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Integrating Network-Bound XML Data

Zachary G. Ives� Alon Y. Halevy Daniel S. Weld

Abstract

Although XML was originally envisioned as a replacement for HTML on the web, to this point it
has instead been used primarily as a format for on-demand interchange of data between applications
and enterprises. The web is rather sparsely populated with static XML documents, but nearly every
data management application today can export XML data. There is great interest in integrating such
exported data across applications and administrative boundaries, and as a result, efficient techniques
for integrating XML data across local- and wide-area networks are an important research focus.

In this paper, we provide an overview of the Tukwila data integration system, which is based on
the first XML query engine designed specifically for processing network-bound XML data sources. In
contrast to previous approaches, which must read, parse, and often store XML data before querying
it, the Tukwila XML engine can return query results even as the data is streaming into the system.
Tukwila features a new system architecture that extends relational query processing techniques, such as
pipelining and adaptive query processing, into the XML realm. We compare the focus of the Tukwila
project to that of other XML research systems, and then we present our system architecture and novel
query operators, such as thex-scanoperator. We conclude with a description of our current research
directions in extending XML-based adaptive query processing.

1 Introduction

The original vision of XML as the data description format that would reshape the web has, to this point, not
materialized as expected. HTML documents and dynamic HTML pages predominate, whereas XML documents
are rare. Yet behind the scenes, on the Internet and intranets, XML has in fact been widely deployed. Corpo-
rations are interchanging data between applications with XML as the common format. Business coalitions and
partners are exchanging data and transactions via XML, using standardized DTDs such as those published at
OASIS and BizTalk1; and Microsoft’s .NET “web service” architecture is also based on XML data interchange.
Currently, XML has been most successful not as a format for “materialized” or document data, but as a “wire
protocol” for exchanging data through virtual XML views.

We are convinced, therefore, that the areas of interoperability (both in terms of schema and data) and data
integration are the most significant concerns in XML data management. XML storage and indexing, as well
as query processing techniques for local XML repositories, address interesting and relevant problems — yet
XML’s greatest potential may be as a medium for integrating and exchanging data. Thus we need mechanisms
for efficiently processing non-materialized, un-indexed, streaming XML data that is being sent across a network.

Copyright 2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

�Supported in part by an IBM Research Fellowship..
1Found at www.xml.org and www.biztalk.org.
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Table 1: Characterization of XML query processing space and systems

The primary focus of the Tukwila data integration system is to develop new techniques for processing
dynamically-generated, streaming XML data. Our emphasis is on developing a query processor that operates
on queryable XML data sources, requesting the desired data and efficiently modifying, combining, and restruc-
turing it. This data may potentially be larger than memory, so Tukwila also emphasizes support for out-of-core
execution.

This focus on large, “live” queryable sources is in contrast to the other XML query processing projects
and systems of which we are aware; see Table 1 for a comparison of system features. Niagara [NDM+01]
and Xyleme [Aea01] focus on providing query capabilities for XML documents or data files that are locally
indexed or warehoused, respectively; both provide support for “subscription” queries whose results update
as the underlying data is modified. Lore [GMW99] is a semistructured data repository with XML exten-
sions, and eXcelon [XLN] and Tamino [Tam] are native XML repositories. Silkroute [FTS99, FMS01] and
XPERANTO [CFI+00] provide XML publishing capabilities for relational data. XFilter [AF00] (and the asso-
ciated DBIS system) is not precisely a query processor, but rather an information dissemination system whose
goal is to take a set of XPath queries expressing a user’s interests, and to “push” or disseminate all documents
matching these queries to the user.

