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A model for the interaction of the scanning probe in near-field scanning optical microscopy is
presented. Multiple scattering of the illuminating field with the probe is taken into account. The
implications of this so-called strong tip model for the solution of the associated inverse scattering
problem are studied through simulations. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2812545�

I. INTRODUCTION

Near-field scanning optical microscopy �NSOM�,1–8 as a
surface-imaging method, has drawn considerable attention
due to the remarkable resolution obtained that far exceeds
the diffraction limit of conventional optical microscopy. Ap-
plications of NSOM range from the inspection of biological
samples to semiconductor devices, where spectroscopic con-
cerns or sample handling requirements dictate the use of
lower frequency fields and yet high spatial resolution is still
desired.

Two commonly practiced modalities of NSOM are the
illumination mode and the collection mode. In illumination
mode, a tapered optical fiber probe serves as the source of
illumination and the scattered far field is recorded as the
probe tip scans over the sample. In collection mode, the
sample is illuminated from the far zone. The probe acts as a
detector to collect the scattered field as it scans over the
sample. In both modalities, the recorded field intensity as a
function of the tip position is interpreted as a two-
dimensional image of the sample.

One of the fundamental difficulties of NSOM is the in-
terpretation of the images. Although the sample may present
a complicated three-dimensional structure, the image none-
theless is only two-dimensional. Under certain simplifying
assumptions9–11 such as homogeneity of the sample, NSOM
images may be related to surface structure. However, more
generally, the effects of variations in topography and the op-
tical properties of the sample have proven to be
indistinguishable.12 To resolve this ambiguity, it is desired to
solve the NSOM inverse scattering problem �ISP� which
consists of reconstructing the three-dimensional sample
structure, or the spatial dependence of the dielectric suscep-
tibility of the sample, from measurement of the scattered
field. This technique is known as near-field scanning optical
tomography �NSOT�.13,14

To solve the NSOT ISP, an appropriate model of the
forward problem must be constructed. The form of the for-
ward model affects the solvability of the ISP, the computa-
tional cost of solving the problem, and the accuracy of the
solution. In previous work on NSOT,13,14 the sample was
assumed to be weakly scattering and its interaction with the
optical near field was treated perturbatively, within the accu-
racy of the first Born approximation. Such a linear forward
model gives a readily solvable ISP, and a fast reconstruction
algorithm based on the singular value decomposition �SVD�
of the forward operator was presented. Other authors have
recently considered the inverse problem beyond the linear-
ized model where strong scattering in the sample plays an
important role.15–18

The treatment of the tip as a passive point source or
point detector in the current studies of NSOT may be unre-
alistic. The tip used in NSOM is typically made of a tapered,
metal-coated optical fiber with a subwavelength-sized aper-
ture. When serving as a light source, as in illumination mode,
the aperture radiates as a pointlike dipole. As a detector in
collection mode, the aperture collects the external field and
couples it into the fiber. In both cases, the tip behaves as a
pointlike scatterer.19 Since the same fiber tip may be used in
illumination mode or collection mode, the incident field will,
in collection mode, first scatter from the tip and then subse-
quently illuminate the sample. Likewise, in illumination
mode, the field will scatter from the tip after scattering from
the sample. For both modalities, this extra interaction with
the probe tip gives rise to a correction to the previously con-
sidered model. Using this idea, it has been shown20 that in
photon scanning tunneling microscopy �PSTM�, a modality
of near-field microscopy quite similar to NSOM, the scatter-
ing effect of the tip must be included in the forward model in
order to obtain a correct reconstruction. The tip was modeled
as a pointlike scatterer, and second-order scattering with the
tip was included in the analysis.

In this paper, the effects of multiple scattering from the
tip in both illumination mode and collection mode NSOT are
considered. It is assumed that the sample is weakly scattering
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and thus a linear forward model is obtained. The ISP for this
model is solved, and the results are compared with those
from the ideal case by numerical simulations. Finally, the
relationship between the tip strength and the solvability of
the ISP is discussed.

