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Abstract.  When doing high field (1.5T) magnetic resonance breast imaging, the use of a 

compression plate during imaging after a contrast-agent injection may critically change the 

enhancement characteristics of the tumor, making the tracking of its boundaries very 

difficult. A new method for clinical breast biopsy is presented, based on a deformable finite 

element model of the breast. The geometry of the model is constructed from MR data, and its 

mechanical properties are based on a non-linear material model.  This method allows 

imaging the breast without compression before the procedure, then compressing the breast 

and using the finite element model to predict the tumor’s position. The axial breast contours 

and the segmented slices are ported to a custom-written MR-image contour analysis 

program, which generates a finite element model (FEM) input file readable by a commercial 

FEM software.  A deformable silicone gel phantom was built to study the movement of an 

inclusion inside a deformable environment. The hyperelastic properties of the phantom 

materials were evaluated on an Instron Model 1331 mechanical testing machine. The 

phantom was placed in a custom-built pressure device, where a pressure plate caused a 14% 

(9.8mm) compression. The phantom was imaged in a 1.5T magnet (axial and coronal), in the 

undeformed and deformed states. An FEM of the phantom was built using the custom-

written software from the MR data, and another FEM of the phantom was built using a 

commercial pre-processor from the phantom's directly measured dimensions. The 

displacements of the inclusion center and its boundaries were calculated, both from the 

experimental and FEM results. The calculated displacements from both models are within 

0.5mm of each other, and agree within 1.0mm with the experimental results. This difference 

is within the imaging error. 

1  Introduction 

It is impossible today to do continuous breast imaging using High Field (1.5T) Superconducting 

Magnetic Resonance imaging.  Moreover, the use of compression plates when imaging the breast 
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after injection of a contrast agent may change the enhancement characteristics of the tumor and 

could make the lesion disappear, making the tracking of tumor boundaries very difficult. 

We present a new method for clinical breast biopsy and/or surgery guidance, based on the use of a 

deformable finite element breast model whose geometry is constructed from MR data. The 

material properties of the deformable model are based on a nonlinear material model. This 

method allows to image the breast without any compression before a needle procedure, then 

compress the breast, and its finite element model (by applying the same pressure to both). The 

position of tumor in the real breast before the biopsy can then be identified by finding the position 

of the tumor in the compressed finite element model.  

First, the breast model is described from obtaining the breast MR data, to creating the geometric 

model.  The materials and methods then describe an initial silicon gel phantom study whose goal 

is to predict the movement of an inclusion inside a deformable environment (as the tumor in the 

breast), using the FEM of the silicon gel phantom. The results of the initial phantom study suggest 

that the compressed model may allow us to precisely track the position and motion of the tumor in 

the real compressed breast before inserting the needle.   

1 Background and Motivation 

Breast cancer is the most commonly diagnosed cancer and the second leading cause of cancer 

death among American women [1]. Breast magnetic resonance imaging (MRI) has become a 

robust and valuable technique, with an almost unlimited sensitivity for detection of invasive 

breast cancer [2] [3]. However, without the use of a contrast-enhancing agent (such as gadolinium 

dimeglumine [4-6]), MRI is of little benefit to detect tumors in the breast  [6-8]. 

It is generally accepted that the sensitivity of breast MRI for invasive breast cancers approaches 

100% [7] (however the sensitivity for in situ cancer has been reported to vary dramatically 

between 40%and 100% [9] [10]). 

An MR imaging-guided breast localization and biopsy system is thus needed to help differentiate 

between the benign enhancing lesions, and carcinomas. Lesion localization techniques described 

for use on a standard 1.5T system are based on the assumption that the appearance and shape of 

the potential lesion does not change during the entire procedure.  

The MR imaging-guided localization techniques encounter the following problems: 

• The appearance, size and shape of the potential cancer lesion greatly depends on dynamics of 

the contrast-enhancing agent. As explained above, the lesion may clearly appear only in the 

two minutes following the contrast agent injection, then the signal intensity may vary 

arbitrarily, and it is quite possible that the apparent boundaries of the lesion may change 

dramatically. 

