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Abstract

Accident databases (NRC, RMP, and others) contain records of incidents (e.g., releases and spills) that have occurred in the USA chemical

plants during recent years. For various chemical industries, [Kleindorfer, P. R., Belke, J. C., Elliott, M. R., Lee, K., Lowe, R. A., & Feldman,

H. I. (2003). Accident epidemiology and the US chemical industry: Accident history and worst-case data from RMP*Info. Risk Analysis,

23(5), 865–881.] summarize the accident frequencies and severities in the RMP*Info database. Also, [Anand, S., Keren, N., Tretter, M. J.,

Wang, Y., O’Connor, T. M., & Mannan, M. S. (2006). Harnessing data mining to explore incident databases. Journal of Hazardous Material,

130, 33–41.] use data mining to analyze the NRC database for Harris County, Texas.

Classical statistical approaches are ineffective for low frequency, high consequence events because of their rarity. Given this information

limitation, this paper uses Bayesian theory to forecast incident frequencies, their relevant causes, equipment involved, and their consequences,

in specific chemical plants. Systematic analyses of the databases also help to avoid future accidents, thereby reducing the risk.

More specifically, this paper presents dynamic analyses of incidents in the NRC database. The NRC database is exploited to model the

rate of occurrence of incidents in various chemical and petrochemical companies using Bayesian theory. Probability density distributions

are formulated for their causes (e.g., equipment failures, operator errors, etc.), and associated equipment items utilized within a

particular industry. Bayesian techniques provide posterior estimates of the cause and equipment-failure probabilities. Cross-validation

techniques are used for checking the modeling, validation, and prediction accuracies. Differences in the plant- and chemical-specific

predictions with the overall predictions are demonstrated. Furthermore, extreme value theory is used for consequence modeling of rare

events by formulating distributions for events over a threshold value. Finally, the fast-Fourier transform is used to estimate the capital at

risk within an industry utilizing the frequency and loss-severity distributions.

r 2006 Published by Elsevier Ltd.

Keywords: Risk; Frequency modeling; Consequence modeling; Abnormal events; Chemical plants

1. Introduction

Since the accidents at Flixborough, Seveso, and Bhopal,
the reporting of abnormal events in the chemical industries
has been encouraged to collect accident precursors. Efforts
to increase the reporting of near-misses, with near-miss
management audits, have been initiated by the Wharton
Risk Management Center (Phimister, Oktem, Kleindorfer,
& Kunreuther, 2003). In addition, the AIChE center for
chemical process safety (CCPS) has facilitated the devel-
opment of a process safety incident database (PSID) to
collect and share incident information, permitting indus-
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Nomenclature

a,b parameters of Beta prior probability distribu-
tion

ai, bi parameters of prior probability distribution of
cause i for an incident

d1, d2, d3 cumulative number of incidents of causes EF,
OE, and O at the end of each year

ei probability of involvement of equipment type i

E(m|Data) expected posterior mean of m
E(q|Data) expected posterior mean of q

E(y) expected value of number of incidents in a year
E[Yi|Y�i] expected value of prediction of incident in

year i based on incidents in Y�i

f(ei) prior probability distribution of involvement of
equipment i for an incident

f(xi|Data) posterior probability distribution of involve-
ment of equipment i conditional upon Data

f(xi) prior probability distribution of cause i for an
incident

f(xi|Data) posterior probability distribution of cause i

conditional upon Data

fl discrete loss-severity distribution function
fz(Z) discrete probability distribution function of

total loss
Fu(y) cumulative probability distribution for distri-

bution of losses, l, over threshold u

G(l) Generalized Pareto distribution of losses
l loss associated with an incident
Mi+Ni+Oi cumulative number of incidents associated

with equipment i at the end of each year
np number of points desired in total loss distribu-

tion
NC/P number of incidents associated with compres-

sors and pumps
Nd amount of damage, $
Ne number of evacuations
NEF number of incidents associated with equipment

failures
Nf number of fatalities
Nh number of hospitalizations
NHT number of incidents associated with heat-

transfer equipment items
Ni number of injuries
NOE number of incidents associated with operator

errors
NPU number of incidents associated with process

units
NSV number of incidents associated with storage

vessels
Nt number of years
NTL number of incidents associated with transfer-

line equipment

Ntotal total number of incidents
NU number of incidents associated with unknown

causes
p(l) prior distribution of l
p(l|Data) posterior distribution of l given Data

p(q|Data) marginal posterior distribution of q given
Data

p(m|Data) marginal posterior distribution of m given
Data

PN probability generating function of the fre-
quency of events, N

pi, qi parameters of prior probability distribution of
involvement of equipment i in an incident

q parameter of the Negative Binomial distribution
s total number of incidents in Nt years
u threshold value of l for loss-severity distribution
V(y) variance of number of incidents per year
wd dimensionless damage measure
we dollar amount per evacuation, $
wf dollar amount per fatality, $
wh dollar amount per hospitalization, $
wi dollar amount per injury, $
x1, x2, x3 probabilities of causes EF, OE, and O for an

incident
yi number of incidents in year i

zi predictive score for incidents in year i

Z total annual loss for a company

Greek

a, b parameters for Gamma density distribution
function

b(a, b) Beta density distribution with parameters a and
b

fl characteristic function of the loss-severity dis-
tribution

fZ characteristic function of total loss distribution
l average annual number of incidents
lB average annual number of incidents for com-

pany B with losses greater than u

lF average annual number of incidents for com-
pany F with losses greater than u

m parameter of the Negative Binomial distribution
x, b parameters of the generalized Pareto distribu-

tion
g(a, b) Gamma distribution with parameters a and b

Subscript

i year counter
n year vector
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trial participants access to the database, while sharing their
collective experiences (CCPS, 1995). Finally, the Mary Kay
Safety Center at Texas A&M University (TAMU) has been
gathering incident data in the chemical industries (Anand
et al., 2006; Mannan, O’Connor, & West, 1999).

