February 2007

Impedance Characterization of a Model Au/Yttria-Stabilized Zirconia/Au Electrochemical Cell in Varying Oxygen and NO\textsubscript{x} Concentrations

Leta Y. Woo
University of Pennsylvania

L. Peter Martin
Lawrence Livermore National Laboratory

Robert S. Glass
Lawrence Livermore National Laboratory

Raymond J. Gorte
University of Pennsylvania, gorte@seas.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cbe_papers

Recommended Citation

© The Electrochemical Society, Inc. 2007. All rights reserved. Except as provided under U.S. copyright law, this work may not be reproduced, resold, distributed, or modified without the express permission of The Electrochemical Society (ECS). The archival version of this work was published in Journal of the Electrochemical Society, Volume 154, Issue 4, February 2007, pages J129-135. Publisher URL: http://dx.doi.org/10.1149/1.2456328

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cbe_papers/88
For more information, please contact repository@pobox.upenn.edu.
Impedance Characterization of a Model Au/Yttria-Stabilized Zirconia/Au Electrochemical Cell in Varying Oxygen and NO$_x$ Concentrations

Abstract
An electrochemical cell [Au/yttria-stabilized zirconia (YSZ)/Au] serves as a model system to investigate the effect of O$_2$ and NO$_x$. Possible mechanisms responsible for the response are presented. Two dense Au electrodes are co-located on the same side of a dense YSZ electrolyte and are separated from the electrolyte by a porous YSZ layer, present only under the electrodes. While not completely understood, the porous layer appears to result in enhanced NO$_x$ response. Impedance data were obtained over a range of frequencies 0.1 Hz to 1 MHz, temperatures 600–700°C, and oxygen 2–18.9% and NOx 10–100 ppm concentrations. Spectra were fit with an equivalent circuit, and values of the circuit elements were evaluated. In the absence of NO$_x$, the effect of O$_2$ on the low-frequency arc resistance could be described by a power law, and the temperature dependence by a single apparent activation energy at all O$_2$ concentrations. When both O$_2$ and NO$_x$ were present, however, the power-law exponent varied as a function of both temperature and concentration, and the apparent activation energy also showed dual dependence. Adsorption mechanisms are discussed as possibilities for the rate-limiting steps. Implications for impedancemetric NO$_x$ sensing are also discussed.

Comments
© The Electrochemical Society, Inc. 2007. All rights reserved. Except as provided under U.S. copyright law, this work may not be reproduced, resold, distributed, or modified without the express permission of The Electrochemical Society (ECS). The archival version of this work was published in *Journal of the Electrochemical Society*, Volume 154, Issue 4, February 2007, pages J129-135. Publisher URL: http://dx.doi.org/10.1149/1.2456328

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/cbe_papers/88
The development of NOx sensors has been motivated primarily by environmental concerns and the automotive industry’s desire to monitor gases in the exhaust stream.1 Fast, reliable sensors are needed in order to meet increasingly stringent governmental regulations for emission limits. Ceramic metal oxides are candidate materials for operation in harsh, high-temperature environments, especially the oxygen-ion conductor yttria-stabilized zirconia (YSZ). YSZ is currently used for automotive oxygen sensors and has shown good stability and operation at temperatures 700°C and higher.1,3 NOx sensor development poses significant challenges due to a number of issues including cost, sensitivity, stability, and response time. In the past decade, development of YSZ-based NOx sensors has focused on amperometric and potentiometric operation.2-3 Amperometric operation typically measures a diffusion-limited current and has been shown to be effective as an NO-selective or a total-NOx sensor. Typically, research focuses on various metal-oxide electrodes to optimize the response.2,3 In order to isolate the NOx from the O2 response, a separate pumping cell may be necessary to maintain a constant O2 concentration at the sensing electrode, leading to complicated device structures.1,3 Potentiometric sensors correlate the measured open circuit potential (OCP) to the gas composition. The OCP can be measured between an electrode in the test atmosphere and another electrode in reference gas, or between dissimilar electrodes in the same atmosphere. In potentiometric operation, the response to NOx is generally opposite in sign to that of NO, and generally larger, making total-NOx sensing difficult.8 More recently, a YSZ-based impedancemetric technique has been reported for sensing of NO and CO.9-12 In that technique, the modulus (or magnitude) of the measured complex impedance at ≤1 Hz serves as the sensing signal. NO and NO2 were shown to produce similar responses, offering the potential for total-NOx sensing. Impedancemetric NOx sensors show promise for overcoming the problems associated with amperometric (complex device structures) and potentiometric (interference between NO and NO2) sensors; however, a better understanding of the sensing mechanisms is necessary to optimize sensor operation.