• The use of compression plates when imaging the breast after injection of the contrast-

enhancing agent may change the enhancement characteristics of the tumor and could very 

well make the lesion disappear. 

• The deformable nature of the breast makes it very difficult to stabilize, and both external 

movements (due to the patient), and internal deformations that occur as the needle is inserted. 

• The compression plates could compress the breast to a degree that makes it virtually 

immobile, however this would cause a high level of discomfort to the patient in addition to 

the possible anxiety, in addition to the possible altered enhancement characteristics of the 

tumor as mentioned above. 

• Furthermore, the guidance techniques all use static MR images for localizing the lesions (pre 

and then postcontrast).  It is impossible today to do continuous breast imaging using high 
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field (1.5T) superconducting magnetic resonance imaging. Therefore live imaging can’t be 

maintained throughout the entire procedure.  

• When comparing MR-images and X-ray mammography images of the same breast in order to 

obtain more valuable information on the nature and localization of the lesion, there is no 

known technique that would register an image from one modality to the other. Due to the 

different position and deformation states of the breast in each modality (patient is standing 

straight for mammography, and lying prone for MR imaging), no simple deformation 

technique can be applied to register the corresponding images from the two modalities.  

Today the surgeon simply visually compares the images placed beside each other, and uses 

his/her best judgement to identify the same lesion in the two images. 

The above limitations coupled with the deformable structure of the breast make needle procedures 

very sensitive to the initial placement of the needle.  It thus becomes relatively uncertain that the 

tissue specimen removed during the biopsy procedure actually belongs to the lesion of interest.  It 

now becomes imperative to develop a new technique, which would solve or bypass the 

aforementioned problems. 

We present a new method for clinical breast biopsy and/or surgery guidance, based on the use of 

an accurate virtual finite element breast model of the patient, capable of modeling the deformation 

of the breast. The geometry of the model is constructed from MR data. The hyperelastic 

properties of the deformable model are based on a on nonlinear material model. This method will 

allow imaging of the breast without any compression before a needle procedure, then compress 

the breast, and its virtual finite element model (by applying the same deformation to both).  

Furthermore this model will allow data sets of the same breast from different imaging modalities 

to be correctly registered, by subjecting the virtual breast model to the same physical conditions 

as the real breast. 

A finite element model of the breast will be a very flexible tool for many applications including 

those mentioned above, and also for diagnosis, measurements, surgery planning, simulations of 

deformation due to inserting a needle, and further away, virtual surgery, and even tele-surgery.   

3  Physiology of the Breast 

  Fig. 1.  shows the major structures of the breast.  The dimensions and weight of the breast can 

greatly vary per individual.  The mammary gland forms a cone with its base at the chest wall and 

its apex at the nipple. Normal skin thickness lies between 0.5 and 1mm. Breast skin thickness 

varies between large and small breasts.  The superficial layer (fascia) is separated from the skin 

by 0.5 to 2.5 cm of subcutaneous fat.  Tentacle-like prolongations of fibrous tissue extend in all 

directions from this fascia to the skin. In the adult mammary gland, there are 15 to 20 irregular 

lobes, converging to the nipple through ducts 2 to 4.5 mm in diameter [11].  These ducts are 

immediately surrounded by dense interlobular (myoepithelial cells) and intralobular connective 

tissue (containing few collagenous fibers).  These fibrous sheaths are the supporting framework. 

Carcinomas in affected breasts are usually accompanied by local changes in material properties, 

due to increased density of the lesion, the shape and size of the lesion, and local skin thickening 

[12]. There are several types of breast cancer, however the most common are ductal carcinoma

(which begins in the lining of the milk ducts of the breast), and lobular carcinoma (which begins 

in the lobules where breast milk is produced) [13]. 
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  Fig. 1.  Glandular and supporting framework of the breast. 

Breast lesions that are relevant to this paper are those which usually necessitate a biopsy or 

removal: they are lumps of highly varying shapes, with diameters ranging from a few millimeters 

to several centimeters. That is why many lesions cannot be represented by a specific shape due to 

their physical extent, and particular nature. 

4  Description of the Breast Model 

The model of the breast is based on MR data. Because of the high variability of breast shapes and 

the deformation of the breast when compressed in order to be imaged, the model devised closely 

follows the contours of the patient breast. 

