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Abstractions of Hamiltonian Control Systems

Abstract

Given a control system and a desired property, an abstracted system is a reduced system that preserves the
property of interest while ignoring modeling detail. In previous work, we considered abstractions of linear and
nonlinear analytic control systems while preserving reachability properties. In this paper we consider the
abstraction problem for Hamiltonian control systems, that is, we preserve the Hamiltonian structure during
the abstraction process. We show how the mechanical structure of Hamiltonian control systems can be
exploited to simplify the abstraction computations and we provide conditions under which the local
accessibility properties of the abstracted Hamiltonian system are equivalent to the local accessibility
properties of the original Hamiltonian control system.
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Abstract

Given a control system and a desired property, an
abstracted system is a reduced system that preserves
the property of interest while ignoring modeling detail.
In previous work, we considered abstractions of linear
and nonlinear analytic control systems while preserving
reachability properties. In this paper we consider the
abstraction problem for Hamiltonian control systems,
that is, we preserve the Hamiltonian structure during
the abstraction process. We show how the mechanical
structure of Hamiltonian control systems can be ex-
ploited to simplify the abstraction computations and
we provide conditions under which the local accessi-
bility properties of the abstracted Hamiltonian system
are equivalent to the local accessibility properties of the
original Hamiltonian control system.

1 Introduction

Abstractions of control systems are important for re-
ducing the complexity of their analysis or design. From
an analysis perspective, given a large-scale control sys-
tem and a property to be verified, one extracts a smaller
abstracted system with equivalent properties. Checking
the property on the abstraction is then equivalent to
checking the property on the original system. From a
design perspective, rather than designing a controller
for the original large scale system, one designs a con-
troller for the smaller abstracted system, and then re-
fines the design to the original system while incorpo-
rating modeling detail.

A formal approach to a modeling framework of abstrac-
tion critically depends on whether we are able to con-
struct hierarchies of abstractions as well as character-
ize conditions under which various properties propa-
gate from the original to the abstracted system and
vice versa. In {10], hierarchical abstractions of linear
control systems were extracted using computationally

L This work was performed while the first author was visiting
the University of Pennsylvania. This research is partially sup-
ported by DARPA under grant F33615-00-C-1707, the University
of Pennsylvania Research Foundation, and by Fundag¢io para a
Ciéncia e Tecnologia, under grant PRAXIS XXI1/BD/18149/98.
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efficient constructions. In the same spirit, abstractions
of analytic control systems were considered in [11]. In
this paper, we proceed in the spirit of [11] and consider
abstractions of Hamiltonian control systems. Since
Hamiltonian control systems are completely defined by
controlled Hamiltonians we will simplify the computa-
tion of abstractions by performing them at the level
of controlled Hamiltonians., On the other hand, to be
able to relate the dynamics induced by the controlled
Hamiltonians we need to restrict the class of abstract-
ing maps to those that preserve the Hamiltonian struc-
ture. We also characterize abstracting maps for which
the original and abstracted system are equivalent from
a local accessibility point of view.

Reduction of mechanical control systems is a very rich
and mature area [6, 7, 5, 8. The approach presented
in this paper is quite different from these established
notions of reduction for mechanical systems. When
performing an abstraction one is interested in ignoring
irrelevant modeling details. In this spirit one factors
the original model by group actions that do not nec-
essarily represent symmetries. This extra freedom in
performing reduction is balanced by the fact that in-
formation about the system is lost when performing an
abstraction, whereas when reducing using symmetries
no essential information is lost. However abstracting
a control system and in particular an Hamiltonian one
is always possible therefore leading to a more general
notion of reduction.

2 Mathematical Preliminaries

In this section we review some basic facts from differ-
ential and Poisson geometry as well as control theory
and Hamiltonian control systems, in order to establish
consistent notation. The reader may whish to consult
nurnerous books on these subjects such as {1, 2, 9, 4].