II. FORWARD PROBLEM

Consider a near-field probe located above a dielectric
half-space with constant index of refraction n. The sample,
described by a dielectric susceptibility ��r�, is assumed to be
in the near zone of the probe. The probe is taken to be de-
scribed by a susceptibility ��r�. A monochromatic incident
field Ei obeying the reduced vector wave equation

� � � � Ei − k2Ei = 0, �1�

is scattered from the tip-sample system, where k=k0 for z
�0 and k=nk0 for z�0. The total field E=Ei+Es, where Es

is the scattered field, satisfies the reduced wave equation

� � � � E − k2E = 4�k0
2�� + ��E . �2�

An integral equation for Es can be obtained,

Es�r� = k0
2� d3r�G�r,r�� · E�r�����r�� + ��r��� . �3�

Here, G is the half-space Green’s tensor which satisfies the
equation

� � � � G�r,r�� − k2G�r,r�� = 4���r − r��I , �4�

where I is identity. The Green’s tensor may be expressed in
the plane-wave decomposition

G�r,r�� =� d2qg�z,z�;q�exp�iq · �� − ���� , �5�

where g�z ,z� ;q�, the plane-wave component, is given by21

g�	�z,z�;q� =
i

2��
1

kz�q� �D�	�q�eikz�q��z−z�� + R�	�q�eikz�q��z+z��� 0 
 z� 
 z

1
kz�q� �D̃�	�q�eikz�q��z�−z� + R�	�q�eikz�q��z�+z�� 0 
 z � z�

1
kz��q�T�	� �q�ei�kz�q�z−kz��q�z�� z� � 0 
 z

1
kz�q�T�	�q�ei�kz�q�z�−kz��q�z� z � 0 
 z�

� , �6�

where kz�q��	k0
2−q2 and kz��q��	n2k0

2−q2. With this nota-
tion, the wave vectors in the z�0 half-space and z�0 half-
space may be written as k�q���q ,kz�q�� and k��q�
��q ,kz��q��, respectively. The polarization tensors D�q� and
D̃�q�, the reflection tensor R�q�, and the transmission ten-
sors T�q� and T��q� are given in the Appendix.

The scattered field Es may be calculated perturbatively
from Eq. �3�. It is useful to define the integral operators S
and T0 such that

S · E�r� � � d3r�S�r,r�� · E�r�� , �7�

and

T0 · E�r� � � d3r�T0�r,r�� · E�r� . �8�

Note that S and T0 represent a single scattering event from
either the sample or the tip. The kernels of S and T0 are
given by the expressions

S�r,r�� = k0
2G�r,r����r�� , �9�

and

T0�r,r�� = k0
2G�r,r����r�� . �10�

Using the above definitions and iterating Eq. �3�, we find that
Es is given by

Es = 

n=1

�

�S + T0�n · Ei. �11�

When the sample is weakly scattering, the series for scattered
field may be truncated at first order in � to yield

Es = �T0 + T0
2 + ¯ + �I + T0 + T0

2 + ¯�

�S�I + T0 + T0
2 + ¯�� · Ei. �12�

A. The effective tip

It will prove convenient to introduce the effective tip-
scattering operator T=
 j=1

� T0
j . Evidently, T provides a non-

perturbative solution of Eqs. �2� and �3� for the case that �
=0,

Es = T · Ei = T0 · �Ei + Es� , �13�

and so may be calculated in a variety of ways. In near-field
optics, it is generally the case that the tip is made as sharp as
possible to obtain a highly localized field. A number of au-
thors have addressed the problem of modeling the field scat-
tered from such tips.22,23 For simplicity, it is assumed here
that the tip is pointlike and located at r0 so that ��r�
=�0��r−r0�. That is, the tip is described by a point polariz-
ability with isotropic susceptibility �0 so that an applied
electric field produces at the tip location an induced dipole
with magnitude and orientation determined by the applied
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field. This model should not be confused with a fixed dipole
illumination which is insensitive to the incident field. It
should be noted that other models for the tip may be substi-
tuted with straightforward changes to the following analysis.
For the case of the pointlike tip, it can be seen that T be-
comes

T�r,r�� = k0
2�0��r� − r0��G�r,r�� + k0

2�0G�r,r0�

· �I + 

j=1

�

�k0
2�G�r0,r0�� j� · G�r0,r��� . �14�

The presence of the delta function allows r� to be set to r0

and the infinite series may be formally summed to obtain

T�r,r�� = k0
2�0��r� − r0�G�r,r0� · 
I + �I

− k0
2�0G�r0,r0��−1 · G�r0,r0�� . �15�

The above expression for T contains a divergence which is
isolated in the term G�r0 ,r0� and is the result of the assump-
tion that the tip is pointlike. The divergence may be regular-
ized by standard methods24 to reintroduce a finite size scale
associated with the physical tip size �. The divergent part of
the Green’s tensor can be expressed in momentum space
with an appropriate cutoff,