The Tukwila project originated as a relational-model data integration system with a new adaptive architecture
to improve query performance [IFF+99]. In our original work, we identified a number of desiderata for a data
integration system. Data integration queries are in many cases ad-hoc and interactive (e.g. combining data
from several sources to produce a browsable online catalog), so early answers, and thuspipelining of results,
is desirable. Second, as data is transferred from a source to the integration engine, it is subject to delays and
burstiness; hence operators must supportflexible schedulingso the query processor can process other available
tuples while waiting for delayed sources. Finally, since statistics are often incomplete or even nonexistent
for remote, dynamically generated data, the query processor should supportruntime re-optimization and re-
schedulingof a query, so it can adjust a query plan as it acquires better knowledge about the data sources. These
desiderata are design goals ofadaptive query processing, and considerable work has recently been done in this
area, including query scrambling [UFA98], mid-query re-optimization [KD98], ripple [HH99] and pipelined
hash [WA91, IFF+99, UF00] joins, eddies [AH00], dynamic scheduling of pipelines [UF01], and streaming of
partial results through blocking operators [STD+00]. (For more details, see the June 2000 issue of theIEEE
Data Engineering Bulletin.)

In the context of integrating XML data, the data model has changed, but the desiderata remain the same.
In fact, XML query languages such as XML-QL and XQuery include operations supported by SQL, such as
group-by and join — hence even the same “adaptive” relational techniques should almost directly apply. Yet the
XML query model does not operate on tuples in tables — instead, it works oncombinations of input bindings:
patterns are matched across the input document, and each pattern-match binds an input tree to a variable. The
query processor iterates through all possible combinations of assignments of input bindings, and the query
operators are evaluated against each successive combination. At first glance, this seems quite different from
relational-style execution, but a closer examination reveals little difference: if we assign a column in a tuple
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to each variable, we can view each legal combination of variable assignments as forming a tuple of binding
values. Note, however, that this “binding tuple” will likely containtrees(or graphs) in its columns, rather than
scalar values. Moreover, the content of one column might actually be contained within the tree value of another
column.

As a result of this observation, the Tukwila architecture, like a relational data integration system, is based
on a tuple-oriented query processing model — but it includes extensions to the tree data type, the ability to
incrementally generate binding tuples from an incoming XML stream, and a set of additional XML-specific
operations that have no correspondence in a relational system. Our architecture leverages many useful techniques
developed for relational data management, while offering the flexibility required to query XML and providing
better performance than previous XML query processing approaches.

In the next section, we describe the Tukwila architecture in more detail and present a subset of the experi-
mental results demonstrating Tukwila’s impressive performance. We conclude in Section 3 with a discussion of
our current research directions in XML and adaptive query processing.

2 The Tukwila System

The Tukwila system supports the majority of features in the XQuery language under development by the World
Wide Web Consortium. XQuery includes a tree-structured data model, support for arbitrary recursive functions,
conditional queries, and strong typing. Tukwila does not yet attempt to implement the complex sub-typing
capabilities of XQuery (which are still under heavy development), and support for recursive functions and con-
ditionals is still under construction (a challenge here is the inherent difficulty of optimizing these queries).

A query is fed into Tukwila’s optimizer, which is designed along the lines of Starburst [HFLP89] and Vol-
cano [GM93], with algebraic-level rewrites. The primary difference between Tukwila’s optimizer and previous
work is in supporting XML-specific operations such as nesting of structure, and in supporting new XQuery fea-
tures such as arbitrary recursive functions. In our experiments, we have observed that statistics are even harder
to obtain for XML data than they are for autonomous relational data sources, and hence it is difficult for any
optimizer to generate optimum plans — later in this paper, we present our current focus in attempting to address
this problem.

The Tukwila query execution engine features a number of innovations, but preserves several important com-
ponents from the original relational-model Tukwila engine, including support for multithreaded I/O and opera-
tors, plus an event handler for error and exception conditions. In the remainder of this section, we briefly discuss
the novel components that provide native XML support; more detail can be found in [IHW01].

2.1 Query Execution Components

The diagram in Figure 1 shows the XML components of the Tukwila system. XML input streams are fed into
x-scanoperators, which match the query’s input path expressions against the data and output streams of binding
tuples. These binding tuples contain assignments of XML elements (trees) to each of the query’s input variables.
Since the bound trees may be arbitrarily large and may overlap, binding tuples actually containreferencesrather
than the full XML elements; the XML data values are stored separately in an XML Tree Manager that may be
paged to disk. The binding tuples are fed into a tree of query operators (described in the next section), which
filter, tag, and combine the tuples. Finally, the tagged tuples are passed to an XML Generator, which converts
them back into the XML format and returns the result stream to the query initiator.