2.1 Differential Geometry

Let M be a differentiable manifold and T, M its tan-
gent space at x € M. The tangent bundle of M is
denoted by TM = UgepmT:M and 7 is the canon-
ical projection map # : TM — M taking a tan-
gent vector X(z) € TM C TM to the base point



¢ € M. Dually we define the cotangent bundle as
T*M = U,emT M, where T2 M is the cotangent space
of M at z. Now let M and N be smooth manifolds
and ¢ : M — N a smooth map. Given a map ¢ : M
-+ N, we denote by Ty : T,M — Ty yN the in-
duced tangent which maps tangent vectors from T,
to tangent vectors at Ty(;)N. A fiber bundle is a tuple
{B,M,75,U, {Oi}icr), where B, M and U/ are smooth
manifolds called the total space, the base space and
standard fiber respectively. Themap g : B — M isa
surjective submersion and {O;}ics i5 an open cover of
M such that for every i € I there exists a diffeomor-
phism ¥; : 731 (0;) — O; x U satisfying 7,0 ¥; = 7g,
where m, is the projection from O; x U to ;. The
submanifold #~!(z)} is called the fiber at x € M.

2.2 Poisson Geometry

For the purposes of this paper, it will be more natural
to work with Poisson manifolds, rather than symplectic
manifolds.! A Poisson structure on manifold M is a
bilinear map from C* (M) x C* (M) to C®(M) called
Poisson bracket, denoted by {f,g}ar or simply {f,g},
satisfying the following identities:

{f.9}=—{g. f} (2.1}
{f g, b1} +{g. AW 1} + {h{f9}} =0 (22)
{f,gh} = {f, g}k + g{f. h} (2.3)

A Poisson manifold (M, {,}s) is a smooth manifold
M equipped with a Poisson structure {,}p. Given
a smooth function h : M — R, the Poisson bracket
allows us to obtain an Hamiltonian vector field X, with
Hamiitonian b using:

Lx,f={f,h} Vf€CT(M)
where Lx, f is the Lie derivative of f along X,. Note
that the vector field X, is well defined since the
Poisson bracket verifies the Leibnitz rule and there-
fore defines a derivation on C%(M) ([8]). Further-
more C*({M) equipped with {, } is a Lie algebra, also
called a Poisson algebra. Associated with the Poisson

bracket there is a contravariant anti-symmetric two-
tensor B : T*M x T*M — R such that:

B(z)(df,dg) = {/,9}(z)
We say that the Poisson structure is non-degenerate if
the map B# : T*M — TM defined by:
dg(B*(df)) = B(d/,dg)

is an isomorphism for every x € M. Given a map ¢ :
(M, {,}m) — (N,{,}n~) between Poisson manifolds,
we say that ¢ preserves the Poisson structure or that
¢ is a Poisson map iff:

{f°¢7g°¢}M = {fag}N °¢'
for every f,g € C°(N).

1 More detailed expositions on symplectic and Poisson geom-
etry can be found in [8, 3]

(2.4)

(2.5)

(2.6)

(2.7)
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3 Hamiltonian Control Systems

Hamiltonian control systems are control systems en-
dowed with additional structure. The extra structure
comes from the fact that they model mechanical sys-
tems so they are essentially a collection of Hamilto-
nian vector fields parameterized by the control input.
The following global and coordinate free description of
Hamiltenian control systems is inspired from {12, 9].

Definition 3.1 (Control System) An Hamiltonian
control system Sy = (U, H) consists of a control bun-
dle 7y : U — M over a Poisson manifold (M,{,})
with non-degenerate Poisson bracket, and a smooth
function H : U — R. With the Hamiltonian con-
trol system Sy = (U, H) we associate the collection of
Hamiltonians H as the collection of all smooth func-
tions h of the form h = H o o, where ¢ is a sec-
tion? of my : U — M. This family induces the set
valued control section Dy of # : TM — M defined
pointwise by Dy (x) = UpenXa(z), where X; satisfies
Lx,f = {f,k}, for dll § € C(M).

