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Sensor Network Devolution and Breakdown in Survivor Connectivity

Abstract
As batteries fail in wireless sensor networks there is an inevitable devolution of the network characterised by a
breakdown in connectivity between the surviving nodes of the network. A sharp limit theorem characterising
the time at which this phenomena makes an appearance is derived.
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Sensor Network Devolution and Breakdown in Survivor Connectivity
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Abstract — As batteries fail in wireless sensor net-
works there is an inevitable devolution of the network
characterised by a breakdown in connectivity between
the surviving nodes of the network. A sharp limit the-
orem characterising the time at which this phenomena
makes an appearance is derived.

I. System Model

Previous work on dense sensor networks have concen-
trated on establishing initial connectivity or coverage.
There is much less known, however, about how connec-
tivity between the surviving nodes devolves as nodes de-
grade and fail over time, primarily due to limited battery
power at the nodes.

We consider a sensor field comprised of a circle of unit
radius in which n sensors are to be dispersed. We will sup-
pose that each sensor can communicate with any other
sensor located within a distance r from it. As design
parameters we will suppose that the transmission radius
r = rn is a suitably decaying function of the number of
sensors n. A known result asserts indeed that log n

n is a
threshold function for the radius at which network con-
nectivity appears abruptly (cf. Gupta and Kumar [1] for
the result in the current framework). We will be con-
cerned mainly with the situation when the graph is ini-
tially connected.

Each sensor is equipped with a battery which has a
finite lifetime determined by the usage patterns of the
sensor and the selected transmission radius. We will sup-
pose that the battery lifetimes are independent random
variables with a common distribution Gr(t) for the prob-
ability that the battery lifetime exceeds t.

II. Breakdown in Survivor Connectivity

The degradation of the network due to sensor losses
in time also manifests itself ultimately in a breakdown
in connectivity. At the simplest level, such a breakdown
occurs when a live node is isolated though connectivity
may have broken down before such an occurrence. More
formally, what can be said about the connectivity of the
network of survivors at a given time t? In particular,
how long will the network of survivors remain connected
in the face of continuing losses?

It is fruitful to think of the setting as follows. Initially,
one starts with a connected spatial random graph on n
vertices. (Of course, we are assuming tacitly that the
communication radius rn exceeds the critical threshold
log(n)/n so that the network is connected.) At time t a

random fraction of the nodes has expired leaving a col-
lection of S(t) survivors with the induced subgraph on
those vertices. The situation may be arrived at by an
equivalent probabilistic game in which random deletions
of vertices (and associated edges) are performed on the
original graph with each vertex removed independently
from the graph with probability 1 − G(t). The number
of survivors S(t) is hence binomially distributed with pa-
rameters n and G(t). The de Moivre-Laplace theorem
tells us that S(t) is concentrated around its mean value
nG(t). It can be shown that S(t) = nG(t) + O(n1/2+ε)
with asymptotic probability close to 1.

Condition on S(t) = s survivors where s = nG(t) + ζ
and ζ = O(n1/2+ε). As deletions are performed indepen-
dently, the locations of the s survivors are independent
of each other and uniformly distributed in the unit cir-
cle. It follows that log(s)/s is a threshold function for
the transmission radius to ensure survivor connectivity.
More precisely, let ω(s) be any slowly growing function
of s. Bear in mind that the transmission radius is still the
originally set radius rn and that s ∼ nG(t). We hence ob-
tain that the survivors are disconnected with asymptotic
probability approaching 1 if rn ≤ (

log(s)−ω(s)
)/

s while
the survivors are connected with asymptotic probability
approaching 1 if rn ≥ (

log(s)+ω(s)
)/

s. Write ν = nG(t)
and take expectation with respect to s to get rid of the
conditioning. The concentration of the binomial allows us
to focus on s ∼ nG(t). It follows that a threshold function
for the radius is log(ν)/ν to ensure survivor connectivity.
Inverting the system we obtain that the critical region
of time t = tn where the survivor network passes from
connected to disconnected satisfies Grn

(tn) ∼ 1
nrn

log 1
rn

.
For concreteness, if the failure distribution is the mem-

oryless distribution seen earlier with Grn
(t) = e−αr4

nt and
rn is initially set at just above the critical connectiv-
ity threshold, then survivor connectivity breaks sharply
around tn = n2 log log(n)/α log2 n. More precisely, for
any ε > 0, the probability that the survivors are con-
nected tends to 1 if tn ≤ (1−ε)n2 log log(n)/α log2 n while
the probability that the survivors are disconnected tends
to 1 if tn ≥ (1 + ε)n2 log log(n)/α log2 n.
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