G�	�r0,r0� =
1

�2��3�
�k��2�/�

d3k
4�

k2 − k0
2 ���	 − k0

−2k�k	�

+
2ik0��	

3
+ G�	

R �r0,r0� , �16�

where it is assumed that the tip is located in the z�0 half-
space. Here, GR is the part of the Green’s tensor associated
with reflection from the interface,

GR�r0,r0� =� d2q
R�q�
kz�q�

e2ikz�q�z0, �17�

which is finite and need not be regularized. The integral in
Eq. �16� may be evaluated to obtain

G�r0,r0� =
2

3
� 1

��
−

4�

�3k0
2 + ik0�I + GR�r0,r0� . �18�

This result may be used to evaluate the expression for the tip
operator, Eq. �15�, from which it may be seen that

T�r,r�� = k0
2��r� − r0�G�r,r0� · �e, �19�

where �e is the effective tip polarizability,

�e = 
I + �I − k0
2�0G�r0,r0��−1 · G�r0,r0���0. �20�

Note that the effective polarizability, �e, depends on the tip
height above the substrate, z0. Rather than dwell on the pre-
cise value of �e obtained from the foregoing analysis, it is
perhaps of more practical importance to simply note the form
of the solution obtained. In practice, near-field probe tips are
neither points nor spheres, nor even cones, and so it is ex-
pected that, having established the plausibility of the form
expressed in Eq. �19�, the tip polarizability will need to be
calibrated for each instrument.

It follows from Eq. �12� that the scattered electric field,
to first order in �, is given by the sum

Es = �S + T + TS + ST + TST� · Ei. �21�

Here, the S and T terms are usually considered background
and may be subtracted from the data. The ST and TS terms
were the subject of earlier work.13,14 The TST term was
introduced in an ad hoc fashion in20 and its role in the near-
field ISP is the main subject of this work. By definition, in
the weak-tip regime the TST term is neglected, in the strong
tip regime it is retained.

B. Illumination mode

In illumination mode, the sample is illuminated by a
small aperture at the end of a tapered fiber as illustrated in
Fig. 1. The tip may be regarded as a pointlike scatterer lo-
cated at the point r1= ��1 ,z1�. Since the incident field Ei

emanating from the fiber must pass through the small aper-
ture, i.e., the tip, before it interacts with the sample, the S ·Ei

and TS ·Ei terms in Eq. �21� do not contribute. Consequently,
the scattered field at the point r2 in the far zone, with the
background subtracted, may be expressed as

FIG. 1. The simplified model of the
illumination tip.
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Es = �S fT + T fST� · Ei, �22�

where S f and T f are the far-field asymptotic approximations
of S and T,

S f�r2,r�� =
k0

2eik0r2

r2
e−ik�q2�·r��D�q2�

+ R�q2�e2ikz�q2�z����r�� , �23�

and

T f�r2,r�� =
k0

2eik0r2

r2
e−ik�q2�·r��D�q2�

+ R�q2�e2ikz�q2�z���e��r� − r0� , �24�

where q2 is defined so that r2 is in the direction of the out-
going wave vector k�q2� in the far zone.

The measured quantity, denoted 
, will be taken to be
the projection of the scattered field onto a particular polar-
ization, p2,


 = p2 · �S fT + T fST� · Ei. �25�

Making use of Eqs. �23� and �24� and taking p1=Ei�r1� and
r0=r1, it is seen that 
 behaves as an outgoing spherical
wave which can be expressed in terms of the scattering am-
plitude A,


 � A��1,q2�
eik0r2

r2
, �26�

where

A��1,q2�

=� d3r�p2 · 
k0
4e−ik�q2�·r��D�q2� + R�q2�e2ikz�q2�z��

+ k0
6e−ik�q2�·r1�D�q2� + R�q2�e2ikz�q2�z1��eG�r1,r���

�G�r�,r1��e · p1��r�� . �27�

Measurements of 
 are obtained for each position of the tip
r1 as the tip scans over the z=z1 plane with spacing h in both
transverse directions. The data function ��q1 ,q2� is defined
to be the lattice Fourier transform of A��1 ,q2� with respect to
�1,