An incident database, involving oil, chemical, and
biological discharges into the environment in the USA
and its territories, is maintained by the national response
center (NRC) (NRC, 1990). While companies participate
voluntarily, raising reliability concerns, the NRC database
for Harris County, Texas, is acknowledged to be reliable
thanks to the conscientious efforts of many chemical
companies in reporting incidents. Moreover, the Mary Kay
Safety Center has concentrated time and resources toward
refining the Harris County database to increase its
reliability and consistency.

To record accidents, European industries submit their
data to the major accident-reporting system (MARS)
(Rasmussen, 1996), while a database for chemical compa-
nies in the USA is created from risk management plans
(RMP) submitted by facilities subject to Environmental
protection agency’s (EPA) chemical accidental release
prevention and response regulations (Kleindorfer et al.,
2003; RMP, 2000).

Several researchers have been analyzing and investigat-
ing incident databases to identify common trends and to
estimate risks. For example, Chung and Jefferson (1998)
have developed an approach to integrate accident data-
bases with computer tools used by chemical plant
designers, operators, and maintenance engineers, permit-
ting accident reports to be easily accessed and analyzed. In
addition, Sonnemans, Korvers, Brombacher, van Beek,
and Reinders (2003) have investigated 17 accidents that
have occurred in the Netherlands petrochemical industries
and have demonstrated qualitatively that had accident
precursor information been recorded, with proper mea-
sures to control future occurrences, these accidents could
have been foreseen and possibly prevented. Furthermore,
Sonnemans and Korvers (2006) observed that even after
recognizing accident precursors and disruptions, the
operating systems inside companies often fail to prevent
accidents. The results of yet another analysis feature the
lessons learned from the major accident and near-miss
events in Germany from 1993 to 1996 (Uth, 1999; Uth &
Wiese, 2004). Finally, Elliott, Wang, Lowe, and Kleindor-
fer (2004) analyzed the frequency and severity of accidents
in the RMP database with respect to socioeconomic factors
and found that larger chemically intensive companies are
located in counties with larger African-American popula-
tions and with both higher median incomes and higher
levels of income inequality. Note that accident precursors
have been studied also in railways, nuclear plants, health
science centers, aviation, finance companies, and banking
systems.

On the risk estimation frontier, Kirchsteiger (1997)
discussed the strengths and weaknesses of probabilistic
and deterministic methods in risk analysis using illustra-

tions associated with nuclear and chemical plants. It is
argued that probabilistic methods are more cost-effective,
giving results that are easier to communicate to decision
and policy makers. In addition, Goossens and Cooke
(1997) described the application of two risk assessment
techniques involving: (i) formal expert judgment to
establish quantitative subjective assessments of design
and model parameters, and (ii) system failure analysis,
with accident precursors, using operational evidence of
system failures to derive the failure probability of the
system. Furthermore, a human and organizational relia-
bility analysis in accident management (HORAAM)
method was introduced to quantify human and organiza-
tional factors in accident management using decision trees
(Baumont, Menage, Schneiter, Spurgin, & Vogel, 2000).
In this work, statistical methods are introduced to

estimate the operational risk for seven companies, includ-
ing petrochemical and specialty chemical manufacturers,
using the NRC database for Harris County, with the risk
estimated as the product of the frequency and conse-
quences of the incidents. Fig. 1 shows the algorithm for
calculating the operational risk of a chemical company.
For a company in the database, the incidents are extracted
on a yearly basis. Then, the frequency distribution of the
incidents is estimated using a g-Poisson Bayesian model.
Note that significant differences in the prediction of
incidents are observed for the individual companies, as
compared with predictions obtained when the incidents
from all of the companies are lumped together. The
Bayesian theory upgrades prior information available, if
any, using data to increase the confidence level in modeling
the frequency of incidents, decreasing the uncertainty in
decision-making with annual information upgrades (Ro-
bert, 2001).
Additional g-Poisson Bayesian models are developed to

provide the frequency distribution of the day of the week
on which the incidents occur, the equipment types
involved, the causes behind the incidents, and the chemicals
involved. In parallel, the failure probabilities of the process
units, as well as the causes of the incidents, are predicted
using a b-Bernoulli Bayesian model.
Later, a loss-severity distribution of the incidents is

modeled using extreme value theory (EVT) by formulating
a quantitative index for the loss as a weighted sum of the
different types of consequences. Through EVT, both
extreme and unusually rare events, which characterize
incidents reported in the chemical industries, are modeled
effectively. Note that EVT has been applied in structural,
aerospace, ocean, and hydraulic engineering (Embrechts,
Kluppelberg, & Mikosch, 1997). Herein, EVT is introduced
to measure the operational risk in the chemical industries.
Finally, the operational risk of the individual chemical

industries is computed by performing fast-Fourier trans-
forms (FFT) of the product of the frequency and loss-

severity distributions to obtain the total loss distribution
and the capital at risk (CaR). This approach to measuring
risks in specific companies provides a quantitative frame-
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work for decision-making at higher levels. Using the
platform provided, the chemical industries should be
encouraged to collect accident precursor data more
regularly. Through implementation of this dynamic risk
assessment methodology, improved risk management
strategies should result. Also, the handling of third party
investigations should be simplified after accidents.

To begin the detailed presentation of this algorithm,
Section 2 describes the concepts of Bayesian theory for
prediction of the numbers of incidents annually. Then, the
NRC database, the Bayesian predictive models, and the
loss-severity distribution using EVT, are described in
Section 3. The CaR calculations using FFTs are discussed
in Section 4. Finally, conclusions are presented in Section
5.