Previous work has demonstrated the effectiveness of an impedancemetric NOx sensor using dense Au, porous YSZ/Cr2O3 composite electrodes, and a YSZ electrolyte in an in-plane geometry (i.e., both electrodes are co-located on the same side of the electrolyte).12

In an effort to better understand the sensing mechanism, the present work uses a model electrochemical cell to isolate the role of the Au/porous YSZ interface. Using an in-plane geometry, the model system consists of a dense YSZ electrolyte and two planar Au plates, with a porous YSZ layer separating the Au and dense YSZ. Electrochemical characterization of the model cell involves impedancemetric measurements that are then fit with an equivalent circuit. Data taken at different temperatures and concentrations are used to interpret the effect of O2 and NOx.

Understanding the cross sensitivity to interfering gases (e.g., water vapor, hydrocarbons, etc.) is also crucial for sensor operation, but a comprehensive study is outside the scope of the current work. For automotive exhaust applications, interference from hydrocarbons and other gases may be mitigated using separate strategies. A cross-sensitivity study in conjunction with automotive dynamometer testing of a prototype impedancemetric YSZ-based sensor is being conducted and will be the subject of a separate study. The present analysis provides a base from which future work on the role of different oxides (e.g., Cr2O3), microstructures (e.g., porosity), and other material parameters can be examined.

Experimental

Yttria-stabilized zirconia (YSZ) powder (Tosoh 8-YS) was pressed in a uniaxial die and then sintered at 1450°C for 2 h. The sintered pellet had a diameter of 12.2 mm with a nominal thickness of ~1.5 mm. Porous YSZ was then spray coated onto the surface of the pellet using YSZ powder dispersed in a 50% H2O/50% ethanol solution. The porous YSZ was deposited as two side-by-side rectangles (each with area ~28 mm2) with ~0.5 mm separation, and was then fired at 1000°C for 1 h. The thickness of the porous YSZ layer was ~10 μm, as seen in the scanning electron microscopy (SEM) image in Fig. 1a. The SEM image in Fig. 1b shows an interconnected network of ~100 nm diam YSZ particles. Two thin Au plates were contacted to the porous YSZ layers using constant spring-loaded pressure.

Testing was performed in a quartz tube (i.d. of 16.8 mm) placed inside a tube furnace with both electrodes exposed to the same gas flow. The gas flow rate was maintained at 500 mL/min with composition controlled by mixing air, N2, and 1000 ppm NO or NO2.
using a standard gas handling system equipped with thermal mass flow controllers. Electrochemical measurements were performed using a Solartron Analytical SI 1260 Impedance/gain-phase analyzer with the Solartron Analytical SI 1287 electrochemical interface. Computer-controlled data acquisition used the commercially available Zplot software (Scribner Associates, Inc.). Impedance spectra were collected by scanning the frequency from 1 MHz to 0.1 Hz at 20 steps per decade with an excitation voltage of 50 mV. Impedance spectra were analyzed using Boukamp’s Equivcrt.com software.