The control space I is modeled as a fiber bundle since
in general the control inputs available may depend on
the current state of the system. The map H should
be thought of as a controlled Hamiltonian since it (lo-
cally} assigns an Hamiltonian function to each control
input. Note that the control bundle, and the controlled
Hamiltonian completely specify the Hamiltonian con-
trol system. In particular, by fixing the control input,
one obtains an Hamiltonian vector field. The concept
of trajectories of is similar to ordinary control systems.

Definition 3.2 (Trajectories of Control systems)
A piece-wise smooth curve ¢ : I — M, I C R} is
called @ trajectory of control system S = (U, H), iff

dewy € Dutett)

4 Hamiltonian Abstractions

Given an Hamiltonian control system?® Sg,, defined on
a Poisson manifold (M, {, }as) our goal is to construct
amap ¢ : M — N, the abstraction map or aggregation
map that will induce a new Hamiltonian control sys-
tem Sy, on the lower dimensional Poisson manifold
(N, {, }~) baving as trajectories ¢(c™), where ¢™ are
Sh,, trajectories. The concept of abstraction map for
continucus, not necessarily Hamiltonian, control sys-
tems is defined in [10] as:

Definition 4.1 (Abstracting Maps) Let Su and
Sy be two control systems on manifolds M and N,

2A section of wy : U — M is a smooth map ¢ : M — U such
that mp; 0 o =identity on M.

3From now on, Su,, = (Usr, Har} or simply Sg,, denotes an
Hamiltonian control system on Poisson manifold (A, {, }ar).



respectively. A smooth surjective submersion ¢ : M
— N is called an abstraction or aggregation map iff
for every trajectory ¢™ of Sur, ¢(cM) is a trajectory
of Sn. Control system Sy is culled a ¢-abstraction of
Sp.

From the above definition it is clear that an abstraction
captures all the trajectories of the original system, but
may also contain redundant trajectories. These redun-
dant trajectories are not feasible by the original system
and are therefore undesired. Clearly, it is difficult to
determine whether a control system is an abstraction
of another at the level of trajectories. One is then in-
terested in a characterization of abstractions which is
equivalent to Definition 4.1 but checkable. This leads
to the notion of ¢-related Hamiltonian control systems.

Definition 4.2 (¢-related Hamiltonian systems)
Let Su,, end Sy, be two Hamiltonian control sys-
tems defined on Poisson manifolds (M, {,}s) ond
(N, {, }n), respectively. Let ¢: M — N be a surjec-
tive Poisson submersion, and let ¢p be defined by
g = (Bﬁ)'1 oTpo de. Then Hamiltonian control
system Sy, is ¢-reluted to Sy, iff for allz € M,

¢u(dHm(z)) C dHn(9(z)) (4.1)

Although the above definition is stated in terms of
the exterior derivative of the family of Hamiltonians
defining the control system, a canonical construction to
be presented at Secticn 4.1 will allows us to compute
Hy directly from from H . The relationship between
¢-abstractions and ¢-related Hamiltonian control sys-
tems is now given.

Proposition 4.3 Let Sy, end Sy, be Hamiltonian
control systems on Poisson manifolds (M,{,}a) and
(N, {,}n), respectively, and ¢ : M — N a smooth
Poisson map. Then Sy,, and Sy, are ¢-related if and
only if Sy, is a @-abstraction of Su,,.

Before proving this result we recall the following The-
orem from [10]:

Theorem 4.4 ([10]) Let Sp and Sn be control sys-
tems on manifolds M and N, respectively, and
¢ : M - N asmooth map. Then Sy ts a ¢-abstraction

of Sar iff
T:¢(Du(z)) C Dy o 8(z)

We now return to the proof of Proposition 4.3.