2. Modeling the frequency of incidents

Bayesian theory is helpful in formulating the annual
frequency of occurrence of incidents for a company. The
relationship between the mean and the variance of the
annual incidents, over many years, determines the best
choice of distribution. For example, the Poisson distribu-
tion is suitable when the mean and the variance of the data
are in close proximity. When the predictions of the Poisson

distribution are poor, other distributions are used; for
instance, the Negative Binomial distribution, when the
variance exceeds the mean (Bradlow, Hardie, & Fader,
2002).

2.1. Poisson distribution

The annual number of occurrences of an incident is a
non-negative, integer-valued outcome that can be esti-
mated using the Poisson distribution for y:

y�pðy ¼ yiÞ ¼
lyie�l

yi!

� �
; yi 2 fI

1g; yiX0; l40; (1a)

where yi is the number of incidents in year i, and l is the
annual average number of incidents, with the expected
value, E(y), and variance, V(y), equal to l. Due to
uncertainty, the prior distribution for l is assumed to
follow a g-distribution, l�g(a, b):

pðlÞ / la�1e�bl; a40; b40: (1b)

From Baye’s theorem, the posterior distribution, p(l|Data),
is:

pðljDataÞ / lðDatajlÞpðlÞ / ðlse�NtlÞ

�ðla�1e�blÞ / lðaþsÞ�1e�ðbþNtÞl, ð1cÞ

where Data ¼ (y0, y1,y, yNt
), s ¼

PNt

i¼0yi, Nt is the number
of years, and l(Data|l) is the Poisson likelihood distribu-
tion. Note that p(l|Data) is also a Gamma distribution,
g(a+s, b+Nt), because l is distributed according to g(a, b),
which is a conjugate prior to the Poisson distribution. The
mean of the posterior distribution is the weighted average
of the means of the prior and likelihood distributions:

aþ s

bþNt

¼
b

bþNt

a
b

� �
þ

Nt

bþNt

s

Nt

; (1d)

and the variance of the posterior distribution is (a+s)/
(b+Nt)

2.
The predictive distribution to estimate the number of

incidents in the next year, yNtþ1, conditional on the
observed Data, is discussed by Meel and Seider (2006).
This gives a predictive mean, (a+s)/(b+Nt), and predictive
variance, (a+s)/(b+Nt)[1+1/(b+Nt)], and consequently,
the posterior and predictive means are the same, while the
predictive variance exceeds the posterior variance.
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Select a company from
NRC Harris County

database

Extract the incidents on a yearly basis
for the selected company

Model frequency distribution of the
incidents using a Gamma-Poisson

Bayesian model

Day of the week
for incident

Cause behind
the incident

Equipment involved
in the incident

Chemical involved
in the accident

Failure probability analysis of the causes and
equipment types involved in the incident
using a Beta-Bernoulli Bayesian model

Model loss-severity distribution
using extreme value theory (EVT)

Calculate operational risk by performing
fast-Fourier Transform (FFT) on the

frequency and loss-severity distributions to
give the total loss distribution and

the capital at risk (CaR)

Fig. 1. Algorithm to calculate the operational risk of a chemical company.
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2.2. Negative binomial distribution

The annual number of occurrences of an incident is a
non-negative, integer-valued outcome that can be esti-
mated using the Negative Binomial distribution for y:

y�ðqÞmð1� qÞyi yi 2 fI
1g; yiX0; m40; qX0; (1e)

where yi is the number of incidents in year i, and m(1�q)/q
is the expected annual (mean) number of incidents, E(y),
and m(1�q)/q2 is the expected variance, V(y). Due to
uncertainty, the prior distribution for m is assumed to
follow a Gamma distribution, m�g(a, b):

pðmÞ / ma�1e�bm; a40; b40, (1f)

and that for q is assumed to follow a Beta distribution,
q�b(a, b):

pðqÞ / qa�1ð1� qÞb�1; a40; b40. (1g)

From Baye’s theorem, the posterior distribution, p(m,q|Da-

ta), is

pðm; qjDataÞ / lðDatajm; qÞpðmÞpðqÞ

/ qnmð1� qÞsðma�1e�bmÞqa�1ð1� qÞb�1

/ qnmþa�1ð1� qÞsþb�1
ðma�1e�bmÞ,

ð1hÞ

where Data ¼ (y0, y1,y, yNt
), s ¼

PNt

i¼0yi, Nt is the number
of years, and l(Data|m,q) is the Negative Binomial like-
lihood distribution. The marginal posterior distributions,
p(m|Data) and p(q|Data), and the posterior means E(m|Da-

ta) and E(q|Data) are obtained using the Markov Chain
Monte-Carlo (MCMC) method in the WINBUGS soft-
ware (Spiegelhalter et al., 2003). These added calculations
are not needed for the Poisson distribution, in which the
expected value, E(l|Data), is computed easily using Eq.
(1d).

2.3. Model-checking

To check the accuracy of the model, the number of
incidents in year i, yi, is removed, leaving the data,
y�i ¼ (y0,y, yi�1, yi+1,y,yNt

), over Nt�1 years. Then, a
Bayesian model applied to y�i is used to predict yi. Finally,
yi and E[yi|y�i] are compared, and predictive z-scores are
used to measure their proximity:

zi ¼
yi � E½yijy�i�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V ½yijy�i�
p . (2)

For a good model, the mean and standard deviation of
z ¼ (z0,y,zNt

) should approach zero and one, respectively.