��q1,q2� = � h

2�
�2



�1

eiq1·�1A��1,q2� , �28�

where the sum over �1 is carried out over all lattice vectors
and q1 belongs to the first Brillouin zone �FBZ� of the lattice.
In this case FBZ= �−� /h ,� /h�� �−� /h ,� /h�. Making use
of Eqs. �5� and �6� and the identity



�

eiq·�1 = �2�

h
�2



q�

��q − q�� , �29�

where q� denotes a reciprocal lattice vector, the data function
may be written as

��q1,q2� = 

q�
� dz�K1�q1,q2,q�,z�

+ K2�q1,q2,q�,z���̃�q2 − q1 + q�,z� , �30�

where �̃�q ,z�=�d2���r�e−iq·� is the transverse Fourier trans-
form of ��r�. The operators K1 and K2, arising from the S fT
and T fST terms, respectively, are given by

K1�q1,q2,q�,z� = k0
4p2 · �D�q2�e−ikz�q2�z + R�q2�eikz�q2�z�

�g�z,z1,q1 − q���e · p1 �31�

and

K2�q1,q2,q�,z� = k0
6p2 · �D�q2�e−ikz�q2�z1 + R�q2�eikz�q2�z1�

��e� d2qg�z1,z,q�

�g�z,z1,q + q1 − q2 − q���e · p1. �32�

Assuming the sample function ��r� is transversely bandlim-
ited to the FBZ, that is, if �̃�q ,z�=0 for q�FBZ, then the
sum over q� in Eq. �30� may be truncated and only the q�
=0 term contributes to the data function �s for q2

−q1�FBZ. The data associated with points outside the FBZ
are redundant. Thus, Eq. �30� becomes

��q1,q2� =� dz�K1�q1,q2,z� + K2�q1,q2,z���̃�q2 − q1,z� ,

�33�

where q2−q1�FBZ, and K1 and K2 are evaluated by Eqs.
�31� and �32� with q�=0, which are

K1�q1,q2,z� = k0
4p2 · �D�q2�e−ikz�q2�z

+ R�q2�eikz�q2�z�g�z,z1,q1��e · p1 �34�

and

K2�q1,q2,z� = k0
6p2 · �D�q2�e−ikz�q2�z1 + R�q2�eikz�q2�z1�

��e� d2qg�z1,z,q�g�z,z1,q + q1 − q2��e · p1.

�35�

C. Collection mode

In collection mode, the scattered field is collected by the
small aperture at the end of the fiber, which is treated as a
pointlike scatterer located at the point r2= ��2 ,z2� that scat-
ters the field into the fiber face located at r� as illustrated in
Fig. 2. Since the scattered field must pass through the small
aperture before being collected by the fiber, the S and ST
terms do not contribute. Subtracting background terms, Eq.
�21� thus becomes

Es = �TS + TST� · Ei. �36�

As in illumination mode, a scalar measured quantity repre-
senting the projection of the scattered field onto a certain
polarization direction p2 is considered,

103103-4 Sun, Carney, and Schotland J. Appl. Phys. 102, 103103 �2007�

Downloaded 15 Jan 2008 to 130.91.116.168. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp




 = p2 · �TS + TST� · Ei. �37�

The illuminating field is taken to be a plane wave of polar-
ization p1 in the direction of the wave vector k�q1�,

Ei�r� = eiq1·�−ikz�q1�z�I + R�q1�e2ikz�q1�z� · p1. �38�

It may be seen that


�q1,�2� =� d3r�p2 · G�r2�,r2��eG�r2,r��

�
k0
4eiq1·��−ikz�q1�z��I + R�q1�e2ikz�q1�z��

+ k0
6eiq1·�2−ikz�q1�z2G�r�,r2�

��e�I + R�q1�e2ikz�q1�z2�� · p1��r�� . �39�

For each direction of illumination q1, the tip scans over the
z=z2� plane with spacing h to sample the scattered field. This
enables us to define the data function ��q1 ,q2� as the lattice
Fourier transform of 
�q1 ,�2� with respect to �2,

