February 2007

Impedance Characterization of a Model Au/Yttria-Stabilized Zirconia/Au Electrochemical Cell in Varying Oxygen and NO$_x$ Concentrations

Leta Y. Woo
University of Pennsylvania

L. Peter Martin
Lawrence Livermore National Laboratory

Robert S. Glass
Lawrence Livermore National Laboratory

Raymond J. Gorte
University of Pennsylvania, gorte@seas.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cbe_papers

Recommended Citation

© The Electrochemical Society, Inc. 2007. All rights reserved. Except as provided under U.S. copyright law, this work may not be reproduced, resold, distributed, or modified without the express permission of The Electrochemical Society (ECS). The archival version of this work was published in Journal of the Electrochemical Society, Volume 154, Issue 4, February 2007, pages J129-135. Publisher URL: http://dx.doi.org/10.1149/1.2456328

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cbe_papers/88
For more information, please contact repository@pobox.upenn.edu.
Impedance Characterization of a Model Au/Yttria-Stabilized Zirconia/Au Electrochemical Cell in Varying Oxygen and NO$_x$ Concentrations

Abstract
An electrochemical cell [Au/yttria-stabilized zirconia (YSZ)/Au] serves as a model system to investigate the effect of O$_2$ and NO$_x$. Possible mechanisms responsible for the response are presented. Two dense Au electrodes are co-located on the same side of a dense YSZ electrolyte and are separated from the electrolyte by a porous YSZ layer, present only under the electrodes. While not completely understood, the porous layer appears to result in enhanced NO$_x$ response. Impedance data were obtained over a range of frequencies 0.1 Hz to 1 MHz, temperatures 600–700°C, and oxygen 2–18.9% and NOx 10–100 ppm concentrations. Spectra were fit with an equivalent circuit, and values of the circuit elements were evaluated. In the absence of NO$_x$, the effect of O$_2$ on the low-frequency arc resistance could be described by a power law, and the temperature dependence by a single apparent activation energy at all O$_2$ concentrations. When both O$_2$ and NO$_x$ were present, however, the power-law exponent varied as a function of both temperature and concentration, and the apparent activation energy also showed dual dependence. Adsorption mechanisms are discussed as possibilities for the rate-limiting steps. Implications for impedancemetric NO$_x$ sensing are also discussed.

Comments
© The Electrochemical Society, Inc. 2007. All rights reserved. Except as provided under U.S. copyright law, this work may not be reproduced, resold, distributed, or modified without the express permission of The Electrochemical Society (ECS). The archival version of this work was published in Journal of the Electrochemical Society, Volume 154, Issue 4, February 2007, pages J129-135. Publisher URL: http://dx.doi.org/10.1149/1.2456328

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/cbe_papers/88
Impedance Characterization of a Model Au/Yttria-Stabilized Zirconia/Au Electrochemical Cell in Varying Oxygen and NO\textsubscript{X} Concentrations

Leta Y. Woo,a,c,z L. Peter Martin,b Robert S. Glass,a,d,g and Raymond J. Gortea,e

aEnergy and Environment Directorate and bMechanical Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
cDepartment of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

An electrochemical cell [Au/yttria-stabilized zirconia (YSZ)/Au] serves as a model system to investigate the effect of O\textsubscript{2} and NO\textsubscript{X}. Possible mechanisms responsible for the response are presented. Two dense Au electrodes are co-located on the same side of a dense YSZ electrolyte and are separated from the electrolyte by a porous YSZ layer, present only under the electrodes. While not completely understood, the porous layer appears to result in enhanced NO\textsubscript{X} response. Impedance data were obtained over a range of frequencies (0.1 Hz to 1 MHz), temperatures (600–700°C), and oxygen (2–18.9%) and NO\textsubscript{X} (10–100 ppm) concentrations. Spectra were fit with an equivalent circuit, and values of the circuit elements were evaluated. In the absence of NO\textsubscript{X}, the effect of O\textsubscript{2} on the low-frequency arc resistance could be described by a power law, and the temperature dependence by a single apparent activation energy at all O\textsubscript{2} concentrations. When both O\textsubscript{2} and NO\textsubscript{X} were present, however, the power-law exponent varied as a function of both temperature and concentration, and the apparent activation energy also showed dual dependence. Adsorption mechanisms are discussed as possibilities for the rate-limiting steps. Implications for impedancemetric NO\textsubscript{X} sensing are also discussed.