Results and Discussion

Impedance spectroscopy.—The impedance of a material (Z) describes the response to an alternating signal, and includes both magnitude (|Z|) and phase angle (θ) information. The following relationships describe the complex impedance [Z(ω) = Re(Z) + j Im(Z)], where Re(Z) is the real component and Im(Z) is the imaginary component.

\[
\text{Re}(Z) = |Z|\cos \theta \quad \text{and} \quad \text{Im}(Z) = |Z|\sin \theta
\]

[1]

The relationship for phase angle is described by the following

\[
\theta = \tan^{-1}\left(\frac{\text{Im}(Z)}{\text{Re}(Z)}\right)
\]

[2]

and for the magnitude

\[
|Z| = \sqrt{(\text{Re}(Z))^2 + (\text{Im}(Z))^2}
\]

[3]

For impedancemetric sensor operation, either of the measured quantities (i.e., magnitude or phase angle) at a specified frequency can serve as the sensing signal. Impedance spectroscopy entails using a frequency response analyzer to measure the response to (typically) small amplitude excitation over a range of frequencies (spectrum). The data can be presented in a so-called Nyquist plot, which is a complex plane representation [−Im(Z) vs Re(Z)] that provides indirect information about both magnitude (|Z|) and phase angle (θ) over a range of frequencies. Alternatively, the data can be presented as a Bode plot, where either |Z| or θ is plotted vs log frequency.

Figure 2 shows a Nyquist plot of the Au/YSZ/Au cell at 600°C in 2% O2 and in 2% O2 with 100 ppm NO. Material behavior with both resistive and capacitive components produces characteristic arcs that appear in different frequency ranges in the Nyquist representation. In Fig. 2, a discernable high-frequency arc is shown in the inset, while a larger low-frequency arc dominates the spectra. [Z₁] and [Z₂] refer to the response in 2% O2, and [Z₁] and [Z₂] refer to the response in 2% O2 with 100 ppm of NO. The cell behavior at higher frequencies, above ~10^4 Hz, does not change with NO (see inset of Fig. 2). However, the diameter of the large arc at lower frequencies decreases significantly with the introduction of NO. Corresponding decreases can be seen in both the magnitude (from [Z₁] to [Z₂]) and phase angle (from θ₁ to θ₂) at 10 Hz. The response to NO₂ was qualitatively similar to that for NO, but slightly smaller under certain conditions. These differences are further discussed below.

Miura et al. and Wu et al. have seen qualitatively similar impedance response using ZnCr 2O 4 and Au–Ga 2O 3 sensing electrodes to detect NO and CO, respectively. In Ref. [10], the counter electrode was Pt exposed to atmospheric air, with only the ZnCr 2O 4 sensing electrode exposed to the test atmosphere. In Ref. [11], the Au–Ga 2O 3 sensing electrode and Pt reference electrode were both exposed to the same test atmosphere. Sensors using different electrodes and atmospheres may induce corresponding voltage changes (open circuit potentials) due to different reactions or kinetics at the electrodes, an effect usually explained with “mixed potential” or “differential electrode equilibria” theory. The mixed potential theory refers to differences in equilibria between electrochemical NO2/NO and O2 reactions taking place at the electrodes. Differential electrode equilibria theory is a more general term that includes nonequilibrium phenomena and changes in chemical adsorption behavior of the electrodes. The measured impedance, however, only reflects the material phenomena, and not the induced electromotive force, as long as small-amplitude fields are applied to prevent the possibility of microstructural damage. In the current work, both electrodes of the model cell are identical and exposed to the same test atmosphere.

Figure 1. SEM images showing (a) the thickness of the spray coat deposited porous YSZ and (b) the morphology of the interconnected ~100 nm diam YSZ particles in the porous layer.

Figure 2. Nyquist plot of the model Au/YSZ/Au cell at 600°C in 2% O2 and in 2% O2 with 100 ppm NO. [Z] and θ at 10 Hz are shown as solid and dotted lines, respectively, where [Z₁] and θ₁ refer to the response in 2% O2, and [Z₂] and θ₂ refer to the response in 2% O2 with 100 ppm of NO. Numbers corresponding to darkened points represent log of frequency in Hz.
The frequency operation is desirable since it allows for reduced sampling.

Plots demonstrating the variation of resistance spectra for material phenomena exhibiting both resistive and chemical cell in the range of frequencies between the cell in 2% O₂ and 2% O₂ with 100 ppm NO.