4.1  Breast MR Data 

The patient data is a set of parallel 2D spoiled gradient echo MR axial slices of the breast, using 

an axial T1-weighted sequence: they are called axial localizers, and are actually imaged before 

every examination to the breast.  This makes the availability of such data very high and no 

additional scans are needed, to the benefit of the patient. 

Fig. 2.  Axial MR slice of breast from axial localizer (left) and breast contours (right). 

The MR axial slices are then segmented. Using snakes, or any other contour method, the contour 

of each breast slice is drawn, from the medial side to the lateral side (as shown in Fig. 2 .  Then 

the main structures (breast tissue, fat, and possibly cancerous tumor) are segmented, and and the 
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results are saved to a file for subsequent use. Based on the external set of 2D axial slices we 

obtain a series of parallel contours.  When displayed in 3D, the breast contours appear as in 

Figure 2. 

These contours represent the breast volume in which the surgeon will operate.  The breast is 

compressed between two parallel plates, giving it the shape in Fig. 2. 

4.2  Geometric Model 

The breast contours (Fig. 2), and the segmented breast are ported to a custom-written MR-image 

contour analysis program, BreastView. Running on a Silicon Graphics (SGI) indigo2 machine, it 

generates the 3D computational domain (mesh) of the breast. The volume elements created from 

the mesh can be scaled to any size that fits the demands of the application. Then BreastView
assigns to each volume element its corresponding material definition, based on the segmented 

data of the breast. 

The program generates a finite element model (FEM) input file readable by a robust commercial 

FEM software such as ABAQUS (Hibbit, Karlsson & Sorensen, Rhode Island). Figure 3 shows a 

contour, and the 2D mesh generated in it.  

Fig. 3.  Slice contour, and 2D mesh generated in the (u,v) coordinate system. 

In order to create the 3D mesh, we first find the principal direction d (direction of the v-axis, Fig. 

3), from the chest wall to the nipple. Any line with direction d in the plane of the contour,  which 

intersects the contour, intersects it twice.  This direction is that of the line orthogonal to the line 

which passes through the two endpoints (the principal direction method using the eigenvectors of 

the contour set of points did not yield the best direction d). The center of gravity G of the contour 

set is calculated. The 3D mesh can now be easily generated following the U and V resolution 

desired, in the orthogonal u,v basis centered at G. This algorithm ensures that we have the same 

number of points on every V-line, and the same number of V-lines on every slice. 

The 3D volume elements are solid quadrilateral trilinear isoparametric elements, except at the tip 

of the mesh, where the volume elements are pyramidal. The skin is modeled as 2D membrane 

elements which have low  axial stiffness, but non-linear elastic behavior in the plane of the 

elements. The software BreastView permits the mesh to be as dense as needed. 

5  Materials and Methods 

A silicone gel phantom can be used to study to movement of an inclusion inside a deformable 

environment (as tumor inside the breast), and also to validate the model. The phantom can have 

magnetic properties (T1 and T2) similar to those of human breast tissue, and in such a way as to 

produce a good signal to noise ratio. An initial study was conducted using such a phantom.  The 

phantom was designed to withstand large deformations (20% or greater), and to enable controlled 

deformations. A silicon inclusion was inserted in the phantom, which is 4.3 times stiffer than the 

surrounding silicon.  The phantom was imaged undeformed, then compressed. A 3D deformable 
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model of the phantom was built from the resulting MR data using the custom-written software 

BreastView. Another FEM of the phantom was also built from its directly measured dimensions 

using a commercial pre-processor program. This latter model can be used to assess the 

inaccuracies introduced in the former model due to errors in dimension measurements from the 

MR images.  The displacement vectors of the 8 corners of the stiff phantom inclusion and its 

center, were measured both from the MR images and from the finite element models. 

5.1  Phantom construction 

The gel phantom was build using the Sylgard Primerless Dielectric Gel 527 (Dow Corning, 

Midland, Mich.). The gel system is composed of two parts, catalyst (part A) and resin (part B), 

the ratio of which determines its elastic properties (a decrease in A:B produces stiffer gels). The 

MR signal is derived entirely from methyl protons (the dependence of T1 and T2 on A:B is 

examined in  [14]). A similar silicon gel (model Q7-2218, Dow Corning) has been suggested for 

use in MR imaging [14], and the same silicone gel was used to validate tagging with MR imaging 

to estimate material deformation [15]. 