��q1,q2� = � h

2�
�2



�2

e−iq2·�2
�q1,�2� , �40�

where the sum over �2 is carried out over all lattice vectors
and q2 belongs to the FBZ of the lattice. Making use of the
plane-wave representation of the Green’s tensor and proceed-
ing much as in the case of illumination mode, the data func-
tion can be seen to be of the form of Eq. �33�, with

K1�q1,q2,z� = k0
4p2 · G�r2�,r2��eg�z2,z,q2�

��Ie−ikz�q1�z + R�q1�eikz�q1�z� · p1 �41�

and

K2�q1,q2,z�

= k0
6p2 · G�r2�,r2��e� d2qg�z2,z,q�g�z,z2,q + q1 − q2�

��e�Ie−ikz�q1�z2 + R�q1�eikz�q1�z2� · p1, �42�

where K1 and K2 represent the TS and TST terms in Eq.
�37�, respectively.

D. Apertureless mode

In apertureless mode, a sharp metal tip located at rt

= ��t ,zt� is excited by an external incident field, serving as a
pointlike secondary source to illuminate the sample as illus-
trated in Fig. 3. The scattered near-field interacts with the tip
and is converted into propagating modes in the far field. The
data collected consist of all terms in Eq. �21�, with the ex-
clusion of the background terms S and T,

Es = �T fS + S fT + T fST� · Ei. �43�

As in the illumination mode, the scattered field is measured
in the far zone. A scalar measured quantity representing the

FIG. 2. The simplified model of the
collection tip.

FIG. 3. The simplified model of the
apertureless tip.
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projection of the scattered field onto a certain polarization
direction p2 is considered,


 = p2 · �T fS + S fT + T fST� · Ei. �44�

The illuminating field is taken to be the same as in the col-
lection mode, and is given by Eq. �38�. It may be seen that 

behaves as an outgoing spherical wave with scattering am-
plitude A=A1+A2, where

A1�q1,q2,�t�

= k0
4� d3r�p2 · 
e−ik�q2�·rt�D�q2� + R�q2�e2ikz�q2�zt�

��eG�rt,r���I + R�q1�e2ikz�q1�z��

�eiq1·��−ikz�q1�z� + e−ik�q2�·r��D�q2� + R�q2�e2ikz�q2�z��

�G�r�,rt��e�I + R�q1�e2ikz�q1�zt�

�eiq1·�t−ikz�q1�zt� · p1��r�� �45�

corresponds to the TS and ST terms, and

A2�q1,q2,�t�

= k0
6� d3r�p2 · 
e−ik�q2�·rt�D�q2� + R�q2�e2ikz�q2�zt�

��eG�rt,r��G�r�,rt��e�I + R�q1�e2ikz�q1�zt�

�eiq1·�t−ikz�q1�zt� · p1��r�� �46�

corresponds to the TST term.
For each pair of q1 and q2, the tip scans over the z=zt

plane with spacing h to sample the scattered field. We thus
define the data function ��q1 ,q2 ,qt� as the lattice Fourier
transform of A�q1 ,q2 ,�t� with respect to �t,

��q1,q2,qt� = � h

2�
�2



�t

e−iqt·�tA�q1,q2,�t� , �47�

where the sum over �t is carried out over all lattice vectors
and qt belongs to the FBZ of the lattice. Following similar
procedures as in the previous sections, the data function may
be found to be

��q1,q2,qt� =� dz�K1�q1,q2,qt,z�

+ K2�q1,q2,qt,z���̃�q2 − q1 + qt,z� , �48�

where

K1�q1,q2,qt,z� = k0
4p2 · 
�D�q2�e−ikz�q2�zt

+ R�q2�eikz�q2�zt��eg�q2 + qt,zt,z�

� �Ie−ikz�q1�z + R�q1�eikz�q1�z�

+ �D�q2�e−ikz�q2�z + R�q2�eikz�q2�z�

� g�q1 − qt,z,zt��e�Ie−ikz�q1�zt

+ R�q1�eikz�q1�zt�� · p1 �49�

and

K2�q1,q2,qt,z�

= k0
6p2 · �D�q2�e−ikz�q2�zt + R�q2�eikz�q2�zt��e

�� d2qg�q,zt,z�g�q + q1 − q2 − qt,z,zt��e�Ie−ikz�q1�zt

+ R�q1�eikz�q1�zt� · p1, �50�

where K1 and K2 represent the TS+ST and TST terms in
Eq. �44�, respectively.