3. Analysis of the NRC database

The NRC database contains reports on the oil, chemical,
radiological, biological, and etiological discharges into the
environment in the USA and its territories (NRC, 1990). A
typical incident report includes the date of the incident, the

chemical involved, the cause of the incident, the equipment
involved, the volume of the chemical release, and the extent
of the consequences. Herein, the incidents reported for
Harris County, Texas, for seven specific facilities during
the years 1990–2002, are analyzed to determine their
frequencies and consequences (loss-severities). This dataset
was obtained from the Mary Kay Safety Center at TAMU,
which filtered the NRC database for Harris County, taking
care to eliminate duplications of incidents when they
occurred. More specifically, the filtered dataset by Anand
et al. (2006), comprised of 7265 records, is used for further
processing.
The equipment is classified into 13 major categories:

electrical equipment (E1), pumps/compressors (E2), flare
stacks (E3), heat-transfer equipment (E4), hoses (flexible
pipes) (E5), process units (E6), process vessels (PV) (E7),
separation equipment (E8), storage vessels (E9), pipes and
fittings (E10), unclassified equipment (E11), relief equipment
(E12), and unknowns (E13). The Harris County database
includes several causes of the incidents, including equip-
ment failures (EF), operator errors (OE), unknown causes
(U), dumping (intentional and illegal deposition of material
on the ground), and others, with the EF and OE causes
being the most significant. Herein, the unknown causes
(U), dumping, and others are combined and referred to as
others (O).

3.1. Prediction of incidents at chemical companies

Table 1 shows the number of incidents extracted from
the NRC database for the seven companies. The total
number of incidents, Ntotal, and the number of incidents of
EF, NEF, OE, NOE, and due to unknown causes, NU, are
listed during the years 1990–2002. In addition, from the 13
equipment categories, the number of incidents of process
units, NPU, storage vessels, NSV, compressors/pumps, NC/P,
heat-transfer equipment, NHT, and transfer-line equipment,
NTL, are included. Note that the large excess of EF
compared with the numbers of OE was unanticipated.
Perhaps this is due to cost-saving measures that have
reduced maintenance budgets, with major repairs post-
poned until they are deemed to be urgent. Also, because
automated equipment often experiences fewer failures than
those related to the inconsistencies of the operators, it is
likely that many reported EF are indirectly a result of OE.
For each of the seven companies, the numbers of

incidents were predicted for future years utilizing data
from previous years. Included are the total number of
incidents, Ntotal, the number of incidents associated with
each equipment type, and the number of incidents
associated with each cause. In the remainder of this
section, selected results are presented and discussed.
Figs. 2(a) and (b) show the predictions of the number of

incidents for companies B and F using Poisson distribu-
tions which are chosen arbitrarily to illustrate the varia-
tions in the predictive power of the models. In these figures,
the number of incidents for the year n are forecasted using
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the Gamma-Poisson Bayesian techniques based on the
number of incidents from 1990 to n�1, where n ¼ 1991,
1992, y, 2002. These are compared to the number of
incidents that occurred in year n for companies B and F,
respectively.

In the absence of information to model the prior
distribution for the year 1990, a and b are assumed to be
0.001, providing a relatively flat distribution in the region
of interest; that is, a non-informative prior distribution.
Note that information upon which to base the prior
parameters would enhance the early predictions of the
models. This has been illustrated for a Beta-Bernoulli

Bayesian model, using informative and non-informative
prior distributions, showing the sensitivity of the predic-
tions to the prior values (Meel & Seider, 2006). For
company B, using non-informative prior distributions,
either the numbers of incidents are close to the predicted
numbers or higher than those predicted. However, for
company F, the numbers of incidents are close to or less
than those predicted.

When examining the results for the seven companies, the
sizable variations in the number of incidents observed in a
particular year are attributed to several factors including
management and planning efforts to control the incidents,
it being assumed that no significant differences occurred to
affect the reporting of the incidents from 1990 to 2002—

although OSHA’s PSM standard and EPA’s RMP rule
were introduced in 1992 and 1996, respectively. Therefore,
when the number of incidents is less than those predicted, it
seems clear that good incident-control strategies were
implemented within the company. Similarly, when the
number of incidents is higher than those predicted, the
precursor data yields a warning to consider enhancing the
measures to reduce the number of incidents in the future.
A good agreement between the numbers of incidents

predicted and observed indicates that a stable equilibrium is
achieved with respect to the predictive power of the model.
Such a state is achieved when the numbers of incidents and
their causes do not change significantly from year-to-year.
Note, however, that even as stable equilibrium is ap-
proached, efforts to reduce the number of incidents should
continue. This is because, even when successful measures
are taken year after year (that reduce the number of
incidents), the predictive values are usually conservative,
lagging behind until the incidence rates converge over a few
years.
Next, the results of the Bayesian model checking using

the R software package (Gentleman et al., 2005) to
compute predictive distributions are presented in quanti-
le–quantile (Q–Q) plots. For company F, Fig. 3(a) shows
the density profile of incidents, while Fig. 3(b) shows the
normal Q–Q plot, which compares the distribution of z
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Table 1

Number of incidents for seven companies in the NRC database

Companies Type Ntotal NEF NOE NU NPU NSV NC/P NHT NTL

A Petrochemical 688 443 56 101 59 101 86 58 121

B Petrochemical 568 387 48 88 110 69 127 47 56

C Specialty chemical 401 281 35 46 45 61 10 28 77

D Petrochemical 220 122 24 16 25 16 36 27 15

E Specialty chemical 119 77 21 8 13 22 11 12 23

F Specialty chemical 83 57 14 7 6 21 8 10 18

G Specialty chemical 18 9 2 5 1 1 1 3 2
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Fig. 2. Total number of incidents: (a) company B, (b) company F.
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(Eq. (2)) to the normal distribution (represented by the
straight line), where the elements of z are represented by
circles. The sample quantiles of z (ordered values of z,
where the elements, zi, are called quantiles) are close to the
theoretical quantiles (equally-spaced data from a normal
distribution), confirming the accuracy of the model
predictions. Most of the values are in good agreement,
except for two outliers at the theoretical quantiles, 1.0 and
1.5.

