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Model-based Analysis of Cardiac Motion from Tagged MRI Data

Abstract
We develop a new method for analyzing the motion of the left ventricle (LV) of a heart from tagged MRI data.
Our technique is based on the development of a new class of physics-based deformable models whose
parameters are functions allowing the definition of new parameterized primitives and parameterized
deformations. These parameter functions improve the accuracy of shape description through the use of a few
intuitive parameters such as functional twisting. Furthermore, these parameters require no complex post-
processing in order to be used by a physician. Using a physics-based approach, we convert these geometric
models into deformable models that deform due to forces exerted from the datapoints and conform to the
given dataset. We present experiments involving the extraction of shape and motion of the LV from MRI-
SPAMM data based on a few parameter functions. Furthermore, by plotting the variations over time of the
extracted model parameters from normal and abnormal heart data we are able to characterize quantitatively
their differences.
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Abstract 

We develop a new method for analyzing the motion of the left ventricle (LV) of a heart from 
tagged MRI data. Our technique is based on the development of a new class of physics-based 
deformable models whose parameters are functions allowing the dejinition of new parameterized 
primitives and parameterized deformations. These parameter functions improve the accuracy 
of shape description through the use of a few intuitive parameters such as functional twisting. 
Furthermore, these parameters require no complex post-processing in order to be used by a 
physician. Using a physics-based approach, we convert these geometric models into deformable 
models that deform due to forces exerted from the datapoints and conform to the given dataset. 
We present experiments involving the extraction of shape and motion of the LV from MRI-SPAMM 
data based on a few parameterfunctions. Furthermore, by plotting the variations over time of the 
extracted model parameters from normal and abnormal heart data we are able to characterize 
quantitatively their differences. 

1 Introduction 

Characterization of heart wall motion on a regional level is required to understand cardiac 
mechanics and the processes underlying disease. Alteration of heart wall motion is a sensitive 
indicator of disease such as ischemia. In order to accurately measure heart wall motion a number 
of material points must be located and tracked. One of the methods for providing markers is 
by using the magnetic resonance imaging (MRI) technique with magnetic tagging (“SPAMM) 
[2, 121. The advantage of MR tagging is that a number of material points can be tracked during 
systole in a non-invasive setting, providing temporal correspondence of material points. 

Recently, computer vision techniques for reconstructing the 3D shape and motion of the heart’s 
left ventricle (LV) have been developed [l, 3, 4, 6, 8, 9, 111. One problem with the techniques 
developed so far is that they do not capture the twisting motion of the heart, known to occur 
during systole. Also, they are formulated in terms of either many local parameters that require 
non-trivial processing to be useful to a physician, or very few parameters that can offer only a 
gross approximation of the motion. 

In this paper we present a new technique that describes the time-varying shape, deformation 
and shape of the LV in terms of a few “global”parameterfunctions, such as twist, whose value is 
allowed to vary locally. In this way, we can characterize the complex motion of the heart in terms of 
the same small number of parameters that offer sufficient accuracy. Furthermore, these parameters 
are intuitive and can be used by a physician without further complex processing. Our approach 
is based on the development of a new family of parameterized deformable primitives suitable for 
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this application. These deformable primitives are parameterized using parameter functions whose 
value varies across the primitive's shape as opposed to being constant [7, IO]. Through the use 
of appropriate parameterization the axes of our new deformable primitives can be curved. This 
is a major generalization compared to parameterized primitives such as superquadrics, cylinders 
and cubes, commonly used in the vision literature. Finally, our new models can represent open' 
parameterized shapes suitable for modeling the shape and motion of the LV. 

2 Geometry of Deformable Models with Parameter Functions 

In this section we introduce our new class of deformable models which allows the use of 
parameters that can characterize an object's shape in terms of a few parameters that are functions. 
In general, our model is a 3D surface whose material coordinates U = (U,  U )  are defined in a 
domain R. The positions of points on the model relative to an inertial frame of reference @ in 
space are given by a vector-valued, time varying function x(u, t )  = ( Z I ( U ,  t ) ,  ZZ(U, t ) ,  z ~ ( u ,  t))T, 
where denotes transposition. We set up a non-inertial, model-centered reference frame 4 and 
express the position of a model point as x = c + Rs, where c ( t )  is the origin of 4 at the center 
of the model and the rotation matrix R(t) gives the orientation of 4 relative to @ with a reference 
shape s. Thus, s(u, t )  gives the positions of points on the model relative to the model frame. 

We define the reference shape as s = T(e; bo(u) ,b l (u) ,  . . .), where e can represent either a 
set of 3D points in space' or a geometric primitivee(u; ~ ( u ) ,  a l (u) ,  . . .) defined parametrically 
in U and parameterized by the variables a,(u). The shape represented by e is subjected to the 
deformation T which depends on the deformation parameter functions b,(u). We concatenate the 
deformation parameters into the vector q, = ( a o ( u ) ,  a l (u ) ,  . . . ,  bo(^), bl(u), . . .)'. 