III. INVERSE PROBLEM

The inverse problem may be solved in a manner similar
to that employed in earlier works.13,25,26 It is convenient to
work with a subset of the data. By fixing q2−q1�q0 as a
constant, the integral Eq. �33� can be rewritten as

��q1,q1 + q0�

=� dz�K1�q1,q1 + q0,z� + K2�q1,q1 + q0,z���̃�q0,z� .

�51�

Similar results may be obtained for Eq. �48�.
Solving Eq. �51� consists of finding the inverse of the

forward operator K�K1+K2 that maps the data function �,
now a function of q1 only, to the q0 Fourier component of
the sample structure, �̃, as a function of z. Since �s and �̃
belong to different Hilbert spaces, the inverse of the forward
operator K is not defined. As an alternative, we seek the
pseudoinverse solution �̃+, which is defined as the minimizer
of �K�−��, with minimum L2 norm. This pseudoinverse
solution is uniquely defined. It can be obtained through the
SVD of the forward operator, and is given by13,25,26

�̃+�q0,z� = 

q1�,q1

K*�q1�,q1� + q0,z�M+�q1�,q1;q0���q1,q1 + q0� ,

�52�

where K*�q1� ,q1�+q0 ,z� is the complex conjugate of
K�q1� ,q1�+q0 ,z��K1�q1� ,q1�+q0 ,z�+K2�q1� ,q1�+q0 ,z�, and
M+�q1� ,q1 ;q0� is the element of the regularized pseudoin-
verse matrix of the self-adjoint matrix M, defined by its ma-
trix elements

M�q1,q1�;q0� =� dzK�q1,q1 + q0,z�K*�q1�,q1� + q0,z� .

�53�

The linearized scattering operator is the sum of two parts, K1

and K2. When the incident field is changed, K2 picks up a
change in an overall multiplicative factor, but the variables in
the integration are not involved. The independent variables
of the contribution to the data associated with K2 are thus
restricted to being two-dimensional and so K2 is not invert-
ible. It can further be observed that K1 is first order in �e, the
effective tip strength, whereas K2 is second order in �e. As a
consequence, when the tip is weakly scattering, i.e.,
k0

3�0�1, the contribution of K1 is generally greater than K2

and therefore is the major contribution to the data function.
In the limiting case that the multiple tip-scattering effect is
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negligible, the problem reduces to the ideal case assumed in
Ref. 13. On the other hand, when K2 becomes more signifi-
cant and therefore cannot be neglected, the inverse problem
becomes more ill-conditioned. In the limiting case of a very
strong tip, the K2 operator becomes dominant and meaning-
ful solutions to the inverse problem cannot be obtained for
the measurement schemes considered here.

IV. NUMERICAL SIMULATIONS

To study the effect of the strong tip correction to the
NSOT ISP, a series of numerical simulations was performed.
Collection mode NSOT is considered. As shown in Fig. 4,
the object was taken to consist of three pointlike scatterers in
vacuum, located at different heights in the y=0 plane, in a
cubic box of size ����� just above the z=0 plane �that is,
the interface with the substrate�, and centered at the origin,
where �=2� /k0 is the free-space wavelength of the illumi-
nating field. The point scatterers of the sample were taken to

have a polarizability of �3 and the effective polarizability of
the tip was taken to be �3 /100. The substrate was taken to
have a real index of refraction equal to 1.5.

The data were simulated for 64 different illuminating
plane waves with transverse wave vectors, q1, uniformly
sampled within the square �0,k0�� �0,k0�. The incident
plane waves are taken to have TM polarization, that is, the
electric field is polarized in the plane defined by the wave
vector and the normal direction of the interface. The scat-
tered field was simulated with both the weak tip model and
the strong tip corrected model. Data were simulated at a
discrete set of points with spacing � /16 in a window 32�
�32� in the z=� measurement plane. Since the measure-
ment plane is at a fixed position the effective polarizability is
constant. From the data, samples of the transverse two-
dimensional Fourier components of the scatterer structure
were computed. The reconstruction is realized by truncated
SVD, with singular functions computed in the interval
z� �0,��, within which the entire scatterer exists.