The phase angle response at low frequencies, 1 and 0.42 Hz, was also investigated for use as a sensing signal. Figure 3a shows Bode plots for the model electrochemical cell at 600°C in 2% O₂ and in 2% O₂ with 100 ppm NO. As a measure of the sensitivity, Figure 3b shows the fractional change in magnitude (Δ|Z|/|Z|) and phase angle (θ) with the addition of 100 ppm NO. As reported in Ref. 10 and 11, the Z sensitivity decreases with increasing frequency. However, it can be seen that the θ sensitivity passes through a weak maximum at ~2 Hz. A maximum is always present since θ goes to zero as the frequency goes to zero and infinity. Furthermore, in Fig. 3b, it is shown that θ is a more sensitive indicator of NO than |Z| for frequencies greater than ~3 Hz. Higher frequency operation is desirable since it allows for reduced sampling times and potentially lower noise background. Therefore, in terms of sensor operation, operating frequency may be selected as a compromise between sensitivity (lower frequencies) and reduced sampling time (higher frequencies). An analysis of the performance of a working sensor at 10 Hz is the subject of another publication. The present work focuses on interpreting the response of the model electrochemical cell in the range of ~10 Hz to varying O₂ and NO₃ concentrations.

Equivalent circuit analysis. The Nyquist representation of impedance spectra for material phenomena exhibiting both resistive and capacitive components (e.g., grain boundaries, interfaces, etc.) often produces the characteristic semicircular arcs seen in Fig. 2. The discrete arcs represent processes with distinguishably separate characteristic time constants (τ). For a perfect resistor and capacitor in parallel, the diameter of the arc corresponds to the magnitude of the resistance (R). The angular frequency at the top of the arc (ωₚ) is related to the value of the capacitor (C) through the time constant τ (τ = R × C) using the following relationship:

\[\omega_{\text{top}} = \frac{1}{\tau} = \frac{1}{RC} \] \[\text{[4]}\]

At least two orders of magnitude difference between time constants are necessary to produce clearly separated arcs. Unfortunately, in real material systems, it is often the case that multiple phenomena have similar time constants (less than two orders of magnitude difference). This causes the arcs to be overlapped and convoluted. In addition, for real nonideal systems, heterogeneity in the behavior, especially at interfaces, may lead to distributions of time constants. This typically causes “depressed” arcs, where the center of the arc lies below the real axis of the Nyquist plot. One way to simulate the nonideal behavior is to replace the capacitor with a constant phase element (CPE) in the equivalent circuit. The CPE has the following impedance relationship:

\[Z(\omega) = \frac{1}{Y_0(\omega)^n} \] \[\text{[5]}\]

where \(Y_0\) is a constant, \(\omega\) is angular frequency, and \(n\) is a measure of arc depression.

\[n = 1 - \frac{2b}{\pi} \] \[\text{[6]}\]

The angle of the arc depression below the real axis of the Nyquist plot is given by \(\phi\). For \(n = 0\), the impedance reduces to a resistor with a value of \(Y_0^{-1}\), and for \(n = 1\), the impedance reduces to a capacitor with a value of \(Y_0\). For values of \(n\) approaching 1, it is common practice to use the \(Y_0\) value as an approximation for capacitance. It should be noted that interpretation of the Nyquist plot is not always straightforward. For instance, while changes in resistive behavior are clearly evidenced by decreasing arc diameters, for example with the addition of NO₃, changes in capacitive behavior are not as easily quantified. For this reason, equivalent circuit analysis is commonly used to quantify the response of electrochemical cells in terms of various circuit elements (i.e., resistors, capacitors, inductors, etc.). In the present work using the model electrochemical cell, the addition of NO₃ induces changes primarily in the low-frequency behavior, which can be approximated with a single arc and is considered separately from the remaining higher-frequency response. Figure 4 shows the equivalent circuit used to fit the low-frequency arc where a resistor (Rₛ) is in series with a subcircuit that consists of a resistor (Rₐ) in parallel with a constant phase element (CPE). The subscripts “S” and “LF” stand for series and low frequency.
10 Hz, which is the desired frequency range for sensor operation. Of the model electrochemical cell in the frequency range around importantly, the equivalent circuit accurately describes the behavior there is excellent agreement over most of the frequency range. More in the frequency extremes the predicted by the equivalent circuit deviates from the experimental data using the equivalent circuit in Fig. 4. Although the behavior pre-

