Order Parameters and Phase Diagram of Multiferroic RMn$_2$O$_5$

A. Brooks Harris
University of Pennsylvania, harris@dept.physics.upenn.edu

Amnon Aharony
Ben Gurion University

Ora Entin-Wohlman
Ben Gurion University

Follow this and additional works at: http://repository.upenn.edu/physics_papers
Part of the Physics Commons

Recommended Citation

Suggested Citation:

© 2008 The American Physical Society
http://dx.doi.org/10.1103/PhysRevLett.100.217202

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/physics_papers/102
For more information, please contact repository@pobox.upenn.edu.
Order Parameters and Phase Diagram of Multiferroic RMn$_2$O$_5$

Abstract
The generic magnetic phase diagram of multiferroic RMn$_2$O$_5$ (with R = Y, Ho, Tb, Er, Tm), which allows different sequences of ordered magnetic structures for different R’s and different control parameters, is described using order parameters which explicitly incorporate the magnetic symmetry. A phenomenological magnetoelectric coupling is used to explain why some of these magnetic phases are also ferroelectric. Several new experiments, which can test this theory, are proposed.

Disciplines
Physical Sciences and Mathematics | Physics

Comments
Suggested Citation:

© 2008 The American Physical Society
http://dx.doi.org/10.1103/PhysRevLett.100.217202

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/physics_papers/102
Order Parameters and Phase Diagram of Multiferroic RMn$_2$O$_5$

A. B. Harris,1 Amnon Aharony,2,* and Ora Entin-Wohlman2,*

1Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
2Department of Physics, Ben Gurion University, Beer Sheva 84105, Israel

(Received 11 February 2008; published 30 May 2008)

The generic magnetic phase diagram of multiferroic RMn$_2$O$_5$ (with $R = Y, Ho, Tb, Er, Tm$), which allows different sequences of ordered magnetic structures for different R’s and different control parameters, is described using order parameters which explicitly incorporate the magnetic symmetry. A phenomenological magnetoelectric coupling is used to explain why some of these magnetic phases are also ferroelectric. Several new experiments, which can test this theory, are proposed.

DOI: 10.1103/PhysRevLett.100.217202 PACS numbers: 75.25.+z, 75.10.Jm, 75.40.Gb

There has recently been much interest in multiferroics, which display simultaneous magnetic and ferroelectric (FE) ordering [1–4]. In particular, the orthorhombic family RMn$_2$O$_5$ (RMO), where R is a rare earth, exhibits interesting sequences of magnetic density wave orderings, with varying wave vector q, and some of these phases are also FE [2,5–9]. In all these phases one has $q_x = 0$, while $|q_y| = 0.02$ and $|q_z| = 0.02$. Cooling from the paramagnetic (PM) phase, one first enters a phase in which both q_y and q_z are incommensurate. We call this phase Π_I (i.e.
magnetic susceptibility matrix $S_{\alpha\beta}(q, \tau)$, the quadratic terms in the Landau free energy F_{M2} are

$$F_{M2} = \frac{1}{2} \sum_{q, \alpha, \beta, \tau, \tau'} \chi_{\alpha\beta}^{(2)}(q; \tau, \tau') S_{\alpha}(q, \tau) S_{\beta}(q, \tau').$$

In principle one would diagonalize the (36×36) inverse susceptibility matrix $\chi_{\alpha\beta}^{(2)}(q; \tau, \tau')$ (determined by the various magnetic interactions). As T is lowered, the first phase to order corresponds to the eigenvalue which approaches zero first. The degeneracy of this eigenvalue has two origins: first, all the n_q wave vectors in the star of symmetry-related optimal wave vectors q’s have the same eigenvalue. Second, each of these q’s is associated with irreducible representations (irrep’s) Γ of the PM symmetry group of q (the “little group”) [18]. Excepting accidental degeneracy, a continuous transition from the PM phase involves only a single irrep. If this critical irrep is d