The reconstructions of the scatterer from the simulated
data are shown in Fig. 5. These reconstructions are computed
in a ��� window in three horizontal layers in which the
three pointlike scatterers reside. Reconstructions in the ver-
tical y=0 cross section are also shown with certain degrees
of contrast enhancement. In column �a�, the forward data
were simulated under the weak tip assumption and the recon-
structions were made with only the week tip assumption. In
column �b� the strong tip term, that is the TST term, is taken
into account in both the forward simulation and the solution
of the inverse problem. It may be noticed that the strong tip
reconstruction has a wider point-spread function than the

FIG. 4. Point scatterers in the y=0 plane.

FIG. 5. Comparison of reconstructions
from weak tip and strong tip models.
The effective tip polarizability is
�3 /100; column �a� shows the weak
tip reconstruction from weak tip simu-
lated data, column �b� is the strong tip
reconstruction with strong tip simu-
lated data, and column �c� is the recon-
struction with the weak tip model us-
ing strong tip simulated data. Images
in the first three rows are linearly
normalized.
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weak tip model, especially when the reconstruction layer is
further away from the measurement plane. This is consistent
with our conclusion that the strong tip ISP is more poorly
conditioned than the weak tip ISP. In column �c� data were
simulated including the strong tip term, but reconstructions
were computed only under the weak tip assumption. It is
seen that the reconstruction barely resembles the original
sample. These simulations demonstrate the significance of
strong tip effect in the NSOT image reconstruction. More-
over, the results are consistent with the experiences of the
authors in developing the inversion methods of Ref. 20
where a weak-tip model initially yielded poor results like
those seen in column �c� while the inclusion of a strong tip
term yielded results in good agreement with known sample
structure.

V. DISCUSSION

Multiple-scattering effects from the tip in both illumina-
tion mode and collection mode NSOT have been analyzed.
For the inverse problem, inclusion of the strong tip correc-
tion is seen, through numerical simulations, to be essential
for a valid reconstruction of the sample.

It is shown qualitatively that the strong tip effect in-
creases the ill-posedness of the inverse problem for these
modalities. Under the extreme circumstance that the tip-
scattering effect becomes dominant, no meaningful recon-
struction can be obtained and therefore alternative ap-
proaches to NSOT experiment and data acquisition might be
advised.
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APPENDIX

The polarization tensors D�q� and D̃�q� in Eq. �6� are
given by the expressions

D�	�q� = ��	 − k0
−2k��q�k	�q� , �A1�

D̃�q��	 = ��	 − k0
−2k̃��q�k̃	�q� , �A2�

where k̃�q���q ,−kz�q�� is the down-going wave vector in
the z�0 half-space. The reflection and transmission tensors
for the vector field in the z�0 half-space and the z�0 half-
space may be obtained by first projecting the field onto the
TE/TM basis, then multiplying by the appropriate Fresnel
coefficients and projecting back onto the original basis. We
denote by R and R� reflection in the z�0 half-space and the
z�0 half-space, respectively, and we denote by T and T�
transmission from the z�0 half-space into the z�0 half-
space and transmission from the z�0 half-space into the z
�0 half-space respectively. P and P� are projection opera-

tors onto the TE/TM basis in the z�0 half-space and the z
�0 half-space, respectively, and are discussed below. We
find for the reflection and transmission tensors the expres-
sions

R�	�q� = P���k�r���k,k��P�	�k̃� , �A3�

R�	� �q� = P��� �k̃��r��� �k,k��P�	� �k�� , �A4�

T�	�q� = P��� �k̃��t���k,k��P�	�k̃� , �A5�

T�	� �q� = P���k�t��� �k,k��P�	� �k�� . �A6�

where the TEM reflection and transmission coefficients r and
t in the z�0 half-space are given by

r =�
n2kz − kz�

n2kz + kz�
0

0
kz − kz�

kz + kz�
� , �A7�

and

t =�
2nkz

n2kz + kz�
0

0
2kz

kz + kz�
� , �A8�

and their z�0 half-space counterparts are given by r�=−r
and t�=kz�t /kz. The projection operator onto the TE/TM basis
in the z�0 half-space is given by

P�k� =
1

	kx
2 + ky

2k0

�− kxkz − kykz kx
2 + ky

2

− kyk0 kxk0 0
� , �A9�

and in the z�0 half-space

P��k�� =
1

	kx
2 + ky

2nk0

� − kxkz� − kykz� kx
2 + ky

2

− kynk0 kxnk0 0
� . �A10�

The following identities are useful in derivations in the text:

P���k�P�	�k� = D�	�q� , �A11�

P���k̃�P�	�k̃� = D̃�	�q� , �A12�

P���k�P	��k� = P���k̃�P	��k̃� = ��	, �A13�

R�q��	 = R�− q�	�, �A14�

R��q��	 = R��− q�	�, �A15�

T��� �q�R�	�q� =
− kz�

kz
R��� �q�T�	�q� , �A16�

R���q�R�	�q� +
kz�

kz
T���q�T�	�q� = ��	 −

k̃�k̃	

k0
2 . �A17�

Equations �A11�–�A13� simply reflect the fact the P is a
projection operator with the usual properties that P2=P and
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P is the identity on the subspace into which it projects. Equa-
tion �A16� may be understood to be a statement of Stokes
reciprocity.

1C. Girard and A. Dereux, Rep. Prog. Phys. 59, 657 �1996�.
2D. Courjon, K. Sarayeddine, and M. Spajer, Opt. Commun. 71, 23 �1989�.
3E. Synge, Philos. Mag. 6, 356 �1928�.
4R. C. Reddick, R. J. Warmack, and T. L. Ferrell, Phys. Rev. B 39, 767
�1989�.

5E. Ash and G. Nicholls, Nature �London� 237, 510 �1972�.
6A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, Ultramicroscopy
13, 227 �1984�.

7D. W. Pohl, W. Denk, and M. Lanz, Appl. Phys. Lett. 44, 651 �1984�.
8E. Betzig and J. K. Trautman, Science 257, 189 �1992�.
9N. Garcia and M. Nieto-Vesperinas, Opt. Lett. 18, 2090 �1993�.

10N. Garcia and M. Nieto-Vesperinas, Opt. Lett. 20, 949 �1995�.
11R. Carminati, J.-J. Greffet, N. Garcia, and M. Nieto-Vesperinas, Opt. Lett.

21, 501 �1996�.
12R. Carminati and J.-J. Greffet, Opt. Commun. 116, 316 �1995�.
13P. S. Carney and J. C. Schotland, Appl. Phys. Lett. 77, 2798 �2000�.
14J. Sun, J. C. Schotland, and P. S. Carney, IEEE J. Sel. Top. Quantum

Electron. 12, 1072 �2006�.
15K. Belkebir, P. Chaumet, and A. Sentenac, J. Opt. Soc. Am. A 22, 1889

�2005�.
16G. Bao and L. Peijun, SIAM J. Appl. Math. 65, 2049 �2005�.
17G. Panasyuk, V. Markel, P. Carney, and J. Schotland, Appl. Phys. Lett. 89,

221116 �2006�.
18P. C. Chaumet, K. Belkebir, and A. Sentenac, Opt. Lett. 29, 2740 �2004�.
19S. I. Bozhevolnyi, V. A. Markel, V. Coello, W. Kim, and V. M. Shalaev,

Phys. Rev. B 58, 11441 �1998�.
20P. S. Carney, R. A. Frazin, S. I. Bozhevolnyi, V. S. Volkov, A. Boltasseva,

and J. C. Schotland, Phys. Rev. Lett. 92, 163903 �2004�.
21C. Tai, Dyadic Green Functions in Electromagnetic Theory, 2nd ed. �IEEE

Press, New York, 1994�.
22L. Novotny and B. Hecht, Principles of Nano-Optics, 1st ed. �Cambridge

University Press, Cambridge, 2006�.
23A. Cvitkovic, N. Ocelic, and R. Hillenbrand, Opt. Express 15, 8550

�2007�.
24P. de Vries, D. V. van Coevorden, and A. Lagendijk, Rev. Mod. Phys. 70,

447 �1998�.
25P. S. Carney and J. C. Schotland, J. Opt. Pure Appl. Opt. 4, S140 �2002�.
26P. S. Carney and J. C. Schotland, J. Opt. Soc. Am. A 20, 542 �2003�.

103103-9 Sun, Carney, and Schotland J. Appl. Phys. 102, 103103 �2007�

Downloaded 15 Jan 2008 to 130.91.116.168. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp


	University of Pennsylvania
	ScholarlyCommons
	11-15-2007

	Strong Tip Effects in Near-field Scanning Optical Tomography
	Jin Sun
	P. Scott Carney
	John C. Schotland


