Empirical developments in retraction

B K. Redman
Wayne State University

H N. Yarandi
Wayne State University

Jon F. Merz
University of Pennsylvania, merz@mail.med.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/hms

Recommended Citation

Reprinted from:
DOI:10.1136/jme.2007.023069
URL: http://jme.bmj.com/cgi/content/abstract/34/11/807

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/hms/113
For more information, please contact libraryrepository@pobox.upenn.edu.
Empirical developments in retraction

Abstract
This study provides current data on key questions about retraction of scientific articles. Findings confirm that the rate of retractions remains low but is increasing. The most commonly cited reason for retraction was research error or inability to reproduce results; the rate from research misconduct is an underestimate, since some retractions necessitated by research misconduct were reported as being due to inability to reproduce. Retraction by parties other than authors is increasing, especially for research misconduct. Although retractions are on average occurring sooner after publication than in the past, citation analysis shows that they are not being recognised by subsequent users of the work. Findings suggest that editors and institutional officials are taking more responsibility for correcting the scientific record but that reasons published in the retraction notice are not always reliable. More aggressive means of notification to the scientific community appear to be necessary.

Comments
Reprinted from:
DOI:10.1136/jme.2007.023069
URL: http://jme.bmj.com/cgi/content/abstract/34/11/807

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/hms/113
Empirical developments in retraction

B K Redman, H N Yarandi and J F Merz

J. Med. Ethics 2008;34:807-809
doi:10.1136/jme.2007.023069

Updated information and services can be found at:
http://jme.bmj.com/cgi/content/full/34/11/807

These include:

References This article cites 7 articles, 5 of which can be accessed free at:
http://jme.bmj.com/cgi/content/full/34/11/807#BIBL

Rapid responses You can respond to this article at:
http://jme.bmj.com/cgi/eletter-submit/34/11/807

Email alerting service Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Notes

To order reprints of this article go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to *Journal of Medical Ethics* go to:
http://journals.bmj.com/subscriptions/
Empirical developments in retraction

B K Redman,1,2 H N Yarandi,2 J F Merz1

ABSTRACT
This study provides current data on key questions about retraction of scientific articles. Findings confirm that the rate of retractions remains low but is increasing. The most commonly cited reason for retraction was research error or inability to reproduce results; the rate from research misconduct is an underestimate, since some retractions necessitated by research misconduct were reported as being due to inability to reproduce. Retraction by parties other than authors is increasing, especially for research misconduct. Although retractions are on average occurring sooner after publication than in the past, citation analysis shows that they are not being recognised by subsequent users of the work. Findings suggest that editors and institutional officials are taking more responsibility for correcting the scientific record but that reasons published in the retraction notice are not always reliable. More aggressive means of notification to the scientific community appear to be necessary.

Previous studies of retraction of scientific articles have shown that the dominant reason for retraction is research error or inability to reproduce results (generally referred to as “inability to reproduce”).1–3 Citation continues long after retraction, raising questions about the adequacy of current methods of notification.4 Here we update these findings. We report changes in rate and agent of retraction and in length of time between publication and retraction and examine the role of publicity on post-retraction citation rate.

METHODS
The National Library of Medicine’s PubMed database identifies retracted articles. Retractions for articles published in the decade 1995–2004 were retrieved on 9 June 2005 using publication type “retraction in”. Each case was coded to indicate who retracted the publication, the portion (part or whole) retracted, the reason for retraction and the length of time in months between publication and retraction. Ten per cent of the records were coded independently, yielding a 3% disagreement, which was negotiated to agreement.

The impact factor for the journal in which the article was published and retracted was obtained from Journal Citation Reports (2005).4 A journal’s impact factor is the number of citations in the current year to papers published in the previous 2 years, divided by the total number published in the same 2 years.5 Those with the highest impact factor are considered the most prestigious and their papers are likely to be widely cited, making it important that retractions be noted. PubMed citations for the years 1995–2004 to the search terms “retraction”, “research misconduct”, “research fraud” and “plagiarism” reported in the news sections of Science and Nature and matched to cases in our data set were retrieved as proxy measures of publicity to the scientific community.