The experimental impedance data were fit by using the partial non-linear least squares fitting routine in the Boukamp Equivalent.com software. The n values derived from the fitting procedure vary from −0.88 to −0.90 and show no temperature or concentration dependence. Since these values of n approach one, the best-fit values of Y in the CPE are used to approximate capacitance. Typical results from the fitting procedure using the equivalent circuit are shown as solid lines in Fig. 5 and are discussed in detail below.

Modeled behavior: Low-frequency arc.—Figure 5 shows typical behavior of the model electrochemical cell at 600°C in 2% O2 and with 10, 50, and 100 ppm additions of NO. Discrete points represent the experimentally measured data, and the solid lines are the best fit using the equivalent circuit in Fig. 4. Although the behavior predicted by the equivalent circuit deviates from the experimental data in the frequency extremes <1 Hz and >1 kHz (as seen in Fig. 5), there is excellent agreement over most of the frequency range. More importantly, the equivalent circuit accurately describes the behavior of the model electrochemical cell in the frequency range around 10 Hz, which is the desired frequency range for sensor operation.12

Figure 5 also shows the impedance behavior of the model electrochemical cell with the addition of 8.5% O2 (for a total of 10.5% O2), as represented by the shaded squares. The Nyquist behavior shows comparable decreases in the low-frequency arc diameters when either 8.5% O2 or 100 ppm NO (open circles) is introduced. This corresponds to decreases in R of ~64% with the addition of 8.5% O2 and ~52% with the addition of 100 ppm NO. Therefore, the impedance response to O2 and NO are similar when the NO concentration is about three orders of magnitude smaller than the O2 concentration (i.e., 8.5% ~ 85,000 ppm). The implication is that although both O2 and NO reduce the low-frequency arc diameter (R), NO causes significantly more pronounced changes in the electrical response.

To develop a better understanding of the effects of O2 and NO, with the model electrochemical cell, the impedance behavior is interpreted using the equivalent circuit to evaluate possible rate-limiting mechanisms. The approach involves comparing the calculated values of the circuit elements (i.e., the best fit of the equivalent circuit to the experimentally measured data) as a function of both gas concentration and temperature. Analysis of the effect of O2 is presented first, followed by the analysis of the behavior when NO is introduced.

Oxygen behavior.—The effect of oxygen partial pressure, PO2, on the values of the resistances (RS and RL) is shown in Fig. 6a. RS is insensitive to PO2 and is likely dominated by the ohmic contributions from the leads and contacts and the ionic contribution from the dense YSZ electrolyte. RL shows identical PO2 dependencies at all temperatures, with RL ~ PO2. A PO2 dependence of RL ~ PO2 has been suggested when dissociative adsorption of oxygen is the rate-limiting step.18,20 It is also possible that a surface diffusion process could produce a similar dependence on PO2; however, in that case diffusion-limited current behavior would be expected, and

![Figure 5](image1.png) Nyquist plot of model cell at 600°C and 2% O2 with the addition of 10, 50, and 100 ppm NO or 8.5% O2. The best fit to the equivalent circuit in Fig. 4 is shown as solid lines. Numbers corresponding to darkened points represent log of frequency in Hz.

![Figure 6](image2.png) (a) the PO2 dependence of RS and RL; (b) the temperature dependence of RS and RL; and (c) the PO2 dependence of capacitance at different temperatures.
that was not observed in the present cell. The deviation of the measured power-law exponent (~0.62) from ~0.5 could result from some additional contribution from processes other than dissociative adsorption. Possibilities include gas-phase diffusion or molecular adsorption, both of which produce a power-law exponent of ~1.18. Therefore, dissociative adsorption probably dominates the response with some contribution from other processes.