Figs. 4(a) and (b) show the density profile of incidents
and the Q–Q plot for company B. Comparing Figs. 4(a)
and 3(a), the number of incidents at company B is much
higher than at company F. In addition, the variation in the
number of incidents in different years is higher at company
B (between �25 and 65) than at company F (between �0
and 15). Note that the circles on the Q–Q plot in Fig. 4(b)
depart more significantly from the straight line, possibly
due to the larger year-to-year variation in the number of
incidents as well as the appropriateness of the of Gamma-

Poisson distribution. The circles below the straight line
correspond to the safe situation where the number of
incidents is less than higher than predicted, provide a
warning.
The predictions in Fig. 4(b) are improved by using a

Negative Binomial likelihood distribution with Gamma and
Beta prior distributions. The prior distribution for 1990 is
obtained using a ¼ b ¼ 0.001, and a ¼ b ¼ 1.0, providing a
relatively flat distribution in the region of interest; that is, a
non-informative prior distribution. The Negative Binomial

distribution provides better agreement for company B,
while the Poisson distribution is preferred for company F.

3.2. Statistical analysis of incident causes and equipment

types

In this analysis, for each company, Bayesian models are
formulated for each cause and equipment type. Because of
the large variations in the number of incidents observed
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Fig. 3. Company F: (a) density of incidents, (b) Q–Q plot.
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over the years, the performance of the Gamma-Poisson

Bayesian models differ significantly. For company F, Figs.
5(a) and (b) show the Q–Q plots for EF and for OE,
respectively. Fig. 5(a) shows better agreement with the
model because the variation in the number of incidents
related to EF is small, while the variation in the number of
incidents related to OE is more significant. This is
consistent with the expectation that equipment perfor-
mance varies less significantly than operator performance
over time.

Figs. 6(a) and (b) show the Q–Q plots for EF and for
OE, respectively, at company B. When comparing Figs.
5(a) and 6(a), the predictions of the numbers of EF at
company B are poorer than at company F using the
Poisson distribution, but are improved using the Negative

Binomial distribution. This is similar to the predictions for
the total numbers of incidents at company B, as shown in
Fig. 4(b), compared with those at company F, as shown in
Fig. 3(b). Yet, the predictions for the OE are comparable at

companies F and B, and consequently, the larger variation
in reporting incidents at company B are attributed to the
larger variation in the numbers of EF.
Figs. 7(a–d) show the Q–Q plots for incidents associated

with the process units, storage vessels, heat-transfer
equipment, and compressors/pumps at company B using
Poisson and Negative Binomial distributions. The Negative

Binomial distribution is better for incidents associated with
the process units, compressors/pumps, and heat-transfer
equipment, while the Poisson distribution is preferred for
storage vessels.

3.3. Statistical analysis of chemicals involved

For each company, an attempt was made to identify
trends for each of the top five chemicals associated with the
largest number of incidents in the Harris County obtained
from the NRC database. However, no specific trends for a
particular chemical associated with a higher number of
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incidents in all of the companies were observed. This could
be because different products are produced in varying
amounts by different companies. It might be preferable to
carry out the analysis for a company that manufactures
similar chemicals at different locations or for different
companies that produce similar products.

3.4. Statistical analysis of the day of the week

For each of the seven companies, Table 2 summarizes
the model checking of the Bayesian predictive distributions
of the days of the week, with the mean, E, and variance, V,
of z tabulated. Again, the predictions improve with the
total number of incidents observed for a company. As seen,
the mean and variance of z indicate that higher deviations
are observed on Wednesdays and Thursdays for all of the
companies, except company G. Lower deviations occur at
the beginning of the week and over the weekends. To
understand this observation, more information appears to
be necessary; for example, (1) defining the operator shift
and maintenance schedules, (2) carrying out operator
surveys, (3) determining operator work loads, and (4)
relating the data on the causes of the incidents to the days
of the week, identifying more specific patterns. Further-
more, the higher means and variances for company G on

Friday and Saturday suggest that additional data are
needed to generate a reliable Bayesian model.

3.5. Rates of EF and OE

In this section, for an incident, the probabilities of the
involvement of each of the 13 equipment types and the
probabilities of their causes (EF, OE and O) are modeled.
The tree in Fig. 8 shows, for each incident, the possible
causes, and for each cause, the possible equipment types.
Note that alternatively the tree could show, for each
incident, the possible equipment types followed by the
possible causes. x1, x2, x3 are the probabilities of causes
EF, OE, and O for an incident, and d1, d2, d3 are the
cumulative numbers of incidents at the end of each year. e1,
e2, e3, y, e13 are the probabilities of the involvement of
equipment types, E1, E2, y, E13, in an incident through
different causes, where M1+N1+O1, M2+N2+O2,
M3+N3+O3, y, M13+N13+O13 are the cumulative
number of incidents associated with each equipment type.
The prior distributions of the probability of xi are

modeled using Beta distributions with parameters ai and bi:

f ðxiÞ / ðxiÞ
ai�1ð1� xiÞ

bi�1; i ¼ 1; . . . ; 3, (3)

having means ¼ ai/(ai+bi) and variances ¼ aibi/(ai+-
bi)

2(ai+bi+1). These conjugate Beta prior distributions
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Fig. 7. Company B: (a) process units, (b) storage vessels, (c) Heat-transfer equipment, and (d) compressors/pumps.
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are updated using Bernoulli’s likelihood distribution to
obtain the posterior distribution of the probability of xi:

f ðxijDataÞ / ðxiÞ
ai�1þdi ð1� xiÞ

bi�1þ
P3

k¼1;ai
dk f ðxiÞ: (4)

The posterior distributions, which are also Beta distribu-
tions having parameters, ai+di, and bi þ

P3
k¼1;aidk,

change at the end of each year as di change. a1 and b1
are assumed to be 1.0 to give a flat, non-informative, prior
distribution; a2 and b2 are assumed to be 0.998 and 1.002 to
give a nearly flat, non-informative, prior distribution; and
a3 and b3 are 0.001 and 0.999. Consequently, the mean
prior probabilities of EF, OE, and O are 0.5, 0.499, and
0.001, respectively, as shown in Fig. 9(a).

