Of Shells and Ship's Nails

Margaret Bruchac
University of Pennsylvania, mbruchac@sas.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/anthro_papers

Part of the Anthropology Commons

Recommended Citation

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/anthro_papers/103
For more information, please contact libraryrepository@pobox.upenn.edu.
Of Shells and Ship's Nails

Abstract
There it lies. In an archaeological collections drawer in the Yale Peabody Museum of Natural History in New Haven, in Connecticut Tier 78, Drawer 4. A single wrought iron nail (perhaps a ship's nail) rests amidst bits of copper and other metal debris, European trade goods, clay pipe fragments, and a rusty jaw harp, all recovered from a layer of earth four centuries past. This material was salvaged from a dig at Fort Shantok (also called Uncas's Fort, at Trading Cove), a well-known 17th century Mohegan habitation site, in the homelands of the present-day Mohegan Tribe. At first, this nail is almost too ordinary to notice... but its shape is unusual. This common nail, hammered and drawn from quarter-inch squared iron rod stock (typical of the 17th century) has been re-worked, and the point has been drawn out and narrowed into a tubular shape. Also, the head has been flattened in such a way that it would never hold a wooden seam secure. Who would alter such a good nail? To what purpose?

Keywords
ARRAY(0x7f54f6e77d80)

Disciplines
Anthropology | Social and Behavioral Sciences

This other is available at ScholarlyCommons: http://repository.upenn.edu/anthro_papers/103
An iron nail excavated from the Fort Shantok, re-worked to fit into a bow drill or pump drill. Item #10289 housed in archaeological storage at the Yale Peabody Museum of Natural History, Connecticut Tier 78, Drawer 4. Photo by Lise Puyo.

There it lies. In an archaeological collections drawer in the Yale Peabody Museum of Natural History in New Haven, in Connecticut Tier 78, Drawer 4. A single wrought iron nail (perhaps a ship’s nail) rests amidst bits of copper and other metal debris, European trade goods, clay pipe fragments, and a rusty jaw harp, all recovered from a layer of earth four centuries past. This material was salvaged from a dig at Fort Shantok (http://tps.cr.nps.gov/nhl/detail.cfm?ResourceId=1958&ResourceType=Site) (also called Uncas’s Fort, at Trading Cove), a well-known 17th century Mohegan habitation site, in the homelands of the present-day Mohegan Tribe (http://www.mohegan.nsn.us/Heritage/ourHistory.aspx). At first, this nail is almost too ordinary to notice…but its shape is unusual. This common nail, hammered and drawn from quarter-inch squared iron rod stock (http://www.gregorylefever.com/pdfs/Early%20Nails%202.pdf) (typical of the 17th century) has been re-worked, and the point has been drawn out and narrowed into a tubular shape. Also, the head has been flattened in such a way that it would never hold a wooden seam secure. Who would alter such a good nail? To what purpose?
Stephanie Mach and Lise Puyo examining the Fort Shantok collections at the Yale Peabody Museum of Natural History. Photo by Marge Bruchac.

The next drawer of material from the same site holds cracked quahog and whelk shells, pottery shards, charred corn, and evidence of feasting. There is ample evidence of wampum manufacture (well documented in 17th century colonial records) in the form of purple chunks, white columns, and the sandstone blocks used to polish them down to size. The shells are all local species: channeled whelk (Busycon canaliculatum), knobbed whelk (Busycon carica), and quahog (Mercenaria mercinaria). Similar assemblages have been found at Massapequa and elsewhere on Long Island Sound, where whelk and quahog are also abundant and wampum manufacture is documented.
Although many wampum beads have been collected from digs at Shantok, this collection holds only one. This particular white shell bead has a channel that matches the diameter of the narrowed point of the iron nail.

A bow drill fitted with a cast-off industrial spool and an iron nail for a bit. Canadian Museum of History, item #III-H-334 a-c, identified as Huron-Wendat, collected by Frank Speck. Photo by Lise Puyo.

Weeks later, at the Canadian Museum of History (http://www.historymuseum.ca/home), far to the north, we examined two bow drills, each crafted from bent wood strung with leather cord. Before European contact, Native hand drills, pump drills, and bow drills just like these were fitted with a stone point serving as a bit to bore holes. The bit was secured in a piece of wood which was wrapped with the cord of the bow (or rubbed with the hands) to rotate it. The speed of rotation generated the necessary heat and friction to bore holes in wood, shell, stone. But the bits in these bow drills at CMH are not stone. Each is fitted with a cast-off wooden spool and...a sharpened nail.