Investigation of the temperature dependence yielded an apparent activation energy for R_L of 98 kJ/mol for all O$_2$ concentrations, as shown in Fig. 6b. Since R_L does not show any P_{O_2} dependence, the average values at all O$_2$ concentrations investigated (~2–18.9%) are shown and used to calculate an apparent activation energy of 93 kJ/mol. This activation energy for R_L is consistent with ionic diffusion in the dense YSZ. The similarity between the apparent activation energies of R_L and R_F may indicate that a diffusion mechanism is also responsible for R_F; however, no diffusion-limited current behavior was observed. The discrepancy could indicate a complex rate-limiting mechanism involving both diffusion and adsorption or similar activation energies for diffusion and adsorption.

Alternatively, an apparent activation energy of 89 kJ/mol has been reported for the electrode behavior of an Au, O$_2$(g)/YSZ system.21 In another study, Hertz et al. found that the electrode behavior of lithographically patterned electrodes on thin film YSZ electrolytes depends on the electrode material, exhibiting activation energies of 0.91 eV (88 kJ/mol) for gold electrodes and 0.77 eV (74 kJ/mol) for platinum electrodes.22 The similarity between these reported values and the measured apparent activation energies in the present work may indicate that the mechanism(s) responsible for the oxygen response are related to the Au/YSZ interface.

The P_{O_2} dependence of the capacitance calculated from the equivalent circuit is shown in Fig. 6c. Recall that for values of n approaching one, the best-fit values of Y_0 in the CPE approximate capacitance. As seen in Fig. 6c, the calculated capacitances exhibit only slight dependence on temperature or P_{O_2} in all cases within the range of 0.32–0.37 μF. However, general trends in the data indicate that capacitance increases with P_{O_2}. For example, the capacitance increases similarly with P_{O_2} at 600 and 650°C. ~9%, when P_{O_2} increases from 2 to 10.5%, and ~14% when P_{O_2} increases from 2 to 18.9%. This increase in capacitance with P_{O_2} may be related to an increase in the fraction of adsorbed O$_2$ species at the Au/YSZ interface.21,22 At 700°C, the capacitance increases only ~2% when P_{O_2} increases from 2 to 10.5% and ~4% when P_{O_2} increases from 2 to 18.9%. The amount of capacitance change at 700°C is not significant. Since the measured capacitance changes are small, care should be taken in making concrete conclusions. Nevertheless, the trends, especially at lower temperatures, indicate that adsorbed O$_2$ species at the Au/YSZ interface may be important in determining the measured capacitance values.

NO$_x$ behavior.—The response of the electrochemical cell to either NO or NO$_2$ is similar under all test conditions. The symmetric electrode configuration with both electrodes exposed to the same atmosphere seems a likely explanation for the similar response to NO and NO$_2$. The similar response may also be due to thermodynamic equilibration of the NO/NO$_2$ ratio, which will result in identical gas compositions regardless of whether NO or NO$_2$ is introduced initially. NO is more stable than NO$_2$ at temperatures >600°C, and thermodynamic calculations predict ~90% NO, balance NO$_2$.24 However, the calculated values of R_L are slightly larger with the addition of NO$_2$ relative to NO, ranging from ~0.1% to ~11%. Experimental error associated with the accuracy of the mass flow controller may account for some of the difference, but there are consistent trends with temperature and composition. General trends include larger differences between NO and NO$_2$ with increasing concentration and at lower temperature.

Yoo et al. performed temperature-programmed reaction experiments using NO/NO$_2$ and O$_2$ gas mixtures as the reactant gas over a YSZ-8Y substrate. They demonstrated that only gas-phase NO$_2$ decomposition occurs.

$$\text{NO}_2 \rightarrow \text{NO} + \frac{1}{2} \text{O}_2$$ \[7\]