The parameters a,  and b, are functions of u, instead of constants [7]. This definition allows us to 
generalize definitions of primitives (e.g., superquadrics, cubes) and parameterized deformations 
(e.g., twisting) as will be shown in the following example. For our applications, we will assume 
that a , (u )  = u,(u) ,  b,(u) = b,(v), where the material coordinate U corresponds to the longest 
axis of the deformable model. 

Our technique for creating primitives with parameter functions can be applied to any parametric 
primitive, by replacing its constant parameters with differentiable parameter functions. For our 
applications, we transform an ellipsoid primitive [7] to a primitive with parameter functions. The 
definition of such a generalized primitive e = (e l ,  el, e3)' is given as follows: 

U((.) COSU cos?) 

u ~ ( u )  sinu 

where - r / 2  5 U 5 a/2,  -T 5 v < T. Here, a0 2 0 is a scale parameter, and 0 5 
al (U), a*( U ) ,  a3( U )  5 1, are aspect ratio parameter functions. We can also define a open parame- 
terized primitive given by the above definition by restricting the ranges of the U and ZI parameters 
to a subset of the above definition. 

Our formulation of deformations with continuous parameter functions is general and can be 
applied to any underlying shape e .  For our applications, given the primitive e, we first apply 
a twisting deformation along the principal axis 3 (or model axis z),  and then apply axis-offset 
deformations which allow the axis to be non-straight in the z and y directions. In this way we can 

e = a0 ( a2(u) cosu sinu ) , ( 1 )  

'not a closed surface, bur more like a cup 
*In that case the material coordinates U coincide with the caltesian space in which the 3D points are expressed 
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recover more accurately the LV shape. The resulting reference shape s is expressed as follows: 

i ( 9: COS(T(U)) - e2 sin(.r(u)) t ~ I , ( u )  
s = T,(T,(e; T(u)); e ~ J a ) ,  e2,(u)) = el sin(.r(u)) t e2 COS(T(U)) t e2, (~)  , (2) 

where .(U) is the twisting parameter function, and el,(u) and e 2 , ( ~ )  are axis-offset parameter 
functions in the x and y directions, respectively. 

The choice of the parameter functions depends on the application. For the applications in this 
paper we assume that those parameter functions are piecewise linear along U, so we do not impose 
any other constraints on the LV shape. 

3 Kinematics and Dynamics 

The velocity of points on the model is given by, x = Lq, where L is the Jacobian matrix which 
maps 3D vectors to the model’s parameter space and q = (qz ,  q i ,  qz)T is the vector of the 
model’s degrees of freedom. qc = c and qs is the vector of the model’s rotational parameters. We 
can make our model dynamic in q by introducing mass, damping, and a deformation strain energy. 
The resulting Lagrange equations of motion simplified by setting the mass density to zero are 
Dq + Kq = f9, where D and K are the damping and stiffness matrices respectively, and where 
fq(u, 1 )  are the generalized external forces associated with the degrees of freedom of the model. 
This equation yields a model that has no inertia and comes to rest when all the applied forces 
equilibrate or vanish. The generalized forces f9 are computed using the formula fq = LTf du. 
These forces are associated with the components of q. where f(u, t )  is the 3D force distribution 
applied to the model [7]. 

Since the SPAMM data provides correspondence over time of individual 3D points, we apply the 
force distribution algorithm only once for the initial frame. In subsequent frames the corresponding 
points will exert a force to the same point on the model as computed in the first frame. In this way 
we can recover the LV twisting motion. 

4 Experiments 

We apply our technique to SPAMM data sequences from a normal heart and an abnormal heart 
with hypertrophic cardiomyopathy. The data are obtained from the Department of Radiology, 
University of Pennsylvania collected during the LV systole over 5 intervals. The SPAMM 
technique provides data throughout the heart wall. However, since our modeling technique is 
surface based, we choose to fit the LV mid-wall motion since this is most accurately defined 
by the SPAMM imaging technique. Young et al. [l 11 developed a technique based on snakes 
[ 5 ]  to extract 3D coordinates of SPAMM data from the LV mid-wall. In each case we fit our 
deformable models to the LV mid-wall data points, and plot the time and space varying parameter 
functions to extract conclusions. All our experiments run at real or interactive time speeds on 
a Silicon Graphics R4000 Crimson workstation including the real time graphics. Furthermore, 
through careful design, large portions of our code have been parallelized making it even faster 
when multiple processors are available (e.g., on our Silicon Graphics 4D1340VGX shared memory 
multiprocessor). 

Fig. 1 shows the model fitted to data points from a normal heart at 5 time sequences during 
systole from end-diastole (t=I) to end-systole (t=5). We can observe the contracting motion 
as well as the twisting motion of the model. In Fig. 2 we plot the extracted model parameter 
functions over the 5 time frames for the normal heart. Figs. 2(a-b) show the plots of the model’s 
parameter functions al (U) and a2( U),  which are associated with its length in the z and y directions, 
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(U) * time 1 time 2 time 3 time 4 time 5 

Figure 1: Model fitted to SPAMM data (LV mid-wall) from a normal heart during systole. 