Bow drills are an ancient technology, used for fire-starting as well as for craftwork. Bow drills with nail bits were also used by non-Natives at the Campbell Brothers’ wampum-making “factory” (http://www.sil.si.edu/DigitalCollections/BAE/Bulletin164/section2.htm?_utma=1.2001989573.1403373381.1403373381.1403373381.1&_utmmb=1.1.10.1403373381&_utmc=1&_utmex=-&_utmez=1.1403373381.1.1.utmcnr=sil.si.edu|utmccn=(referral)|utmcnmd=referral|utmcnct=/DigitalCollections/BAE/Bulletin164/plate15a.htm&_utmvt= &_utmvk=23506618) in Pascack, New Jersey. We examined three similar collections of salvage from the Campbell site at the Peabody Museum of Archaeology and Ethnology at Harvard University (https://peabody.harvard.edu/), the Canadian Museum of History, and the New York State Museum (https://www.nysm.nysed.gov/). The raw material (primarily large conch shells from the West Indies formerly used for ship’s ballast) was broken up and carved into blanks for making “moon” disks, “hairpipe” beads, and smaller wampum-sized beads. Collectors at this site have also found a few whelk columns, chunks of quahog shells and cast-off broken beads that shattered during drilling. The disks made from conch shells retain a pinkish sheen, but the beads have an overall dullness that readily distinguishes them from the ivory of wampum crafted from whelk. Once our eyes had been properly trained, we found it relatively easy to distinguish among the different kinds of white wampum beads found in various collections, whether made from whelk, conch, or porcelain.
For decades, scholars of Iroquoia have been imposing strict timelines on the manufacture of Indigenous materials using European technology. Narrow, tubular wampum beads were (they insisted) impossible to craft with the use of stone drill bits. It should be fairly easy to recognize holes bored by stone: the openings appear conical, wider at the ends, narrower where they meet in the middle, after having been bored through from either side.

Stone bits made large holes; metal bits made smaller holes. Hence (it has been argued), Native people were not able to produce uniform tubular wampum beads until after the introduction of Dutch steel drills in the 1630s. This sounded like scientific fact…until I came face to face with this iron nail. There are records of “French awls,” but have any “Dutch steel drills” ever been found in Native sites? This Shantok nail suggests that Native people had access to finer wampum making tools at a much earlier date.

Technically, beads were “bored” rather than “drilled,” using high-speed rotation and pressure to puncture the shell without shattering, and water to keep the heat and dust in check. New France journals note that by the 1610s, Native people living along the Saint Lawrence seaway were
already familiar with (and specifically requesting) awls as trade goods. But the awl was not the first innovation in drilling technology. Nails from ships manned by Breton fisherman (or even Viking adventurers) could have been procured centuries earlier. A Native artisan could just as easily fit an Indigenous bow drill with an awl, or with a simple iron nail.

![Close-up photo of old wampum shell beads from an unidentified New York archaeological site. Note the wide range of hole sizes, variations in color with the faded purple beads, and the striations, cracks, and weathering from exposure. Photographed by Lise Puyo in a private collection in Cornish, New Hampshire.](https://wampumtrail.files.wordpress.com/2014/06/p10508181.jpg)

This research inspired new observations about old collections. We noted that older wampum beads tend to be smaller and squarish, with large holes. These are presumed to have been bored by stone bits. Yet, we viewed several collections of old beads from archaeological sites with wide variations in hole diameters. Were these bored by stone? By nails? By artisans with differing levels of skill? Have other nails and awls (as metal drill bits) been found in Native sites, but ignored because they were identified as “historic” and sorted into “non-Native” collections?

![A chunk of purple wampum from a large quahog shell. Only mature mollusks produce dense purple shells. Photographed by Lise Puyo at the New York State Museum.](https://wampumtrail.files.wordpress.com/2014/06/p1080411.jpg)

We examined purple beads that had faded to gray from being deposited in the ground. We found similar beads woven into belts that also held what appeared to be much newer beads. We noticed dramatic differences in the color density of purple shell beads, with shades varying from lavender to
nearly black. Quahogs can live at least 5-6 decades, and the oldest clams produce the densest shell coloration. During the 19th century, however, the New England craze for “little-neck clams” (baby quahogs) rapidly diminished the population, and dense purple shells are now harder to come by.

Observations like these shed some light on the diversity of beads we have observed in the wampum belts surveyed thus far. The material and documentary evidence clearly indicates that wampum beads were circulated widely among Algonkian and Iroquoian nations, and that wampum diplomacy was observed and valued by European colonial leaders. Some wampum belts were made on a particular occasion for a single purpose; others were made for wider circulation or altered to fit new circumstances. We saw belts containing beads that varied in color density, condition, and size, suggesting multiple sources and multiple bead-makers. Some belts were repaired or re-woven, and some newer belts contain older beads. A variety of materials were used in wefts and warps: sinew, plant fiber (dogbane, hemp, milkweed), leather, and linen, with various modes of weaving edges and ends. There is dense evidence of Indigenous curation and repair, including older sinews worn away and patched with twine, leather warp strands re-used from a different belt, and bits of thread and other fibers used in repairs. We found a number of isolated anomalous beads, including glass (white, blue, and red), stone (steatite, catlinite), dentalium, and even bone beads. Although some of these repairs and inclusions may have been expedient, I suspect that none of these choices were accidental.

The material evidence for both Algonkian and Iroquoian culture in the northeast suggests that the inclusion of new tools in old traditions is a marker of both material change and cultural continuity. Europeans and their tools clearly enabled, but did not invent, wampum ceremonialism. Wampum beads need not be “ancient” to be “authentic.” Beads and belts can be made and re-made, damaged and repaired, purposed and re-purposed, woven together and taken apart. These patterns of wampum use and manufacture resonate with other Indigenous traditions that have persisted from the past to the present. All of these wampum beads and belts demonstrate the rich ingenuity of Indigenous philosophies and technologies. All of this evidence deserves our thoughtful attention.

Posted in Reports from the field and tagged Campbell wampum, Canadian Museum of History, Fort Shantok, Margaret Bruchac, Mohegan, New York State Museum, quahog, wampum beads, wampum belts, wampum construction, whelk, Yale Peabody Museum of Natural History on June 21, 2014 by mbruchac. Leave a comment

BLOG AT WORDPRESS.COM.