![FIG. 1 (color). Left-hand side (LHS): Schematic 3D phase diagram for q_1, q_2 near $\frac{1}{2}, (\frac{1}{2})$. J_1 and J_2 are parameters which control q_1 and q_2. The red surface separates PM and Π_I. Below the blue surface one has $q_1 = \frac{1}{2}$ in phases Π_{I1} and Π_{I2}. The green surfaces represent $\Pi_{I1} \rightarrow \Pi_{I2}$ and $\Pi_{I2} \rightarrow \Pi_{I3}$. Below the orange surfaces $q_2 = \frac{1}{2}$, in phases CI or CC. RHS: a cut at constant $q_2 \neq 1/2$. The dashed and dotted lines represent proposed trajectories for specific RMO’s, as T is varied.](image-url)
dimensional (dD), then this eigenvalue is \(dn_q\)-fold degenerate and this manifold is described by \(dn_q\) real OP’s, or \(dn_q/2\) complex ones. Each complex OP represents the amplitude and the phase of the spin ordering eigenfunction, \(\{S_\sigma(q, \tau)\}\). The symmetry of the eigenfunction is associated with the irrep and is inherited by the OP’s.

For each RMO, the optimal wave vector \(q\) is determined by its specific material (e.g. the exchange and anisotropy energies) and experimental (e.g., pressure, magnetic field) parameters. We represent these control parameters by their combinations, denoted \(J_x\) and \(J_y\), which fix the values of \(q_x\) and \(q_y\), respectively. Figure 1 shows the phase diagram of the RMO’s in terms of \(J_x\) and \(J_y\). Following experiments, we fix \(q_y = 0\). We start with the case \(q_x \neq \frac{1}{2}\) and \(q_x \neq \frac{1}{2}\).

For each such \(q\), the “little” group contains only unity and \(m_q\), which maps \((x, y, z)\) into \((x \pm \frac{1}{2}, y \mp \frac{1}{2}, z)\). This group has two 1D irreps, \(\Gamma_a\) and \(\Gamma_b\), with complex OP’s \(\sigma^+(q)\) and \(\sigma^-(q)\). Inversion symmetry \(I\) then implies non-trivial relations between the \(S_\sigma(q)\)’s and the \(S_\sigma(-q)\)’s (which have the same eigenvalue), reducing the number of independent parameters. This should ease future accurate analyses of the neutron data. For \(\Gamma_a\), symmetry implies

\[
m_a \sigma_a = \lambda_a \sigma_a, \quad I \sigma_a = e^{i\phi} \sigma^*_a, \quad (2)
\]

and similarly for \(\Gamma_b\) (\(\rho\) depends on the origin) [19].

For \(q_x \neq \frac{1}{2}\), the star of \(q\) contains four wave vectors, namely, \(q_x = (q_x, 0, \pm q_z)\) and \(-q_x\). Therefore, we introduce two complex OP’s, \(\sigma^+ = \sigma_a(q)\) and \(\sigma^- = \sigma_a(q^{(o)})\), associated with \(\Gamma_a\) and \(\Gamma_b\), respectively. Then, \(F_{M,2} = \sum_{a,b} (T - T_{C_a})[|\sigma_a|^2 + |\sigma_b|^2]\). Rejecting accidental degeneracy, we set \(T_{C_a} > T_{C_b}\) and identify the 2DIC phase with our \(\Pi_1\) phase, associated with a single irrep (the subscript 1 refers to the number of irreps), represented by the \(\sigma^+_a\)’s. The transition PM \(\rightarrow \Pi_1\) occurs at \(T = T_{C_a}\), represented by the top (red) surface in Fig. 1.