The geometry of the deformable phantom consists of a rectangular box containing a rectangular 

inclusion, with the dimensions as shown in Fig. 4. 

(a)      (b) 

Fig. 4.   (a) Geometry of the silicone gel phantom, (b) Top view of the setup for imaging the 

compressed silicone gel phantom. 

5.2  MR imaging 

The full silicone gel phantom was placed in a custom-built pressure device, where a pressure plate 

could compress the gel phantom in a similar way as with a real breast with the desired amount of 

deformation. The phantom was placed in the breast holding device as shown in Fig. 4. The 

compression plate was placed parallel to the phantom so it would compress it from the top, down 

a distance of 7.2 cm.  This left an uncompressed height of 1.0cm. The whole setup was secured 

firmly and imaged with a whole body 1.5 T superconducting magnet (Signa; GE Medical 

Systems, Milwaukee, Wis.). 

The silicone gel phantom was first imaged undeformed. The compression plate then applied a 

deformation width of 14% (9.8mm) in the x-direction, and the phantom was imaged again (after 

giving it about 30 seconds to settle in the new compression mode).  The phantom was free to 

deform on the top and on the sides, but was constrained laterally (compression plate) and 

medially.  This setup and the boundary conditions for the silicone phantom approximate quite 

well those of a real breast, expect that in the real case, the patient is in the prone position. 

However the phantom possesses enough integrity of shape that we can neglect the effect of 

gravity. 

An axial and a coronal T1-weighted fast multi planar gradient echo (FMPGR) sequences were 

performed both in the uncompressed and compressed case.  The sequences were performed with a 

repetition time (TR) of 325ms, a flip angle of 45o
 and an echo time (TE) of 3.4ms. The field of 
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view (FOV) in each slice was 140mmx140mm, with 2mm thick slices.  The images were 

reconstructed to a 256x256 matrix, with a pixel size of 0.55mm.  

The calculated dimensions of the phantom from the MR images agree within 1.6mm in the x-y 

plane (a maximum possible reported error of 3 pixels when measuring dimensions) and within 

2mm in the z plane, with the physically calculated dimensions.   

5.3  Material Properties 

The elastic properties of the phantom materials were evaluated on an Instron Model 1331 

(cambridge, MA) mechanical testing machine containing a semi-hydraulic computer driven 

system for very accurate tensile strength measurements. 

Flat cylindrical samples of the silicone gel and the stiffer inclusion underwent uniaxial stress tests. 

Static load-deformation (stress-strain) curves were obtained. 

The silicone gel can be assumed to be an isotropic hyperelastic material, and be described by a 

“strain energy potential” which defines the strain energy stored in the material per unit of 

reference volume. The experimental data was fit to a law of rubberlike material known as the 

Mooney-Rivlin strain energy function [16, 17]. We assume that the silicone gel is incompressible 

and temperature independent (in the conditions of the experiment). 

The strain energy potential is thus given by: U = C10 ( I1 – 3) + C01 (I2 – 3)  (1) 

Where I1 = λλλλ12 + λλλλ22 + λλλλ32 and I2 = λλλλ1-2 + λλλλ2-2 + λλλλ3-2  are the first and second deviatoric strain 

invariants respectively, and λλλλi are the deviatoric stretches.  C10 and C01 are the material parameters 

to be determined experimentally. Because we assume incompressibility, and isothermal response, 

the total volume ratio J is equal to 1. 

By invoking the principle of virtual work, we derive the nominal stress-strain relationship:  

TU = ∂ U / ∂ λU where TU is the uniaxial nominal stress, and λU is the stretch in the loading 

direction. After simplifying, rearranging the terms, and using the relation λU = (εU+1) where εU is 

the nominal strain, we finally get the equation: 

TU = 2 [1-(εU + 1)-3][ C01 + C10 (εU +1)]     (2)

where TU and εU are the uniaxial nominal stress and strain respectively. 