The posterior means and variances are obtained over the
years 1990–2002 for each of the seven companies. Fig. 9(a)
shows the probabilities, x1, x2, and x3, of the causes EF,
OE, and O for an incident at company F. Using the data at
the end of each year, the probabilities increase from 0.5 for
the EF, decrease from 0.499 for the OE, and increase from
0.001 for the others, with the OE approaching slightly
higher values than those for the others.

Similarly, analyses for the probabilities of the equipment
types, e1, e2, y, e13, are carried out using Beta distribu-

tions, f(ei) and f (ei|Data), with the Data, M1+N1+O1,
M2+N2+O2, M3+N3+O3, y, M13+N13+O13. The
prior distributions of the probabilities of ei are modeled
using Beta distributions with parameters pi and qi:

f ðeiÞ / ðeiÞ
pi�1ð1� eiÞ

qi�1; i ¼ 1; . . . ; 13, (5)

having means ¼ pi/(pi+qi) and variances ¼ piqi/(pi+qi)
2(-

pi+qi+1). These conjugate Beta prior distributions are
updated using Bernoulli’s likelihood distribution to obtain
the posterior distributions of the probabilities of ei:

f ðeijDataÞ / ðeiÞ
pi�1þMiþNiþOi

� ð1� eiÞ
qi�1þ

P13
k¼1;ai

MkþNkþOk

f ðeiÞ: ð6Þ

The posterior distributions, which are also Beta distribu-
tions having parameters, pi+Mi+Ni+Oi, and
qi þ

P3
k¼1;aiMk þNk þOk, change at the end of each

year as Mi+Ni+Oi change. The parameters, pi and qi, are
chosen to give flat, non-informative, prior distributions.
The posterior means and variances are obtained over the

years 1990–2002 for each of the thirteen equipment types at
each of the seven companies. Fig. 9(b) shows, for an
incident, that the probability of the involvement of the PV
decreases over time. Similarly, the probabilities for the
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Table 2

Q–Q plot properties for day of the week analysis of incidents

Mon Tue Wed Thru Fri Sat Sun

A 0.027, 1.5 0.015, 1.06 0.032, 1.55 0.046, 1.9 0.023, 1.31 0.022, 1.23 0.055, 1.93

B 0.032, 1.53 0.047, 1.8 0.06, 2.12 0.058, 2.05 0.035, 1.55 0.027, 1.25 0.033, 1.46

C 0.027, 1.28 0.024, 1.21 0.047, 1.67 0.048, 1.62 0.031, 1.33 0.019, 1.002 0.039, 1.48

D 0.15, 2.3 0.165, 2.7 0.2, 2.96 0.2, 3.22 0.13, 2.44 0.126, 2.22 0.27, 3.4

E 0.038, 1.06 0.037, 1.19 0.086, 1.66 0.078, 1.64 0.11, 1.89 0.07, 1.46 0.036, 0.96

F 0.034, 1.06 0.06, 1.27 0.04, 1.08 0.87, 0.05 0.035, 0.98 0.043, 1.01 0.07, 1.22

G 0.06, 1.09 0.14, 1.29 0.14, 1.29 0.14, 1.29 7.84, 29.26 15.82, 58.48 0.23, 1.96
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Incident

Equipment failure
(EF)

Operator error
(OE)

Others
(O)

E
1

E
2 E

3
E

4
E

13 E
1

E
2 E

3
E

4
E

13
E

1
E

2 E
3

E
4

E
13

x
1

x
2

x
3

d
1

d
2

d
3

e
1

e
2

e
3

e
13

e
1

e
2

e
3 e

13
e

1
e

2
e

3
e

13

M
1

M
2

M
3 M

4
M

13 N
1

N
2

N
3 N

4
N

13 O
1

O
2 O

3
O

4
O

13

Fig. 8. Tree of causes and equipment types involved in an incident.
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other equipment types approach stable values after a few
years with occasional departures from their mean values.

3.5.1. Equipment and human reliabilities

By comparing the causes of incidents between the EF
and OE, insights regarding equipment and human reli-
abilities are obtained. In Table 3, where the range of the
annual OE/EF ratio for all of the companies is shown,
incidents involving EF exceed incidents involving OE. As
mentioned in Section 3.1, the low OE/EF ratios are
probably due to the operator bias when reporting
incidents. Nevertheless, for petrochemical companies, the
ratio is much lower than for specialty chemical companies.
This is anticipated because the manufacture of specialty
chemicals involves more batch operations, increasing the
likelihood of OE.

3.6. Specialty chemicals and petrochemicals

To identify trends in the manufacture of specialty
chemicals and petrochemicals, data for companies C, E,
F, and G are combined and compared with the combined
data for companies A, B, and D. Note that this is
advantageous when the data for a single company are
insufficient to identify trends, and when it is assumed that
the lumped data for each group of companies are
identically and independently distributed (i.i.d.). For these
reasons, all of the analyses in Sections 3.1–3.5 were
repeated with the data for specialty chemical and
petrochemical manufacturers lumped together. Because
the number of datum entries in each lumped data set is
increased, the circles on the Q–Q plot lie closer to the

straight line. However, the cumulative predictions for the
specialty chemical and petrochemical manufacturers differ
significantly from those for the individual companies.
Hence, it is important to carry out company specific
analyses. Nevertheless, when insufficient data are available
for each company, the cumulative predictions for specialty
chemical and petrochemical manufacturers are preferable.
Furthermore, when insufficient lumped data are available
for the specialty chemicals and petrochemical manufac-
turers, trends may be identified by combining the data for
all of the companies.