Which OP’s actually order depends on the quartic terms in the free energy. For \(q_x \neq \frac{1}{2}\), these include

\[
F_{M,4}^{(a)} = V_a(|\sigma_a|^2 + |\sigma_a^-|^2) + U_a |\sigma_a||\sigma_a^-|^2 + \sum G(W_{aa}|\sigma_a||\sigma_a^-|^2 + cc)\delta(G - (0, 0, 0, \pm q_z)),
\]

where \(G\) is a reciprocal lattice vector. For \(q_x \neq \frac{1}{2}\) and \(T \leq T_{C_a}\), one has \(|\sigma_a|^2 = |\sigma_a^-|^2 \geq 0\) if \(U_a < 0\), and only one of the OP’s orders otherwise. For \(q_x \neq \frac{1}{2}\), \(q_x \neq \frac{1}{2}\), the umklapp term with \(W_{aa}\) locks \(q_x \rightarrow \frac{1}{2}\) in a phase called IC1. Within Landau theory, this happens below a first order surface (blue in Fig. 1), parabolic in \(J_x\).

As \(T\) is reduced, more quartic terms need to be considered, notably \(W_{m} \sum_{m=0}^{\infty} [(|\sigma_a(q_m)|^2 - |\sigma_a(q_m^-)|^2) + cc]\delta(q_m - q_m^-).\) Assuming that \(q_m^a\) and \(q_m^b\) are almost the same, this term locks the optimal \(q_m\) to \(q_m^a\), at some \(T\) slightly below \(T_{C_{aa}}\), where \(\sigma_b\) has not yet ordered (without involving a phase transition). Accordingly, we no longer keep the superscripts \((a, b)\) on the \(q\)’s. As \(T\) is further reduced, the tendency of the spins to have fixed length (rather than oscillate sinusoidally) [3,20] may cause a second continuous transition, into the phase \(\Pi_2\) (or IC2), where both \(\sigma^a\) and \(\sigma^b\) are nonzero. As shown below, this transition (green surface in Fig. 1) occurs at a temperature which is parabolic in \(J_x\).

We next discuss the special case \(q_x = \frac{1}{2}\) (or \(J_x = J_{xc}\), at the back of the 3D diagram in Fig. 1). For \(q = \frac{1}{2}(0, q_z)\), the little symmetry group changes: it now contains the additional glide operation \(m_q\) [which maps \((x, y, z)\) into \((-x + \frac{1}{2}, y + \frac{1}{2}, z)\)]. This group has only one 2D irrep [14,21], with two degenerate complex OP’s, \(\sigma^a\) and \(\sigma^b\), and corresponding eigenvectors as listed in Table XVI of Ref. [14] [22]. These OP’s transform as [14]

\[
m_a \sigma_a = \xi_a \sigma_a, \quad m_b \sigma_a = \xi_a \sigma_{-a}, \quad I \sigma_a = \sigma^*_a, \quad (4)
\]

where \(\xi_a \equiv (-1)^{3-n}, n = 1, 2\). Cooling from the PM phase, exactly at \(J_x = J_{xc}\) and \(q_x \neq \frac{1}{2}\), one first goes into the CI phase, with the free energy

\[
F_M = (T - T_C)[|\sigma_a|^2 + |\sigma_b|^2] + u[|\sigma_a|^2 + |\sigma_b|^2]^2
\]

\[
+ W_4[|\sigma_a|^2 + V_4[|\sigma_a^2 + |\sigma_b|^2]^2].
\]

On further cooling, additional umklapp terms cause a first order transition into the CC phase where \(q = \frac{1}{2}(0, 0, \frac{1}{2})\). This lock-in happens under a parabola, which connects to the blue parabolas which appear for \(q_x \neq \frac{1}{2}\).