(4.2)

Proof: It is enough to show that if ¢ is a Poisson map
then Definition 4.2 is equivalent to expression 4.2 for
Hamiltonian control systems. The result then follows
from Theorem 4.4. Definition 4.2 is equivalent to:

¢p(dMaiz)) C dHny{o(z)) &
Tod(BYy (dHm(z))) € BE(dHn((2) &
TZ¢(DHM (a'l)) g DHN (¢)($))
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which is just (4.2). »
Proposition 4.3 tell us that the abstracting process can
be characterized at the level of the controlled Hamil-
tonians. This result should be expected since the con-
trolled Hamiltonians completely specify the dynamics
of Hamiltonian control systems given a Poisson struc-
ture.

4.1 Canonical Construction

Given a Poisson map, Definition 4.2 provides us with
a geometric definition for Hamiltonian abstractions
which is useful conceptually but not computationally.
We now present a canonical construction that will al-
low us to obtain an abstraction Sy, from an Hamil-
tonian control system Sy,, and a Poisson map ¢ : M
— N. Qur construction is inspired from the canoni-
cal construction of {11], even though the construction
presented here uses codistributions as opposed to dis-
tributions. This is natural for Hamiltonian systems
since the differentials of the Hamiltonians capture all
system information. We will assume from now on that
all the Hamiltonian control systems are affine in con-
trols, meaning that the associated set valued control
sections will be affine distributions.

Definition 4.2 and, in particular, condition (4.1) re-
quire the union of all the values of ¢x(dHas) evalu-
ated at every T € ¢~!(y). A way of constructing this
union is to define another affine family of maps F such
that d¥ is constant on ¢~ 1(y) and furthermore satis-
fies dHa C dF. From this new family it suffices to
compute d¥H n(y) = dF(z) for some = € ¢~ (y) since
dF is the same for any = € ¢~} (y}. In other words, we
would like to construct an affine space of maps F that
we write as F = fo+ I, where f; is a smooth map and
F is a linear space of smooth maps, such that:

1. dHy CdF

2. For all z,&' € M such that ¢(x)
dF(z) = dF(z").

Let K be the integrable distribution Ker(T'¢). Then
the leaves of the foliation X correspond to points on M
that have the same image under ¢. In this setting, we
would like to design the family F so that the resulting
codistribution dF is invariant with respect to the vec-
tor fields in XK. This idea is captured in the following
proposition:

¢(z'),

Proposition 4.5 (Invariant Affine Codistributions)

An affine space F = fy + F of smooth functions saf-
isfies dF(x) = dF(z') for all z,2' € M such that
o(z) = (') if and only if Lxdf €dAF for al K € K
and all maps f € F.

Proof: We only provide a sketch due to space
limitations. If dF(z) dF(z') then K{df € F
for the flow K, of any vector field K € K and any
f € F. This means that K;df(z) = ao(z, t)dfo(x) +



S, ai(z,t)d fi(z) for smooth scalar functions a;(z, t)
and a basis {dfi}i=1.2,...n of dF. Note that ag(z,t)
is either 0 or 1 so that by continuity H‘%ao(z,t) =0
and we get by time differentiation at £ = 0, Lxdf =
ai{z,t)df; € F as desired. Conversely we have that
LxdF € LxdF C dF and therefore the distribution
dF is K-invariant. Similarly one shows that the distri-
bution Rd fo & dF is also K-invariant and this means
that K7dfo(z) = ao(z, t)dfo+ 3.1, ailz, t)d fi(z). For
t = 0 we see that ag(z,t) = 1 and a;(z,t) = 0. Since
LxdF C dF and LxdF C dF imply that Cxdfo € dF
we get that do{z,t) = 0 meaning that ap(x,t) = 1 for
all t and consequently K;'dfo(z) € dF({z). The asser-
tion dF(z) = dF(z') for all z, £’ such that ¢(z)} = ¢(z')
now follows from X-invariance. ]