\copyright 2007 The Electrochemical Society. [DOI: 10.1149/1.2456328] All rights reserved.

The development of NO\textsubscript{X} sensors has been motivated primarily by environmental concerns and the automotive industry’s desire to monitor gases in the exhaust stream.1 Fast, reliable sensors are needed in order to meet increasingly stringent governmental regulations for emission limits. Ceramic metal oxides are candidate materials for operation in harsh, high-temperature environments, especially the oxygen-ion conductor yttria-stabilized zirconia (YSZ). YSZ is currently used for automotive oxygen sensors and has shown good stability and operation at temperatures 700°C and higher.1–3

NO\textsubscript{X} sensor development poses significant challenges due to a number of issues including cost, sensitivity, stability, and response time. In the past decade, development of YSZ-based NO\textsubscript{X} sensors has focused on amperometric and potentiometric operation.1–3 Amperometric operation typically measures a diffusion-limited current and has been shown to be effective as an NO-selective or a total-NO\textsubscript{X} sensor. Typically, research focuses on various metal-oxide electrodes to optimize the response.1,8 In order to isolate the NO\textsubscript{X} from the O\textsubscript{2} response, a separate pumping cell may be necessary to maintain a constant O\textsubscript{2} concentration at the sensing electrode, leading to complicated device structures.1,3 Potentiometric sensors correlate the measured open circuit potential (OCP) to the gas composition. The OCP can be measured between an electrode in the test atmosphere and another electrode in reference gas, or between dissimilar electrodes in the same atmosphere. In potentiometric operation, the response to NO\textsubscript{X} is generally opposite in sign to that of NO, and generally larger, making total-NO\textsubscript{X} sensing difficult.8

More recently, a YSZ-based impedancemetric technique has been reported for sensing of NO\textsubscript{X} and CO.9,10 In that technique, the modulus (or magnitude) of the measured complex impedance at \(\leq 1 \) Hz serves as the sensing signal. NO and NO\textsubscript{2} were shown to produce similar responses, offering the potential for total-NO\textsubscript{X} sensing. Impedancemetric NO\textsubscript{X} sensors show promise for overcoming the problems associated with amperometric (complex device structures) and potentiometric (interference between NO and NO\textsubscript{2}) sensors; however, a better understanding of the sensing mechanisms is necessary to optimize sensor operation.

Previous work has demonstrated the effectiveness of an impedancemetric NO\textsubscript{X} sensor using dense Au, porous YSZ/Cr\textsubscript{2}O\textsubscript{3} composite electrodes, and a YSZ electrolyte in an in-plane geometry (i.e., both electrodes are co-located on the same side of the electrolyte).11 In an effort to better understand the sensing mechanism, the present work uses a model electrochemical cell to isolate the role of the Au/porous YSZ interface. Using an in-plane geometry, the model system consists of a dense YSZ electrolyte and two planar Au plates, with a porous YSZ layer separating the Au and dense YSZ. Electrochemical characterization of the model cell involves impedance measurements that are then fit with an equivalent circuit. Data taken at different temperatures and concentrations are used to interpret the effect of O\textsubscript{2} and NO\textsubscript{X}.

Understanding the cross sensitivity to interfering gases (e.g., water vapor, hydrocarbons, etc.) is also crucial for sensor operation, but a comprehensive study is outside the scope of the current work. For automotive exhaust applications, interference from hydrocarbons and other gases may be mitigated using separate strategies. A cross-sensitivity study in conjunction with automotive dynamometer testing of a prototype impedancemetric YSZ-based sensor is being conducted and will be the subject of a separate study. The present analysis provides a base from which future work on the role of different oxides (e.g., Cr\textsubscript{2}O\textsubscript{3}), microstructures (e.g., porosity), and other material parameters can be examined.