We next vary \(J_x\) away from \(J_{xc}\). The right-hand side (RHS) of Fig. 1 shows a cut of the 3D phase diagram, at fixed \(J_x = J_{xc} + \Delta J\). For small \(\Delta J\), mirror symmetry, \(q_x \rightarrow -q_x\), implies that the inverse susceptibility has two branches of eigenvalues given by \(\chi_\pm^{-1}(q_x) \equiv T - T_C + ak_{\pm}^2 \pm bk_{\pm}\Delta J\), where \(a = 1/2\) and \(\pm b\) and \(b\) are constants. At quadratic order (i.e., using \(F_{M,2}\)), this leads to \(T_{C_a} = T_{C_b} = 2bk_{\pm}\Delta J\), where \(k_{\pm}\Delta J/(2a)\) minimizes \(\chi_\pm^{-1}(q_x)\). This gives rise to the (green) \(\Pi_1 \rightarrow \Pi_2\) phase boundary, \(T_{C_a} - T_{C_b} \approx (\Delta J)^2\).

For \(q_x\) close to \(\pm 1/2\), further cooling may lock it to \(1/2\), due to umklapp terms. This may generate transitions into the CI or the CC phase, for \(T\)’s below the orange surfaces in Fig. 1. A detailed analysis shows that these surfaces are also parabolic in \(\Delta J\). The actual sequence of transitions then depends on which parabola is narrower. In Fig. 1 we show the case when the green parabolas are broader than the orange ones. In this case, the orange surface represents \(\Pi_2 \rightarrow \Pi_1\) and \(\Pi_3 \rightarrow \Pi_2\). In the opposite case, the phases \(\Pi_2\) and \(\Pi_3\) never appear. As shown in Fig. 1, both parabolas are shifted upwards below the blue surface, where \(q_x = \frac{1}{2}\), due to umklapp terms.

Equations (4) and (5) lead to a natural interpretation of neutron scattering results for the CC phase in YMO. Figure 2 shows the Mn\(^{3+}\) a-b plane spin components in the CC phase of YMO, from the data of Refs. [5] [23] and
FIG. 2 (color). Schematic diagram of the a and b components of the Mn3+ spins in a single a-b plane of YMO for the CC phase. The glide \(m_x\) consists of a mirror plane \(M\) at \(x = a/4\) followed by a translation \(b/2\) along y. LHS: the structure given in Table III of Ref. [5] (with the c components not shown). RHS: the structure given in Fig. 2 [38] of Ref. [17] (who reported zero c components of spin).

[17]. These two structures are obviously similar, and one might ask what symmetry (if any) relates them [24]. Since the structure on the left (right) is even (odd) under the glide operation \(m_x\), we conclude that the structure on the left (right) has \(\sigma_2 = 0\) \(\sigma_1 = 0\). Going between these two structures corresponds to a rotation in Op space; the in-plane spin components belong to distinct but equivalent structures. Since either \(\sigma_1 = 0\) or \(\sigma_2 = 0\), we conclude that in Eq. (5), the net coefficient of \(\sigma_1|\sigma_2|^2 (W_C - 4|V_c| + plus the additional umklapp terms) is positive, preventing both Op’s from ordering simultaneously [14].

For the phenomenological description of the multiferroicity, the total free energy is \(F_{\text{ME}} = F_M + \frac{1}{2} \mathbf{P}^2\epsilon^{-1} + V_{\text{int}},\) where \(\epsilon\) is the dielectric susceptibility and \(V_{\text{int}}\) the magnetoelectric (ME) interaction. Although such interactions can also generate a spatially nonuniform \(\mathbf{P}\), here we discuss only the uniform case. We again start with the II and IC phases, where \(q_1 \neq \frac{1}{2}.\) To lowest order, wave vector conservation and time-reversal invariance give [3,25]

\[
V_{\text{int}} = \sum_{x,t=a-b} \sum_{q_n} \sum_q c_{st} \sigma_x(q) \sigma_y(-q) P_y.
\]

