep near the freezing points. Above the freezing vol-
ume fractions, s2decreases rapidly which reflects the much
stronger two-body effect and a more limited range of neighbor
separations. Note that ln g(r ) = ln[1 + (g(r ) − 1)] ≈ g(r )
− 1 when g(r ) ≈ 1, so that s2 ≈ −πkBρn

∫
(g(r ) − 1)2rdr .52

This expression is similar to the translational order parame-
ter t ≡ ∫ ∞

0 |g(ξ ) − 1|dξ where ξ = rρ1/3
n .52–54 tquantifies the

degree to which two neighboring particles adopt preferen-
tial separations.53 Hence the large |s2|above the freezing area
fraction reflects a more ordered structure with uniform neigh-
bor distances.

FIG. 8. Two-body excess entropy, s2, as a function of area fraction ρ in the
three systems. The solid symbols represent the freezing points that are close
to s2 = −4.5kB as indicated by the horizontal dotted line.
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Interestingly s2 = −4.5kB has also been observed at the
freezing point of 3D hard spheres.53 Moreover we found that
s2 = −4.5 ± 0.5 kB also holds at the freezing points of mul-
tilayer thin films studied in Ref. 55 if we estimate s2 from
Eq. (8) and the measured in-plane g(r ). Spheres confined be-
tween two walls exhibit a cascade of phases: 1� − 2 − 2�
− 3 − 3� − 4 · · · as the wall separation increases.56 Here
n� denotes an n-layer triangular lattice, and n denotes an
n-layer square lattice. Both triangular and square lattices
freeze at s2 ≈ −4.5kB in thin NIPA colloidal films. Hence
we suggest that this feature could serve as a new freezing
criterion.

This criterion is practically useful because s2 can be ob-
tained from either the pair correlation function using optical
microscopy or the structure factor measured in a scattering ex-
periment. The HV freezing criterion and g(r )-shoulder crite-
rion can also be used in macroscopic experiments, while other
freezing criteria require microscopic information of individ-
ual particles which limits their practical applications. Both the
s2 criterion and g(r )-shoulder criterion are based on g(r ), but
the s2 criterion yielded more accurate freezing points in our
systems. Note that s2 is integral quantity over the full range
of g(r ), while the shoulder of the second peak in criterion (3)
only reflects a local structural change in g(r ) and thus is less
accurate for the soft Yukawa potential.

The s2 criterion is similar to the zero-RMPE freezing
rule [criterion (5)].10 RMPE ≡ sex − s2, which is the entropy,
arose from three-body and higher order correlations. The
RMPE changes sign concurrently with the local emergence
of a new type of structure such as freezing. Since the
concept of excess entropy can be applied to nonspherical
particles, the zero-RMPE criterion has been success-
fully tested in rod suspensions at the nematic–smectic
transition.16 It would be interesting to see if the
s2 ≈ −4.5 kB criterion can also be applied to the freez-
ing point of nonspherical particles. Moreover, by combining
the s2 criterion with the zero-RMPE criterion, we have
s = s1 − 4.5 kB , i.e., the entropy per particle becomes 4.5 kB

lower than the entropy of an ideal gas when the system solidi-
fies. Because s2 only reflects the free volume but not the order
in the structure, it cannot distinguish between crystalline and
random closed-packed structures.53 However it would be
interesting to explore whether a critical value generally exists
in glass transitions of monodispersed particles and freezing
transitions of nonspherical or polydispersed particles where
most other freezing criteria cannot be applied.

The area fraction is often used as the thermodynamic
variable. This leads to different freezing area fractions for
different systems as shown in Figs. 6 and 8. For softer par-
ticles, the freezing area fraction shifts to a larger value at
0.77 for r−12-potential particles4 and 1.188 for r−6-potential
particles.44 In contrast, s2 remains the same at a constant
value of −4.5 kB at the freezing points of different systems.
Moreover the area fraction is ambiguous for soft particles,
while s2 defined in Eq. (8) has no ambiguity for different
pair potentials. Hence we believe that s2 could be a better
thermodynamic variable than the area fraction. Nevertheless,
s2 directly reflects the two-body free volume which could
be used as an alternative to the area fraction. When ρ or

FIG. 9. The orientational susceptibilities as a function of two-body excess
entropy s2. All the peaks are located around s2 = −4.5 kB , which corre-
sponds the freezing transition. An arbitrary unit is used in χ6 in order to com-
pare the peak positions (i.e., the melting points) rather than the peak heights
in different systems.

T is replaced by s2 in Figs. 2–4 and 6, the melting point
of different systems becomes approximately identical, see
Fig. 9 as an example. Because the absolute value of χ6 de-
pends on the type of particles and the total sample area,29, 42, 57

we scaled χ6 to the same order in Fig. 9.

VI. SUMMARY

We observed two features at the freezing point in one ex-
perimental and two simulation systems with different inter-
actions. Such features also exist in two melting experiments
with different NIPA particle sizes and surface coatings.29

Hence we suggest the two features could potentially be used
as empirical 2D melting criteria.

The first feature is the bimodal distribution of the order
parameter n6i . The distribution profile of n6i is sensitive to
the volume fraction or the temperature, and can yield accu-
rate freezing points. The bimodal profile can be resolved un-
ambiguously with about ten times less statistics than are re-
quired by the other criteria. Moreover, n6i can be accurately
measured in a small sample area without finite-size ambigu-
ity. At the freezing points, 50% of the particles in all five sys-
tems are solidlike. This feature can also be used to estimate
the freezing point with even less statistics.

The second feature is that the two-body excess entropy
per particle, s2, reaches −4.5 ± 0.5 kB at the freezing point.
s2 can be obtained directly from macroscopic scattering mea-
surements. Hence it is practically useful in molecular sys-
tems in which the microscopic information is difficult to
obtain. Combining this s2 criterion and the zero-RMPE freez-
ing criterion, we found that a system freezes when the en-
tropy per particle is −4.5 kB lower than the entropy of an
ideal-gas particle at the same density. Speculation of this crit-
ical value may cast light on solidification mechanisms. The
universal −4.5 kB suggests that the well-defined s2 might
be served as a better thermodynamic variable than the area
fraction.
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