At first glance it may appear likely that, because of Tukwila’s reliance on the Tree Manager, a large XML file
could produce “thrashing” in the swap file during query processing, but we have experimental evidence [IHW01]
that Tukwila avoids this problem, which we attribute to two factors. First, the system supports “inlining” of
scalar values: string, integer, or other “small” data items can be embedded directly in the tuple, avoiding the
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Figure 1: Architecture of the Tukwila query execution engine. After a query plan arrives from the optimizer,
data is read from XML sources and converted by x-scan operators into output tuples of subtree bindings. The
subtrees are stored within the Tree Manager (backed by a virtual page manager), and tuples contain references
to these trees. Query operators combine binding tuples and add tagging information; these are fed into an XML
Generator that returns an XML stream.

dereferencing operation. Typical query operations in XML-QL and XQuery are done on scalar rather than
complex data (e.g., joining or sorting are frequently based on string values); thus these operations often only
need data that has been inlined. Large, complex tree data is typically only required at the XML generation
stage, when the final results are returned. A second factor is that many XML queries tend to access the input
document in sequential order, and the Tree Manager therefore can avoid re-reading data that has been paged out.
For purposes of comparison, we point out that a paged DOM-based approach would have similar behavior to
our scheme (except that in-memory representation is larger in a DOM tree); a mapping from XML to relations
(“shredded XML”) typically requires a significant amount of materialization in the first place, and often incurs
heavy costs whenever it needs to perform joins to recreate irregular structure.

2.2 Operations for Processing XML

As was previously suggested, Tukwila includes all of the standard relational database operator implementations,
including selection, projection, grouping, sorting, and nested-loops, merge, hash, and double pipelined hash
joins. These operators have all been extended to work with data in the Tree Manager, but are otherwise unre-
markable. We now provide a brief sketch of the novel XML operators in Tukwila; please see [IHW01] for a
more detailed description of each operator.

The novel operator most fundamental to Tukwila’s operation, which enables the entire tuple-oriented query
processing model, is thex-scanoperator. XML-QL and XQuery path expressions are related to regular expres-
sions over the XML structure, and the first phase of executing a query consists of matching the desired path
expressions against the XML data: this is the operation x-scan performs, while the document is still being read
and parsed. X-scan combines and returns the results as a stream of binding tuples. The core of an x-scan oper-
ator is a set of dependent finite state machines that match the query’s path expressions. Whenever an element
open-tag is parsed, this represents a forward-traversal in a state machine; whenever the close-element is encoun-
tered, the state machine’s previous state is restored. An accept state signifies that a binding to the current XML
element should be produced. Finally, separate variable bindings must be combined to produce the appropriate
binding tuples.

The x-scan operator is much like an index scan or sequential scan in a relational database — it is given a file
and retrieves the desired components. However, in a network-based context, where data from one source might
describe a set of inputs to be provided to another query, another operator is very useful: one that takes a series
of data values, combines them to produce a new request for data from a different source, and then performs an
x-scan operation over the answers to that request. We call this operationindirect-scan, and it performs very
similarly to a dependent join in a relational database; it retrieves data, sends a request to a dependent source, and
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Nbr. Class Input Query
Q1 Extract 0.9MB Suras in Quran with “The” in title (large trees)
Q2 Extract 1.5MB Chapters after Chapter 7 in Book of Mormon (medium trees)
Q3 Extract 1.5MB Sura titles with “Mormon” from Book of Mormon (single result)
Q4 Extract 39MB DBLP papers that reference conferences (select by existential)
Q5 Extract 9MB DBLP papers with URLs – across wide area fromnbci.com
Q6 Integrate 200KB x 9MB Nest DBLP papers in their conference entries (1 : n nesting)

Table 2: Queries for extraction (Q1-5) and combination (Q6) of XML

then combines the returned results with the current data. However, there are two key differences: (1) indirect-
scan can request data from a different web source on each iteration, since it generates a complete request (and
not simply an assignment of input parameter values) each time2; and (2) indirect-scan must perform an x-scan
operation over the dependent data source before joining the results with those from the independent source.