The terms with \(s = t\) vanish because they are odd under \(I\). For the II\(_1\) (IC\(_1\)) phase, only \(\sigma_x\) is nonzero, and therefore \(\mathbf{P} = 0\). To have \(\mathbf{P} \neq 0\) with \(q_1 \neq \frac{1}{2}\) we must have the superposition of two irreps, and this happens only in the II\(_2\) or the IC\(_2\) phases. In these phases, we have

\[
V_{\text{int}} = \sum_{q_n} \sum_q \left[ir \sigma_x(q) \sigma_y(-q) + cc \right] P_y,
\]

and invariance under \(I\) requires that \(r\) is real. From Eq. (2), \(\sigma_x \sigma_y^*\) is odd under \(m_y\). For \(V_{\text{int}}\) to be invariant under \(m_y\), \(P_y\) must be odd under \(m_y\); symmetry forces \(\mathbf{P}\) to be along \(y(b)\), as observed (Higher order ME interactions weakly violate this result [19]).

In the CC phase, Eq. (6) is invariant under the symmetry operations of Eq. (4) only if [14]

\[
V_{\text{int}} = \text{const} \left[|\sigma_1(q)|^2 - |\sigma_2(q)|^2 \right] P_y.
\]

Note that Eqs. (7) and (8) apply whether the microscopic ME interactions are due to exchange striction [26] or to charge ordering [27]. Thus, \(\mathbf{P}\) must lie along \(y(b)\) also in the CC phase [28]. Within mean field theory, \(P_y\) is proportional to \(|\sigma_2^2|\), as is the intensity of the magnetic Bragg peaks. This is confirmed [29] in RbFe(MoO\(_4\))\(_2\) (which is also described by Eq. (8)) and also apparently for ErMO by Ref. [30] [31]. Since the CC phase is ferroelectric, the fourth order terms in Eq. (5) (plus the umklapp terms) must select \(\sigma_1, \sigma_2 = 0\), which we deduced from Fig. 2. (The alternative would imply \(|\sigma_1| = |\sigma_2|, \) hence \(P_y = 0.\) In fact, the selection of which Op, \(\sigma_1, \) or \(\sigma_2,\) is nonzero is a result of broken symmetry. An electric field along \(y(b)\) would order \(P_y,\) and then Eq. (8) would select either \(\sigma_1\) or \(\sigma_2,\) depending on the sign of the field. Therefore we suggest that the sample should be cooled into the FE phase in the presence of a small electric field along \(y.\) Depending on the sign of the electric field one should get either the left-hand or the right-hand panel of Fig. 2 [32].

Equation (7) has further implications. First, near the \(P \rightarrow \text{II}_1\) transition, a leading fluctuation expansion yields \(\Delta \epsilon \propto (P_y^2) \propto |\sigma_2|^4|\sigma_1|^2|\). Since only \(\sigma_2\) becomes critical there, we expect singularities in \(\epsilon\) which behave as the energy \(|T - T_{\text{CC}}|^\alpha\) and (for \(T < T_{\text{CC}}\)) as the square of the OP \((|T_{\text{CC}} - T|^\beta/)|,\) but with \(n = 4\) exponents [33]. Indeed, experiments [34] show a break in slope at \(T_{\text{CC}},\) apparently confirming this prediction. In addition, this anomaly in the zero frequency dielectric function \(\epsilon(\omega = 0)\) reflects the emergence of a resonance in \(\epsilon(\omega),\) due to electromagnons [35]. Second, in the \(P_1\) phase \(\langle \sigma_1 \rangle \approx 0,\) so that \(V_{\text{int}}\) becomes \(-2r_2\langle \sigma_2 \rangle \langle \sigma_1 \rangle P_y.\) This bilinear coupling between \(P_y\) and \(\langle \sigma_2 \rangle \langle \sigma_1 \rangle\) has several implications on the critical behavior near the \(\text{II}_1 \rightarrow \text{II}_2,\) should this transition be discovered in some new RMO [36].