Proposition 4.5 motivates a canonical constructive pro-
cedure to obtain the abstracted Hamiltonian control
system Sg,, given an Hamiltonian control system Sg,,
and an abstracting Poisson map ¢: M — N. 1If we
denote the annihilating codistribution of K by:

Ke={8eT*M | BK)=0 VKeEK} (4.3)

we can construct a collection of Hamiltonians Hpy
based on H s as follows: '

Definition 4.6 (Canonical construction) Let ¢ :
(M, {,}m) = {N,{,}n) be a Poisson map between
manifolds with non-degenerate Poisson brackets, and
let Hpar = ho + H be an affine space of Hamiltonians
on M. Denote by Hy the following offine fomily of
smooth maps:

ﬁM =h9UFU£KFU£Kﬁx—FU... (4.4)

for H=Hu Lxhy and all K € K. The collection of
Hamiltonians Hy defined by:

Hy =THp oi (4.5)

for any embedding i : N < M such that Bﬁ Ky C
Ti(TN) is called canonically ¢-related to Hy .

It follows from the canonical construction 4.6 that the
affine family of maps Hy canonically ¢-related to Has
has the following properties

Proposition 4.7 (Minimal Abstraction) The
codistribution dHay s the smallest codistribution
satisfying:

1. dHpy C dHuy

2 Fgf all T1,T2 € M such that ¢{z;) = @{xs),
d‘HM(.'L‘l) = dﬂm(xz)

and the Hamiltonian control systemn defined by Hy is
the smallest Hamiltonian control system ¢-related to
Hu.
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As asserted by Proposition 4.7 the abstraction obtained
by the canonical construction is the smailest Hamilto-
nian control system ¢-related to Sy, , therefore we are
always able to compute the minimal ¢-abstraction of
any Hamiltonian control system given an abstracting
Poisson map ¢.

5 Local Accessibility Equivalence

In addition to propagating trajectories and Hamilto-
nians from the original Hamiltonian control system to
the abstracted Hamiltonian system, we will investigate
how accessibility properties can be preserved in the ab-
straction process. We first review several (local) acces-
sibility properties for control systems [4, 9].

Definition 5.1 (Reachable sets [4]) Let Sy be a
control system on a smooth manifold M. For each
T > 0 and each x € M, the set of points reachable
from z at time T, denoted by Reach(x,T), is equal to
the set of terminal points c(T) of Su trajectories that
originate at =. The set of points reachable from x in
T or fewer units of time, denoted by Reach(z,<T) is
given by Reach(x, < T) = UicrReach(z,T).

Definition 5.2 A control system Sy is said to be

e Locally accessible from x there is a neighbor-
hood V of x such that Reach(x,T) contains a
non-empty open set of M for all T > 0 and
Reach(z, T) C V.

s Locally accessible if it is locally accesstble from all

reM.

o Controllable if for all x € M, Reach(z,T) =M
for some T

We now recall [9] that local accessibility properties of
Hamiltonian control systems can be characterized by
simple rank conditions of the Poisson algebra P{Ha)
associated with the affine collection of Hamiitonians
Har and defined as the smallest Poisson algebra con-
taining H s and satisfying {P(Hu), o} C© P(Har).

Proposition 5.3 (Accessibility Rank Conditions)
Let Sy, be an Hamiltonian control system on a Pois-
son manifold (M, {,}s) of dimension m and denote
by P(Has) the Poisson clgebra associeted with the
affine collection of Hamiltonians Hp. Then

o [f dim{d(P(Hum(x)))) = m, then the control sys-
tem Sy, i3 locally accessible at x € M,

o If dim{d(P(Hp(x)))) =m for all x € M, then
control system Sy,, s locally accessible.

o Ifdim(d{P(Hniz)))) =m forallz e M, hg =
0, Hpr is symmetric, that is h € Hy = —h €
Har, and M is connected, then control system
Su,, 18 controllable.



Theorem 4.4 immediately propagates local accessibility
from the original Hamiltonian system to its abstrac-
tion.