I I .  
I m  8" Inm ,m ,om ,5m -m ,om I l m  Im lam ,>m 

(a) (b) (c) ( 4  

Figure 2: Extracted model parameters as functions of U for the normal heart. 

respectively. For each frame we plot the ratio of each parameter function during frame t = 2...5, 
with respect to its value at the initial frame (t = I ) .  Fig. 2(c) shows plots of the displacement3 of 
the length along the z direction. Fig. 2(d) shows plots of the model's twisting parameter function 
.(U). In all graphs, U = 0 corresponds to U,,, of the model (the apex of the LV), and U = 16 
corresponds to U,,, of the model (the base of the LV). 

>From these graphs, we can quantify the motion and shape changes of the LV during its systole. 
For example, by studying the graphs of a ,  and a2 (Fig. 2(a-b)), we can conclude that the magnitude 
of contraction in the radial direction (i.e., along the z and y axes) during systole is approximately 
20%. But it is not uniform towards the base of the LV where the contraction along the y axis 
(being approximately 10%) is less then one along the z axis (being approximately 20%) making 
the base look more elliptical. This result supports clinical study findings where more stress is 
exerted at the apex during the LV motion, and also there is an increased closeness to an ellipse of 
the LV base shape during systole. We measure from the graph shown in Fig. 2(c), that the total 
displacement along the z axis which corresponds to contraction along the z axis is approximately 
0.2 units where the normalized length of the LV is 1.13 units. The contraction along the z axis 
known as longitudinal contraction is therefore approximately 18% for this LV. From the graph in 
Fig. 2(d), we can quantify the twisting motion of the LV during systole to approximately 7 degrees. 
The graph shows a small amount of global rotation before the twisting occurs. It is not easy to 
see this kind of subtle motion when one watches the model contract and twist on the monitor. By 
having the graphs of the parameter functions plotted next to the animation, we can quantify and 
easily characterize a detailed motion of the deforming model over time. 

To compare our results, we also fit our model to an abnormal heart with hypertrophic car- 
diomyopathy. Fig. 3 shows the fitted models for the abnormal heart, while Fig. 4 shows the 
corresponding graphs of model parameter functions. From the graphs of the parameter functions, 
we see that they are different from the results we obtained for the normal hearts in Fig. 2. We see 

3 .  It 1s not necessary for a, (U) and ~ ( u )  because they are not dependent on sin 
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Figure 3: Model fitted to SPAMM data from an abnormal heart during systole. 
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Figure 4: Extracted model parameters as functions of U for the abnormal heart. 

less contraction towards the apex of the abnormal heart compared to the normal heart, and more 
twisting in the abnormal hearts. 

In order to view the changes in the parameters during systole, we can shade the meshes of a 
model with respect to a certain parameter as shown in Fig. 5. The figures in the first row are 
the recovered models from the normal heart data at different time frames, and the figures in the 
second row are the recovered models from the abnormal heart data. Figs. 5(a-b) are the models 
at the initial frame. As the change in value increases, the shading in the corresponding part of the 
mesh becomes darker. Figs. 5(c-f) and Figs. 5(g-j) show the models color-coded according to the 
values of the a1 ( U)  parameters and the values of the T (  U)  parameters, respectively. It can be easily 
observed that, compared to the normal heart, the abnormal heart has less radial contraction at the 
end of systole (i.e., the mesh shown in (f) is lighter than one in (e)), but more twisting motion (i.e., 
the mesh shown in (i) is darker than one in (i)). 

Note that all fittings of models are within an acceptable error bound, since RMS errors are 
less than 0.5 mm where the length of the hearts are approximately 110 mm. Using parameter 
functions, our model provides the means for capturing and quantifying the LV motion and shape 
changes. Therefore we can quantitatively compare normal and abnormal hearts. 

5 Conclusion 

In this paper we presented a new class of physics-based deformable models that can be used 
to analyze the motion of the LV from tagged MRI data. The characteristic of those models is 
that their global parameters are functions allowing the representation of complex shapes with a 
few intuitive parameters. For the applications in this paper we were able to eliminate many local 
parameters that require nontrivial processing to provide a compact representation of shape. We 
demonstrated the applicability of our technique to the shape and motion analysis of the LV for 
normal and abnormal hearts during systole, from MRI-SPAMM data. By plotting the parameter 
functions over time we were able to make comparisons between normal and abnormal hearts and 
verify quantitatively, qualitative knowledge about the LV motion common to physicians. We 
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initial model parameter a I ( U) parameter .(U) 
t= 1 t=3 t=s t=4 t=5 

Figure 5: Visualizing changes of values in parameter functions. (Darker drawn areas indicate 
greater deviation from the initial state.) 

plan to apply our technique to multiple normal and abnormal hearts to be able to quantitatively 
characterize what is normal LV motion and what are the effects to the LV motion of the various 
LV diseases. 
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