The other novel XML operators in the Tukwila engine relate to creation of XML structural information.
There are operators for enclosing data in new XML elements or attributes, and for outputting literal and com-
puted values in the XML stream. We also include operators for nesting child subquery data within a parent
query’s output (a very common operation in XML query languages) and for separating attributes into hierarchi-
cal layers. All of these operators annotate the query processor’s binding tuples with structural information that
is not part of the data but controls the operation of the XML generator.

2.3 Performance

We have performed extensive experimental studies of Tukwila’s performance and scalability, which can be
found in [ILW00] and [IHW01]. Due to space limitations, in this paper we provide only a brief discussion of our
findings, which are that the Tukwila architecture provides superior performance and scales well to the largest
XML documents we could find on the Web.

Figure 2 compares the performance of Tukwila with that of the Niagara query processor3 and with two XSLT
query engines, XT and Xalan. We experimented with a range of queries, including selection-oriented document
queries and integration queries combining data between multiple sources. The graphs show the running times for
the queries of Table 2. The results demonstrate that Tukwila produces initial answers (2a) significantly earlier
than the other query processors, largely due to its streaming input model that allows for pipelining. Moreover,
Tukwila’s overall query completion times (2b) were also faster, particularly if the query combined multiple input
documents or restructured them.

Additional experiments have shown that the XSLT engines and the Niagara system do not scale to documents
larger than about 25% of available memory, when they fail because the document’s memory representation fills
available RAM and they do not have mechanisms for overflow to disk. In contrast, the Tukwila engine only
showed a small performance loss when querying the largest complex well-formed XML document we could
find on the web, at 160MB, when given only 20MB of memory. For these results and others, please see the cited
papers.

2This allows for greater expressiveness in queries, as one data source can describe a list of alternate sources to be combined in a
single query.

3We used the version available at www.cs.wisc.edu/niagara during December, 2000.
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(b) Total query time

Figure 2: Experimental comparison of XML queries shows that Tukwila has equally good total running time (and
better time to first tuples) for simple extraction queries over small documents (Q1-Q3), and first tuples emerge
significantly faster for larger documents both on the local area (Q4) and Internet (Q5). Tukwila performance is
dramatically better than other systems when combining and restructuring XML data (Q6).

3 Conclusions and Future Directions

The query execution model of the Tukwila data integration system seems very well-suited to our target domain:
potentially large, queryable XML data sources. The pipelined execution model and adaptive query processing
operators produce good performance even under varying network conditions, and the approach also scales well.

We believe that we have found a good execution model for XML query processing, and now the next major
challenge lies in effectiveoptimizationof XML queries. In our context, this is an extremely challenging problem:
data sources may not have statistics, and in fact statistics and cost models for XML are not yet well-developed
even for XML repositories. Worse, XML queries may include operations whose costs are difficult to model,
such as recursive function calls, conditional queries, and references to external files.

It is our belief that the only real solution to this problem lies in further increasing the adaptive behavior
of the query processing system, and in allowing the query processor to frequently re-optimize the query as
it executes and gains increasing knowledge of costs and data characteristics. Our original Tukwila system
provided mechanisms to re-optimize at query materialization points; later work by the authors of the Telegraph
project [AH00] demonstrated that adjustments to a query plan can sometimes be made in the middle of a tuple
stream, and their eddy operators performed flow-based tuple routing. We believe that these ideas must be carried
even further to support efficient XML query processing: query execution and re-optimization should occur on
a nearly continual basis, allowing the system to constantly adjust the query plan to varying conditions, to infer
data patterns and possible optimizations, and even to share work between concurrent queries or to distribute a
query across multiple nodes — while preserving prior work. It is this problem of integrated, feedback-directed
query evaluation upon which we are now focusing.
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