Proposition 5.4 {Local Accessibility Propagation)

Let Homiltonian control systems Sy, and Su, be
o-related with respect to a Poisson map ¢ : M — N.
Then, if Sg,, is (symmetrically) locally accessible
{at x € M) then Sy, is also (symmetrically) locally
accessible (at ¢(z) € N ). Also, if Su,, 15 controllable
then Sy, is controllable.

We now determine under what conditions on the ab-
stracting maps, local accessibility of the original system
SH,, is equivalent to local accessibility of its canonical
abstraction Sy,. In particular, we need to address
the problem of propagating accessibility from the ab-
stracted system Sy, to the original system Sg,,. We
start by exploring the relationship between the Poisson
algebras associated with canonically ¢-related Hamil-
tonian systems.

Lemma 5.5 Let Sy, be canonically ¢-related to Sy, ,
then for all x € M we have

¢8 (AP(Hm(2))) = dP(FN)(${)

Using the above lemma whose proof we were forced to
omit due to space limitations, accessibility equivalence
between the two control systems can be now asserted.

Theorem 5.6 (Local Accessibility Equivalence)
Let Sy, be canonically ¢-related to Sg,,. If every
vector field K; € Ker(T¢) is Hamiltonian with Hamail-
tonian function h; € P(Hn), then Sy,, is locally
accessible if and only if Sy, is locally accessible.

Proof: We begin by showing how accessibility prop-
erties of Sy, are propagated to Sy, . Suppoese that
Sk, 18 locally accessible, that is dP(Hm}z) = To M
for all € M, then by Lemma 5.5 dP(Hn)(¢{x)) =
¢p(@)TeM. Since ¢p = (B%)™' o T¢ o BY, and
both B,#\, and B,ﬁ are isomorphisms, and T'¢ is sur-
jective, ¢pg is also surjective. We conclude therefore
that dP{Hn)(y) = T, N, for all y = #(z). But ¢ is
surjective so Sy, is locally accessible.

Let us now show how accessibility properties of Sy,
can be pulled back to Sy,,. We proceed by con-
tradiction. Assume that every K; € Ker(T¢) is
Hamiltonian with Hamiltonian function h; € P(H )
and that Sy, is locally accessible while Sg,, is
not. Then dP(Hn)}y) = T, N and by Lemma 5.5
ppdP(Hp)(z) = T;N for all  such that ¢(z) = y.
Since Sy, i3 not locally accessible there exists some
g € C™(M) such that dg(z) ¢ dP{Hum)(z), but ¢p is
surjective so dg{z) must belong to Ker{¢g(z)). Tak-
ing into consideration that dg(z) € Ker{¢gp(z)) &
X4(2) € Ker{T.¢) we have a contradiction since we
were assuming that all Hamiltonian functions of the
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vectors belonging to Ker(T,¢) were also in P(H y){z)
and g{z) ¢ P{Hm)(x). This shows that Sg,, is in
fact locally accessible from x. Since the argument does
not depend on the particular point z, Sy,, is locally
accessible, ]

Corollary 5.7 Let Sy, be canonicelly ¢-related to
Siy- If every K; € Ker(T'¢p) is Hamiltonian with
Hamiltenien function h; € P(Hp), ho = 0, both Has
and Hy are symmetric and furthermore both M and
N are connected then Sy, is controllable iff Sy, is
controllable.

Theorem 5.6 provides moderate conditions to propa-
gate accessibility properties in a hierarchy of abstrac-
tions. In fact, when dealing with affine Hamiltonian
control systems we can always build a map ¢ satisfying
the conditions of Theorem 5.6 by defining its kernel to
be X, for some ¢ provided that the conjugate of h; be-
longs to the Poisson algebra associated with the control
system. An example of this construciion is presented
in the next section.