Equation (2) was fit to the experimental stress-strain curves for the two types of silicone gel, 

using the least sum of squares method. The average parameter values calculated are: 

Surrounding silicone gel in the phantom  | Silicone gel inclusion
C10 = 3740 ± 64 N/m

2
   | C10 = 16300 ± 815 N/m

2

C01 = 1970 ± 34 N/m
2
   | C01 = 10490 ± 524 N/m

2

5.4  Deformable phantom model 

The breast model was built using the BreastView software, and consists of 21 slices (each slice 

being in the x-y plane), stacked along the z-axis.  The model was built from the axial MR data. 

Each slice is 4mm thick.  The other model of the phantom was built directly from its physical 

dimensions using a pre-processor program MSC/PATRAN (MSC, CA), which automatically 

meshed the model, keeping 21 elements  in the z-direction. The number of nodes in the x- and y-

directions  is 18 and 22 respectively, in order to have square shaped volume elements. Both finite 

element models were made of 7497 elements. The finite element modeling simulations were done 

using a robust finite element code ABAQUS/STANDARD V.5.8 (HKS, Rhode Island), 

commercially available. 

Each finite element was modeled as a hybrid incompressible solid quadrilateral element, which 

allows a fully incompressible constraint at each material calculation point [18].  The element 

material properties were given a homogeneous, isotropic, Mooney-Rivlin hyperelastic model, 
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with the C10 and C01 constants as measured above.  The boundary conditions were applied 

appropriately, and the 9.8mm displacement of the pressure plate was modeled in the initial 

conditions as a 9.8mm displacement constraint on every node which belongs to the displaced 

surface of the phantom. 

6  Results and Discussion 

6.1  MRI Imaging 

The axial slice going through the center of the inclusion is shown in Fig. 5 in the uncompressed 

and in the compressed mode. As expected the edges of the phantom have changed shape as well 

as the edges of the tumor. Because silicon is incompressible, the side deformations of the 

phantom are quite large.  Despite the high level of adhesion of the silicon phantom to its holding 

base, a little horizontal sliding occurred at the base, however we neglected this effect when 

measuring the displacement of the inclusion. 

Because it is important in the real case to track the displacement of a cancer tumor in the breast, 

we tracked the displacement of the inclusion in the phantom. By using an image analysis 

software, we measured the displacement vectors of the center of the inclusion, as well its eight 

corners. We used the axial slices to measure the x and y displacements, and the coronal slices to 

measure the z displacements. 

(a)   (b) 

Fig. 5. (a) Uncompressed, and (b) 14% compressed axial MR slice of phantom. 

The displacement results are shown in Table 1.  

Table 1.  Displacement vectors (mm) for the inclusion corners and 

center, from MR data. 

 1 2 3 4 5 6 7 8 center 

x 9.3 9.4 9.4 9.4 6.1 6.1 6.1 5.5 8.3 

y 0.0 0.6 1.1 0.0 0.5 2.2 2.2 0.5 1.7 

z 1.1 1.1 -0.6 -0.6 1.7 1.1 -1.7 -2.2 0.6 
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6.2 Finite Element Model Simulations 

A static displacement simulation was done on both PATRAN-generated and BreastView-

generated models. Each simulation took about ten full hours on a Silicon Graphics Indigo 

workstation with 192Megs of RAM.  Fig. 6 below shows the PATRAN-generated model after 

compression. 

(a)  (b)  (c) 

Fig. 6.   (a) 3D view of PATRAN-generated model, (b) Axial slice through the center of the inclusion, (c) 

axial view of inclusion center, before and after compression. 

Both model deformation results were extremely similar. We verified that the total energy of both 

models was conserved. The displacement vectors of the inclusion corners and center are shown 

for the BreastView-generated model in Table 2.  Table 3 shows the difference between the 

displacements from the BreastView-generated model, the PATRAN-generated model, and the 

experimental displacement results. The last column in Table 3 represents the absolute average 

difference for each dimension. 