Finally, we associate the different RMO’s with trajectories on our phase diagram. Since ErMO [6], TmMO [8], and YMO [5] exhibit ferroelectricity in the phase denoted 1DIC, we must identify this phase with our IC\(_2\) phase, where both \(\sigma_a,\) and \(\sigma_b,\) order. For these materials, the experimental path in parameter space apparently goes from \(P_1\) via IC\(_2\) into the CC phase, as indicated by the dashed lines in the RHS of Fig. 1 (these lines have small slopes, since the experimental optimal \(q_1,\) and \(q_2,\) appear in the IC\(_1\) and IC\(_2\) phases. If \(2|W_{\text{rel}}| > U_a > 0,\) then the two \(q_1\)’s first appear as the IC\(_1\) phase is entered. If \(U_a < 0,\) then both wave vectors would have already condensed simultaneously in the II\(_1\) phase. It would be interesting to determine which scenario actually occurs. Since the ME interaction is significant, we suggest to apply an electric field parallel to one of the \(q_1\)’s, and check whether in the II\(_1\) phase the two \(q_1\)’s arise in separate domains or coexist within a single domain, following the logic of Ref. [37]. In contrast to the above RMO’s, HoMO [9] or TbMO [7] go directly from 2DIC to CM, as along the dotted line in the RHS of Fig. 1. Both sequences are thus allowed by our theory.
The Landau theory is probably less useful at lower T: the low T phases depend on the details of the magnetic interactions, and higher order terms in F_M should be included. Such terms could turn the (orange or blue) surface bounding the CC phase backwards, thus allowing transitions back into the paraelectric Π_2 phase, the weakly FE phases Π_1 or Π_C or the FE phase Π. Also, the trajectory describing each material need not be straight (thick dashed line in Fig. 1). A parabolic line, like the thin dashed line, would yield a transition from CC to Π_2 (or even to Π_1) with decreasing T. In fact, in ErMO [6] the LTI phase seems to have $q_s = \frac{1}{2}$, which identifies this phase with our CI phase. Thus, the observed LTI phase could be any of the phases on the other side of the CC region, paraelectric or weakly ferroelectric.

The effects of a magnetic field can be explained as follows: the field generates magnetic moments on the Mn ions, and these moments result in changes in the effective Mn-Mn interactions, thus changing the “control parameters” and the optimal \mathbf{q}. Apparently, this often moves the material towards the CM regime, resulting in a transition from the low T phase (Π_1 or Π_2) back into the CC phase [9,11]. Similar effects happen due to pressure [34]. Neutron diffraction measurements in a magnetic field and pressure could help resolve these scenarios.

In summary, we have developed a phase diagram to explain the multiferroic behavior of the family of RMO systems and have proposed several experiments to explore the unusual symmetries of these systems.

We thank M. Kenzelmann, S. H. Lee, and D. Mukamel for helpful interactions. A. A. and O. E. W. acknowledge support from the ISF and from the GIF, and the hospitality of KITP, where this research was supported in part by the support from the ISF and from the GIF, and the hospitality for helpful interactions. A. A. and O. E. W. acknowledge a didactic review of the approach, with more examples, is given by A. B. Harris, Phys. Rev. B 76, 054447 (2007).

A didactic review of the approach, with more examples, is given by A. B. Harris, Phys. Rev. B 76, 054447 (2007).

A simple theoretical description of multiferroics [M. Mostovoy, Phys. Rev. Lett. 96, 067601 (2006); J. J. Betouras et al., Phys. Rev. Lett. 98, 257602 (2007)] uses a single wave vector \mathbf{q} and a single vector spin amplitude, $S(\mathbf{q})$, and constructs combinations of $S(\mathbf{q})$, $S(\mathbf{-q})$, \mathbf{q} and \mathbf{P} allowed by symmetry. However, it is not clear how to relate the single $S(\mathbf{q})$ to the different sublattices within the large unit cell of RMO; see also Ref. [29] and M. Kenzelmann and A. B. Harris, Phys. Rev. Lett. 100, 089701 (2008).