3.7. Modeling the loss-severity distribution using EVT

For rare events with extreme losses, it is important to
identify those that exceed a high threshold. EVT is a
powerful and fairly robust framework to study the tail
behavior of a distribution. Embrechts et al. (1997) provide
an overview of EVT as a risk management tool, discussing
its potential and limitations. In another study, McNeil
(1997) examines the estimation of the tails of the loss-

severity distributions and the estimation of quantile risk
measures for financial time-series using EVT. Herein, EVT,
which uses the generalized Pareto distribution (GPD), is
employed to develop a loss-severity distribution for the
seven chemical companies. Other methods use the log-

normal, generalized extreme value, Weibull, and Gamma

distributions.
The distribution of excess values of losses, l, over a high

threshold, u, is defined as:
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Fig. 9. Probabilities of xi for company F: (a) EF, OE, and others, (b) PV.

Table 3

OE/EF ratio for the petrochemical (P) and specialty chemical (S) companies

Company A (P) B (P) C (S) D (P) E (S) F (S) G (S)

OE/EF ratio 0–0.3 0–0.22 0–0.75 0–0.5 0–0.667 0–0.667 0–0.5
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FuðyÞ ¼ Pr l � upyjl4u
� �

¼
F ðyþ uÞ � F ðuÞ

1� F ðuÞ
; l 2 L,

(7)

which represents the probability that the value of l exceeds
the threshold, u, by less than or equal to y, given that l

exceeds the threshold, u, where F is the cumulative
probability distribution, and L is the set of losses. This is
the so-called loss-severity distribution. Note that, for the
NRC database, l is defined in Section 3.7.1. For sufficiently
high threshold, u, the distribution function of the excess
may be approximated by the GPD, G(l), and consequently,
Fu(y) converges to the GPD as the threshold becomes large.
The GPD is

GðlÞ ¼
1� 1þ x l�u

b

	 
�1=x
if xa0

1� e�l=b if x ¼ 0

8<
:

9=
;, (8)

where b is the scale parameter, x is the shape parameter,
and the tail index is x�1. Note that the GPD reduces to
different distributions depending on x. The distribution of
excesses may be approximated by the GPD by choosing x
and b and setting a high threshold, u. The parameters of
the GPD can be estimated using various techniques; for
example, the maximum likelihood method and the method
of probability-weighted moments.

3.7.1. Loss-severity distribution of the NRC database

Because few incidents have high severity levels, the
incidents analyzed for the seven companies are assumed to
be i.i.d. Consequently, the incidents for a specific company
(internal data) are combined with those for the other
companies (external data) to obtain a common loss-severity

distribution for the seven companies. The loss associated
with an incident, l, is calculated as a weighted sum of the
numbers of evacuations, Ne; injuries, Ni; hospitalizations,
Nh; fatalities, Nf; and damages, Nd:

l ¼ weNe þ wiN i þ whNh þ wfN f þ wdNd, (9)

where we ¼ $100, wi ¼ $10,000, wh ¼ $50,000,
wf ¼ $2,000,000, and wd ¼ 1, with Nd reported in dollars.
Note the weighting factors were adjusted to align with the
company performance histories.

For the NRC database, the threshold value, u, was
chosen to be $10,000. As expected, the NRC database has
few incidents that have a sizable loss. Only 157 incidents
among those reported had monetary loss (l40), 64
exceeded the threshold, and 108 exceeded or equaled the
threshold. A software package, Extreme Value Analysis in
MATLAB (EVIM) Gencay et al. (2001), obtained the
parameters of the GPD, x ¼ 0.8688 and b ¼ 1.7183� 104,
for the NRC database using the maximum likelihood
method. Fig. 10 shows the predictions of Fu(y), the
cumulative probability of the losses, l, that exceed or equal
the threshold, u. Note that while the cumulative distribu-
tion of the losses could be improved with data from more

companies in Harris County, the predictions in Fig. 10 are
considered to be satisfactory.
By graphing log(1–Fu(y)), Fig. 11 emphasizes the tail of

the loss-severity distribution, with the value at risk (VaR)
defined at 99.5% (1–Fu(y) ¼ 0.005) cumulative probability
equal to $1.97� 106 and the lower and upper bounds on
the 95% confidence interval equal to $7.9� 105 and
$6.0� 106, respectively. The VaR is a forecast of a specified
percentile (e.g., 99.5%), usually in the right tail, of the loss-

severity distribution over some period (e.g., annually).

4. Operational risk

Several types of risks, for example, credit, market, and
operational risks are encountered by chemical companies.
In this work, the primary focus is on calculating the
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operational risk associated with a chemical company,
which is defined as the risk of direct or indirect losses
resulting from inadequate or failed internal resources,
people, and systems, or from external events.

Capital charge (that is, CaR) of a company due to
operational risk is calculated herein. Capital charge is
obtained from the total loss distribution (to be defined
below) using the VaR. Computation of the total loss

distribution is a common statistical approach in the
actuarial sciences. This paper applies this approach to risk
analysis in the chemical industries. There are four methods
for obtaining capital charge associated with operational
risk: (i) the basic indicator approach (BIA), (ii) the
standardized approach (SA), (iii) the internal measurement
approach (IMA), and (iv) the loss distribution approach
(LDA). The LDA (Klugman, Panjer, & Willmot, 1998) is
considered to be the most sophisticated, and is used herein.