Yoo, Van Assche, and Wachsman also showed that when NO$_2$ is introduced, the reaction remains incomplete at temperatures <700°C without an appropriate catalyst, and leads to nonequilibrium gas compositions.23 The addition of NO causes little change in overall gas composition since only ~10% reacts to form NO$_2$, and the kinetics have been shown to be relatively fast.24 In the present study, the minimal catalytic ability of the Au/YSZ system probably does not allow complete equilibrium decomposition of NO$_2$, especially at lower temperatures. Larger amounts of NO$_2$ would also be expected to remain unreacted for larger concentrations of NO$_2$. Therefore, larger deviations from the equilibrated NO/NO$_2$ ratio are expected at lower temperatures and larger concentrations. The deviations result in smaller amounts of NO and larger amounts of NO$_2$ than predicted by thermodynamic equilibrium. If adsorption is the prevailing mechanism, NO$_2$ may not have as many sites available for adsorption due to its relatively larger size.21 If this were the case, the amount of NO determines the impedance response and decrease in R_F. It is possible that the larger values of R_L calculated for NO$_2$ are due to a reduction in the amount of NO from nonequilibrium conditions. This effect would then be expected to be more pronounced at lower temperatures and higher concentrations, as seen in the current study. The data collected in the current study only provide a preliminary investigation into mechanistic details leading to response differences between NO and NO$_2$. Further studies are required to explain the exact mechanism.

The effect of NO$_2$ concentration on the resistances (R_L and R_F) was qualitatively similar to the effect of O$_2$, where R_L was insensitive to NO$_2$ concentrations. The NO$_2$ dependence of the low-frequency resistance (R_{LF}) was determined by accounting for the effect of oxygen

$$\frac{1}{R_{LF/NO}} = \frac{1}{R_{LF/NO_2}} - \frac{1}{R_{LF/O_2}}$$ \[8\]

where $R_{LF/NO}$ is the resistance contribution for NO$_2$, R_{LF/NO_2+NO} is the R_{LF} measured when both O$_2$ and NO$_2$ are present, and R_{LF/O_2} is the R_F measured when only O$_2$ is present. In the range 10–100 ppm of NO$_2$, the $R_{LF/NO} \propto [\text{NO}_2]^{\alpha}$, with $\alpha = -0.96 \pm 0.04$ and $\alpha = -1.02 \pm 0.16$ for NO and NO$_2$, respectively, as shown in Fig. 7. $R_{LF/NO}$ was effectively insensitive to temperature and P_{O_2}, so the average values are shown in Fig. 7 with error bars indicating the standard deviation.

A possible explanation for the dependence of $R_{LF/NO}$ on the NO$_2$ concentration is a rate-limiting step controlled by the molecular adsorption of NO (nondissociative adsorption). This is analogous to the case of molecular adsorption of O$_2$ which, when acting as the rate-limiting step, results in a power-law exponent of ~1.18. In the current cell, dissociative adsorption of NO is not expected based on prior reports that the process requires either an appropriate catalyst (e.g., Pt, Rh, and Pd)25 or high electric fields.26–28 In addition, the absence of limiting current behavior suggests that gas phase diffusion is not responsible for the NO$_2$ behavior. Thus, the NO$_2$ dependence of $R_{LF/NO}$ appears to be consistent with the nondissociative adsorption of NO$_2$. Furthermore, since the calculated $R_{LF/NO}$ from Eq. 8 is independent of O_2, it appears that the impedance behaviors of O$_2$ and NO$_2$ have parallel contributions to the overall measured impedance. Therefore, the parallel behavior of O$_2$ and NO$_2$, which have different concentration dependences, $R_F \propto P_{O_2}$ and $R_{LF/NO} \propto [\text{NO}_2]^{1-\alpha}$, results in larger changes in impedance for NO$_2$ compared to O$_2$. 29
In general, the temperature dependence of R_{LF/NO_x} results in negative apparent activation energies, which indicates an increase in R_{LF/NO_x} with temperature. This is in contrast to the response of the cell in the absence of NO$_x$, where R_{LF} decreases with temperature (see Fig. 6b). Increasing resistance with temperature has been attributed to adsorption processes, where the magnitude of the apparent activation energy is related to the surface coverage. The magnitudes of the apparent activation energies for NO range from 0.3 to 6 kJ/mol for varying relative concentrations of NO and O$_2$ (2–18.9%), indicating little temperature sensitivity. The exception is a mixture of 18.9% O$_2$ (high oxygen) and 10 ppm NO gas mixture, which produces a slightly larger magnitude of 12 kJ/mol for the apparent activation energy. The magnitudes of the apparent activation energies in O$_2$ mixtures for NO$_2$ are larger than those for NO. For 50 and 100 ppm NO$_2$, apparent activation energies range from 1 to 14 kJ/mol. For 10 ppm NO$_2$, apparent activation energies range from 37 to 54 kJ/mol. In general, the magnitude of the apparent activation energy appears to decrease as NO$_2$ concentration increases and O$_2$ concentration decreases. However, there is considerable scatter in the data. If surface coverage is the dominant factor, the results may indicate larger surface coverage for either larger concentrations of NO$_2$ or smaller concentrations of O$_2$, with NO showing more pronounced adsorption than NO$_2$, as discussed above. Although further studies are needed to explain the temperature dependence of R_{LF/NO_x}, the data seem to support a rate-limiting adsorption mechanism being responsible for the sensing behavior.