Experimental

Yttria-stabilized zirconia (YSZ) powder (Tosoh 8YS) was pressed in a uniaxial die and then sintered at 1450°C for 2 h. The sintered pellet had a diameter of 12.2 mm with a nominal thickness of \(\sim 1.5 \) mm. Porous YSZ was then sprayed onto the surface of the pellet using YSZ powder dispersed in a 50% H\textsubscript{2}O/50% ethanol solution. The porous YSZ was deposited as two side-by-side rectangles (each with area \(\sim 28 \) mm2) with \(\sim 0.5 \) mm separation, and was then fired at 1000°C for 1 h. The thickness of the porous YSZ layer was \(\sim 10 \) μm, as seen in the scanning electron microscopy (SEM) image in Fig. 1a. The SEM image in Fig. 1b shows an interconnected network of \(\sim 100 \) nm diam YSZ particles. Two thin Au plates were contacted to the porous YSZ layers using constant spring-loaded pressure.

Testing was performed in a quartz tube (i.d. of 16.8 mm) placed inside a tube furnace with both electrodes exposed to the same gas flow. The gas flow rate was maintained at 500 mL/min with composition controlled by mixing air, N\textsubscript{2}, and 1000 ppm NO or NO\textsubscript{2}.
using a standard gas handling system equipped with thermal mass flow controllers. Electrochemical measurements were performed using a Solartron Analytical SI 1260 Impedance/gain-phase analyzer with the Solartron Analytical SI 1287 electrochemical interface. Computer-controlled data acquisition used the commercially available Zplot software (Scribner Associates, Inc.). Impedance spectra were collected by scanning the frequency from 1 MHz to 0.1 Hz at 20 steps per decade with an excitation voltage of 50 mV. Impedance spectra were analyzed using Boukamp’s Equivcrt.com software.13

Results and Discussion

Impedance spectroscopy.—The impedance of a material (Z) describes the response to an alternating signal, and includes both magnitude (|Z|) and phase angle (θ) information. The following relationships describe the complex impedance:

\[Z(\omega) = \text{Re}(Z) + j \text{Im}(Z), \]

where Re(Z) is the real component and Im(Z) is the imaginary component:

\[\text{Re}(Z) = |Z| \cos \theta \quad \text{and} \quad \text{Im}(Z) = |Z| \sin \theta \]

[1]

The relationship for phase angle is described by the following:

\[\theta = \tan^{-1} \left(\frac{\text{Im}(Z)}{\text{Re}(Z)} \right) \]

[2]

and for the magnitude:

\[|Z| = \sqrt{[\text{Re}(Z)]^2 + [\text{Im}(Z)]^2} \]

[3]

For impedancemetric sensor operation, either of the measured quantities (i.e., magnitude or phase angle) at a specified frequency can serve as the sensing signal.9,12 Impedance spectroscopy entails using a frequency response analyzer to measure the response to (typically) small amplitude excitation over a range of frequencies (spectrum). The data can be presented in a so-called Nyquist plot, which is a complex plane representation [−Im(Z) vs Re(Z)] that provides indirect information about both magnitude (|Z|) and phase angle (θ) over a range of frequencies. Alternatively, the data can be plotted as a Bode plot, where either |Z| or θ is plotted vs log frequency.

Figure 2 shows a Nyquist plot of the Au/YSZ/Au cell at 600°C in 2% O2 and in 2% O2 with 100 ppm NO. Material behavior with both resistive and capacitive components produces characteristic arcs that appear in different frequency ranges in the Nyquist representation. In Fig. 2, a discernable high-frequency arc is shown in the inset, while a larger low-frequency arc dominates the spectra. |Z| and θ at 10 Hz are graphically illustrated as solid and dotted lines, respectively, where |Z|1, and θ1 refer to the response in 2% O2 and |Z|2, and θ2 refer to the response in 2% O2 with 100 ppm of NO. The cell behavior at higher frequencies, above ~103 Hz, does not change with NO (see inset of Fig. 2). However, the diameter of the large arc at lower frequencies decreases significantly with the introduction of NO. Corresponding decreases can be seen in both the magnitude (from |Z|1 to |Z|2) and phase angle (from θ1 to θ2) at 10 Hz. The response to NO2 was qualitatively similar to that for NO, but slightly smaller under certain conditions. These differences are further discussed below.