In the LDA, the annual frequency distribution of
incidents is obtained using internal data, while the loss-

severity distribution of an incident is obtained using
internal and external data, as discussed in Section 3.7.1.
By multiplying these two distributions, the total loss

distribution is obtained.
Fig. 12 shows a schematic of the total loss distribution

for a chemical company. The expected loss corresponds to
the mean (expected) value and the unexpected loss is the
value of the loss for a specified percentile (e.g., 99.5%)
minus the expected loss. Note that, in some circles, the CaR
is defined as the unexpected loss. However, herein, in
agreement with other institutions, the CaR is the sum of
the expected and unexpected losses, at the 99.5 percentile of
the total loss distribution.

Highly accurate estimates of the CaR are difficult to
compute due to the scarcity of internal data for the extreme
events at most companies. Also, internal data are biased
towards low-severity losses while external data are biased
towards high-severity losses. Consequently, a mix of
internal and external data is needed to enhance the
statistical significance. Furthermore, it is important to
balance the cost of recording very low-severity data and the
truncation bias or accuracy loss resulting from the use of
unduly high thresholds.

As when estimating the frequency of incidents (Section
2), a frequency distribution is obtained initially using
Bayesian theory for events with losses that exceed a
threshold, u. Because operational risks are difficult to
estimate shortly after operations begin, conservative
estimates of the parameters of the Poisson distribution
may be obtained. In these cases, the sensitivity of the CaR
to the frequency parameter should be examined. After the
frequency distribution is obtained, it is multiplied with the
loss-severity distribution and the FFT is used to calculate
the total loss distribution.

4.1. FFT algorithm

The algorithm for computing the total loss distribution
using the FFT is described in this section. Aggregate losses
are represented as the sum, Z, of a random number, N, of
individual losses, l1, l2, y, lN. The characteristic function
of the total loss, fz(t), is:

fzðtÞ ¼ E½eitðZÞ� ¼ EN ½E½e
itðl1þl2þ...þlN ÞjN��

¼ EN ½flðtÞ
N
� ¼ PN ðflðtÞÞ, ð10Þ

where PN is the probability generating function of the
frequency of incidents, N, and fl is the characteristic
function of the loss-severity distribution. The FFT pro-
duces an approximation of fz and, using fz, the inverse
fast-Fourier transform (IFFT) gives fz(Z), the discrete
probability distribution of the total (aggregate) loss. The
details of the FFT, IFFT, and the characteristics function
are found elsewhere (Klugman et al., 1998).
First, np ¼ 2r for some integer r is chosen, where np is the

desired number of points in the distribution of total losses,
such that the total loss distribution has negligible prob-
ability outside the range [0, np]. Herein, r ¼ 13 provides a
sufficiently broad range. It can be adjusted according to the
number of incidents in a company. The next steps in the
algorithm are:

1. The loss-severity distribution is transformed from
continuous to discrete using the method of rounding
(Klugman et al., 1998). The span is assumed to be
$20,000 in line with the threshold for the GPD. The
discrete loss-severity vector is represented as fl ¼ [fl(0),
fl(1), y, fl(np-1)].

2. The FFT of the discrete loss-severity vector is carried
out to obtain the characteristic function of the loss-

severity distribution: fl ¼ FFT(fl).
3. The probability generating function of the frequency,

PN(t) ¼ el(t–1), is applied, element-by-element, to the
FFT of the discrete loss-severity vector to obtain the
characteristic function of the total loss distribution:
fz ¼ PN(fl).

4. The IFFT is applied to fz to recover the discrete
distribution of the total losses: fz ¼ IFFT(fz).
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4.2. Total loss distribution for companies B and F

The Poisson frequency parameters for companies B and
F, obtained using internal data for each company, are
lB ¼ 0.8461 and lF ¼ 0.0769. These are obtained using
Bayesian theory for their incident data through the years 1
to n�1 (1990–2001) for incidents having losses that exceed
or equal the threshold, $10,000. The low lF indicates the
low probability of incidents having significant losses in
company F. For company B, lB indicates that about one
event, with l4$10,000, is anticipated in the next year. Note
that the loss-severity distributions in Figs. 10 and 11 are
obtained using both internal and external data.

Fig. 13(a) shows the tail of the cumulative plot of the
total loss distribution for company B. The total loss at the
99.5th percentile is $3.76� 106 and at the 99.9th percentile
is $14.1� 106. When lBb1, a much higher value of CaR is
expected. Similarly, Fig. 13(b) shows the tail for company
F. The total loss at the 99.5th percentile is $0.43� 106 and
at the 99.9th percentile is $1.78� 106. As expected, the CaR
for company F is lower than for company B by an order of
magnitude.

Hence, this method provides plant-specific estimates of
the CaR. Such calculations should be performed by
chemical companies to provide better estimates for
insurance premiums and to add quantitative support for
safety audits.

5. Conclusions

Statistical models to analyze accident precursors in the
NRC database have been developed. They:

1. Provide Bayesian models that facilitate improved
company-specific estimates, as compared with lumped
estimates involving all of the specialty chemical and
petrochemical manufacturers.

2. Identify Wednesday and Thursday as days of the week
in which higher variations in incidents are observed.

3. Are effective for testing equipment and human reliabil-
ities, indicating that the OE/EF ratio is lower for

petrochemical than specialty chemical companies.
4. Are beneficial for obtaining the value at risk (VaR) from

the loss-severity distribution using EVT and the capital
at risk (CaR) from the total loss distribution.

Consistent reporting of incidents is crucial for the
reliability of this analysis. In addition, the predictive errors
are reduced when: (i) sufficient incidents are available for a
specific company to provide reliable means, and (ii) less
variation occurs in the number of incidents from year-to-
year. Furthermore, to obtain better predictions, it helps to
select distributions that better represent the data, properly
modeling the functionality between the mean and variance
of the data.
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