The capacitance values for any combination of O$_2$ (2, 10.5, and 18.9%) and NO$_x$ (10, 50, and 100 ppm) concentrations and temperatures (600, 650, and 700°C) were similar, with values ranging from 0.31 to 0.39 μF. At 650 and 700°C, NO$_2$ had no effect, within experimental error, on the measured capacitance calculated from the low-frequency arc. Larger changes in capacitance were measured at 600°C; however, the differences are <9%. The small changes in capacitance (<9%) at all temperatures do not allow any definitive mechanistic conclusions, regarding the effect of either O$_2$ or NO$_x$, be made in the concentration ranges investigated.

Table I. Power-law exponent ($R_{LF} \propto P_{O_2}^\beta$) for various NO$_x$ concentrations and temperatures.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>10 ppm NO</th>
<th>10 ppm NO$_2$</th>
<th>50 ppm NO</th>
<th>50 ppm NO$_2$</th>
<th>100 ppm NO</th>
<th>100 ppm NO$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>600°C</td>
<td>−0.63</td>
<td>−0.60</td>
<td>−0.61</td>
<td>−0.53</td>
<td>−0.55</td>
<td>−0.49</td>
</tr>
<tr>
<td>650°C</td>
<td>−0.63</td>
<td>−0.62</td>
<td>−0.62</td>
<td>−0.57</td>
<td>−0.58</td>
<td>−0.54</td>
</tr>
<tr>
<td>700°C</td>
<td>−0.62</td>
<td>−0.61</td>
<td>−0.62</td>
<td>−0.59</td>
<td>−0.60</td>
<td>−0.57</td>
</tr>
</tbody>
</table>
nation of the concentration and temperature dependences of reaction could be changes in the available adsorption sites for O₂ and dependence vary with gas compositions and temperature, which may indicate competition between the two species. One possible explanation could be changes in the available adsorption sites for O₂ and NO₂, which vary with temperature and gas concentrations.

If adsorption processes are primarily responsible for the cell response, surface treatments of the YSZ could help to increase sensitivity and sensor signal. Also, other contributions to the impedance response, e.g., diffusion, should be minimized. Further studies to elucidate the mechanisms are currently in progress.

Acknowledgments

This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory, under contract no. W-7405-Eng-48. Support for the work at the University of Pennsylvania was provided by the U.S. Department of Energy’s Hydrogen Fuel Initiative (grant no. DE-FG02-05ER15721). Two of the coauthors (R.S.G. and L.P.M.) are also supported through the DOE Office of Freedom Car and Vehicle Technologies. We gratefully acknowledge the support of the Program Manager, Rogelio Sullivan.

Lawrence Livermore National Laboratory assisted in meeting the publication costs of this article.

References

13. B. A. Boukamp, Equivalent Circuit (EQUIVCRT.PAS), University of Twente, Dept. of Chemical Engineering, The Netherlands (1990).