 1 2 3 4 5 6 7 8 center 

x 9.8 9.7 9.7 9.8 5.8 6.4 6.4 5.7 8.7 

y 0.7 0.9 0.9 0.7 1.2 3.2 3.2 1.2 2.2 

z 0.4 0.5 -0.7 -0.5 1.7 1.7 -2.0 -1.7 0.0 

Table 2.  Displacement vectors (mm) for the inclusion corners and center, from BreastView model. 

Corner nb > 1 2 3 4 5 6 7 8 
center Avg. 

difference 

with PATRAN 0.0 0.0 0.0 0.0 0.0 0.1 0.1 -0.1 0.1 0.04 
x With 

experimental 
0.5 0.3 0.3 0.4 0.2 0.4 0.4 0.2 0.4 0.34 

with PATRAN -0.1 0.1 0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 0.1 
y With 

experimental 
0.7 0.3 -0.2 0.7 0.7 1.0 1.0 0.7 0.6 0.66 

with PATRAN -0.2 0.0 -0.2 0.1 -0.5 -0.4 0.1 0.5 -0.2 0.3 
z With 

experimental 
-0.7 -0.6 -0.1 0.1 0.0 0.6 -0.4 0.5 -0.6 0.4 

Table 3.  Displacement differences (mm) with the BreastView model displacement results, for each corner of 

the inclusion and center. 

Table 3 indicates several interesting results. First of all it shows that the methodology used to 

create the phantom model using BreastView is sound since it results in a model which yields 

virtually the same inclusion displacement results as the PATRAN-generated model.  We note that 
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the latter mentioned model was built directly from the measured dimensions of the phantom, 

therefore it can be considered as a reference against which to compare the other model. The very 

slight discrepancies ranging from 0.1mm to 0.5mm are well within the maximum reported error 

range and may be very well due to the not completely accurate segmentation process which 

precedes the generation of the 3D model mesh. 

When comparing the deformable phantom model displacement results with the experimental 

displacements, the numbers show an average displacement difference in the y-direction (0.66mm) 

that is almost twice the difference in the x-direction (0.34mm).  This is probably due to the small 

sliding effect of the phantom base after compression.  Since the silicon gel phantom is virtually 

incompressible, this small sliding has caused the phantom to rise higher than expected in the y-

direction (and also in the z-direction).  This effect can also be seen when measuring the base to 

top deformation distance of the phantom in the central axial slice, which is +10mm for the 

experimental results, and +8mm for the deformable model.   

7  Conclusion 

This initial phantom study shows that it may be possible to create a deformable model of the 

breast based on the use of finite elements with non-linear material properties capable of  modeling 

the deformation of the breast.  The geometry of the model is constructed from MR data, and the 

material properties of the different structures are computed independently using material testing 

techniques. 

The validation process for the finite element model is done using a real deformable silicone 

phantom, whose geometry can be easily controlled.  The most important characteristic of the 

phantom is that it contains an inclusion (which models a breast tumor) whose center and edge 

deformation can be precisely tracked on its corresponding MR images.   

Based on this methodology, the model will be further validated using a more complex deformable 

phantom, which approximates better the shape and tissue distribution of the breast. The 

simulation will be achieved by running the deformable model through an FEM software such as 

ABAQUS/STANDARD with the appropriate boundary and initial conditions. In this case, it will 

be necessary to model the compression plate with a rigid element the size of the plate. The contact 

interaction modeling capability of ABAQUS/STANDARD will allow the modeled compression 

plate to apply the same deformation to the phantom model, as in reality.  From the deformed 

model, we will calculate the displacement vectors of the center of the inclusion as well as of its 

edges, and compare them to the measured displacements obtained from MR data, as we did here. 

This deformable model will be used as a new tool to the physician, who will: 1) image the breast 

with no compression (thus increasing the contrast and visibility of the tumor), 2) use the 

compression plates (to minimize deformations caused by the insertion of the needle), 3) compress 

the breast model, and accurately locate the tumor within the real compressed breast. 

This finite element model could also be used to register 3D data sets of the same breast from 

different imaging modalities. Another possible application of the model also involving 

registration, could be in mammography to register a Cranio-Caudal (CC), to a Medio-Lateral 

Oblique (MLO) X-ray image of the same breast, by appropriately applying the compressive plates 

to the 3D deformable model. 
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