Citation activity was obtained from Science Citation Index (SCI) and Social Science Citation Index (SSCI), through the Web of Science (http://portal.isiknowledge.com/portal.cgi?Init = Yes&SID = E2ni9cFg483MikSakg6g). In addition to citation activity before and after each retraction, a subset of all cases in the biomedical sciences in which the full article was retracted for reasons of confirmed data fabrication/falsification, research error or inability to reproduce was examined. Those articles cited at least 10 times 4 years or more after retraction (that is, with high late post-retraction citation rates) were analysed. In these cases, each citation was checked for whether it acknowledged the retraction. Descriptive statistics, analysis of frequency, regression and correlation analysis were used to analyse the data.

RESULTS
The number of records in PubMed for the study period was 5,041,587; of these, 328 (0.0065%) were retracted. We analysed the 315 cases (96%) that were in English. As shown in table 1, the largest proportion of retractions were by all authors, followed by some authors and by editors/publishers. The primary reasons for retraction were research error, inability to reproduce, research misconduct and plagiarism. Usually (in 90% of cases) the entire article was retracted. In the span of 10 years, the 315 retracted articles cumulatively were cited 3942 times before retraction and 4501 times after retraction.

Table 2 presents months between publication and retraction, citations before and after retraction and journal impact factor. Thirty-two cases of retraction (10%) resulted in publicity in the news sections of Science or Nature, most frequently reporting on cases of research misconduct.

Compared with an earlier study of retractions for the years 1966–1994,1 the present study found (1) a significantly higher rate of retraction (0.0021% versus 0.0065%, p<0.0001 by test of proportions), (2) a decrease in the mean time from publication to retraction (from 28 months to 21 months), and (3) a decrease in the proportion of retractions initiated by authors (from 81% to 67%) (see table 1), suggesting that others have become involved in oversight.

Continued citation of invalid, retracted work, already documented in 19906 and in 19987 remains a problem, even though retractions are now clearly identified in the Medline and PubMed databases.6 Our findings show that the studies highly cited before retraction remained highly cited post-retraction ($r = 0.60$, $p<0.0001$), with those in
A better understanding of the myriad kinds of research error and their implications will provide options for improving on current practices. For example, we could devise guidelines that require authors to clearly state when they have committed an error, and when their findings are being retracted. This would extend beyond the Office of Research Integrity to include all agencies that can sanction research misconduct, a more thorough study of this issue would be necessary.

In summary, rates of retraction, although very low, have increased between the periods 1966–1997 and 1995–2004, and retractions are occurring more quickly and are more frequently initiated by parties other than authors. The post-retraction citation rate remains high, especially associated with retraction for reasons of research misconduct and inability to reproduce. Some suggest that journals should require authors to attest that they have checked their manuscripts’ reference list against the National Library of Medicine (NLM) master list of retracted articles, perhaps by way of a web-based program.

These findings raise implications for the scientific community, institutions, professional associations and journals. International standards are clear that the text of the retraction should explain why the article is being retracted, and the journal should initiate a thorough study of this issue if we are to understand why the rates are increasing.

DISCUSSION AND CONCLUSIONS

An early study by Parrish noted that retraction notices often contained the reasons for retraction, particularly in cases of research misconduct. This is important to justify their continued use of research resources (which could be wasted) as well as on downstream research that depends on upstream research will be affected. Asking those who cite retracted articles why they continue to cite and testing new mechanisms for effective notification of the scientific community will provide options for improving on current practices. Better understanding of the myriad kinds of research error and

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Summary measures of the retraction variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>Mean</td>
</tr>
<tr>
<td>Months between publication and retraction</td>
<td>20.75</td>
</tr>
<tr>
<td>Number of citations</td>
<td></td>
</tr>
<tr>
<td>Before retraction</td>
<td>13.83</td>
</tr>
<tr>
<td>After retraction</td>
<td>15.81</td>
</tr>
<tr>
<td>Journal impact factor</td>
<td>10.36</td>
</tr>
</tbody>
</table>

808
inability to reproduce will be likely to help further define best scientific practices.

Competing interests: None declared.

REFERENCES