6 A spherical pendulum example

As an illustrative example, consider the spherical pen-
dulum as a fully actuated mechanical control system.
This system can be used to model, for example, the
stabilization of the spinning axis of a satellite or a pan
and tilt camera. Consider a massless rigid rod of length
! fixed in one end by a spherical joint and having a bulb
of mass m on the other end. The configuration space
for this control system is $2, however we will work lo-
cally with spherical coordinates described by 8 €]0, #|
and « €]0,27[. The kinetic energy of the system is
given by:

1 .
T= Emlz(ﬂz + sin® # &°) (6.1)
and the potential energy of the system is:
V = —mglcosd (6.2)

Trough the Legendre transform of the Lagrangian I. =
T — V one arrives at the Hamiltonian:

1

ho = 2ml

— mgl cos @

2 2

+ 6.3

2P T S snte (6.3)

where py is given by py = mi?@ and p, = mi?sin® 4 6.

Since the system is fully actuated the Hamiltonian con-

trol system Sy,, defined over M = T*S? with the
canonical Poissen bracket is given by:

Hur = ho + yuy + hous (64)

with by = # and hs = o and where u; and us are the

control inputs.



The drift vector field associated with hg is invariant
under rotations around the vertical axis and could be
reduced using this symmetry. However to emphasize
the advantages to the abstraction method we will ab-
stract away precisely the directions where there are no
symmetries. Consider the local abstracting map:

:T°8% —» TS (6.5)

(91 «, Dy, pﬂ) = (avpn) (6'6)

It is clear that @ € P(#Ha) and the conjugate vari-
able to 8, pp, also belongs to P(H s} since {ho, 0} =
— 2P, s0 the conditions of Theorem 5.6 are fulfilled.

Following the steps of the canonical construction one
computes:

dho
Lihg = —=—-—
o 89  mi%sin’ @ cot Pa
Ehy
b = 2o 1 .
£K2 ] apa lePB (6 7)
where K1 = £ and K> = a_?_' The collection H is

therefore given by H=HUC£Lxhy = {h1, k2, Lxcho}
and Hy = Hyps o4

1 1
Hy = u? ? — mglcosus , usly ,
N {lez L7 ami2 sin® u3p°‘ g 3, B
1
ous , cotug po , —u 6.8
> il sin® ug 3Par o b 68

where we treated as formal new inputs us and u4 the
abstracted variables & and py, respectively. This is
possible since Hpy does not depend on the embedding
i: N — M and therefore the abstracted variables can
take any value on ¢~ (y). In Equation 6.8 the first and
third terms of the first function as well as the second
and fifth functions are constants multiplied by inputs,
this means that they are associated with the null vec-
tor field so we can discard them without altering the

Hamiltonian control system defined by Hy. We thus
obtain:
1
Hy ={—F—— cot 2
N {2m125m u3 P oz, mil? sin® ug otus Pal
(6.9)

which can be further simplified by discarding the third
function since its exterior derivative is linearly depen-
dent on the exterior derivative of the first function. We
finally get:

1
2mi? sin® ua

Hy = P2, auz} (6.10)
and after renaming the control inputs to v, = uz and
v2 = up we obtain the following Hamiltonian control
system defined by Hn:

i
mi?sin’® v,
Uz

@ Pa (6.11)

Pa (6.12)

which is a controllable Hamiltonian control system on
N =T-81.
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7 Conclusions

In this paper, we have presented a hierarchical abstrac-
tion methodology for Hamiltonian nonlinear control
systems. The extra structure of mechanical systems
was utilized to provide constructive methods for gener-
ating abstractions while maintaining the Hamiltonian
structure. Furthermore we have characterized accessi-
bility equivalence through easily checkable conditions.

These results are very encouraging for hierarchically
controlling mechanical systems. Refining controller
design from the abstracted to the original system is
clearly an important issue to address. Other research
topics under current research include the propagations
of nonholonomic constraints among the different levels
of the hierarchy, and better understanding the rela-
tionship between Hamiltonian abstractions and more
established notions of reduction based on symmetries.
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