Miura et al.10 and Wu et al.11 have seen qualitatively similar impedance response using ZnCr2O4 and Au-Ga2O3 sensing electrodes to detect NO and CO, respectively. In Ref. [10], the counter electrode was Pt exposed to atmospheric air, with only the ZnCr2O4 sensing electrode exposed to the test atmosphere. In Ref. [11], the Au-Ga2O3 sensing electrode and Pt reference electrode were both exposed to the same test atmosphere. Sensors using different electrodes and atmospheres may induce corresponding voltage changes (open circuit potentials) due to different reactions or kinetics at the electrodes, an effect usually explained with “mixed potential” or “differential electrode equilibria” theory. The mixed potential theory refers to differences in equilibria between electrochemical NO2/NO and O2 reactions taking place at the electrodes.8,9,15 Differential electrode equilibria theory is a more general term that includes nonequilibrium phenomena and changes in chemical adsorption behavior of the electrodes.16,17 The measured impedance, however, only reflects the material phenomena, and not the induced electromotive force, as long as small-amplitude fields are applied to prevent the possibility of microstructural damage. In the current work, both electrodes of the model cell are identical and exposed to the same test atmosphere.
Times and potentially lower noise background. Therefore, in terms of frequency operation is desirable since it allows for reduced sampling and capacitive components.

Plots demonstrating the variation of Z with frequency for the model cell at 600°C in 2% O$_2$ and 2% O$_2$ with 100 ppm NO. (b) The fractional change in Z and the phase angle θ over the range of frequencies between the cell in 2% O$_2$ and in 2% O$_2$ with 100 ppm NO.

Figure 3. (a) Bode plot of magnitude ($|Z|$) and phase angle (θ) for the model cell at 600°C in 2% O$_2$ and in 2% O$_2$ with 100 ppm NO. (b) The fractional change in $|Z|$ and θ over the range of frequencies between the cell in 2% O$_2$ and in 2% O$_2$ with 100 ppm NO.

Miura et al. and Wu et al. utilized the magnitude (or modulus) $|Z|$ as the sensing signal at low frequencies, 1 and 0.42 Hz, respectively. In the current work, the phase angle (θ) response is also investigated for use as a sensing signal. Figure 3a shows Bode plots demonstrating the variation of $|Z|$ and θ with frequency for the model cell at 600°C in 2% O$_2$ and 2% O$_2$ with 100 ppm NO. Figure 3a demonstrates that the θ response persists to higher frequencies than the $|Z|$ response. Neither parameter exhibits any significant difference in response in the presence of NO at frequencies \approx1 kHz. As a measure of the sensitivity, Fig. 3b shows the fractional change in $|Z|$ and θ with the addition of 100 ppm NO. As reported in Ref. 10 and 11, the $|Z|$ sensitivity decreases with increasing frequency. However, it can be seen that the θ sensitivity passes through a weak maximum at \sim2 Hz. A maximum is always present since θ goes to zero as the frequency goes to zero and infinity. Furthermore, in Fig. 3b, it is shown that θ is a more sensitive indicator of NO than $|Z|$ for frequencies greater than \sim3 Hz. Higher frequency operation is desirable since it allows for reduced sampling times and potentially lower noise background. Therefore, in terms of sensor operation, operating frequency may be selected as a compromise between sensitivity (lower frequencies) and reduced sampling time (higher frequencies). An analysis of the performance of a working sensor at 10 Hz is the subject of another publication. The present work focuses on interpreting the response of the model electrochemical cell in the range of \sim10 Hz to varying O$_2$ and NO$_x$ concentrations.

Equivalence circuit analysis.— The Nyquist representation of impedance spectra for material phenomena exhibiting both resistive and capacitive components (e.g., grain boundaries, interfaces, etc.) often produces the characteristic semicircular arcs seen in Fig. 2. The discrete arcs represent processes with distinguishably separate characteristic time constants (τ). For a perfect resistor and capacitor in parallel, the diameter of the arc corresponds to the magnitude of the resistance (R). The angular frequency at the top of the arc (ω_{top}) is related to the value of the capacitor (C) through the time constant τ ($\tau = R \times C$) using the following relationship:

$$\omega_{top} = \frac{1}{\tau} = \frac{1}{RC}$$

At least two orders of magnitude difference between time constants are necessary to produce clearly separated arcs. Unfortunately, in real material systems, it is often the case that multiple phenomena have similar time constants (less than two orders of magnitude difference). This causes the arcs to be overlapped and convoluted. In addition, for real nonideal systems, heterogeneity in the behavior, especially at interfaces, may lead to distributions of time constants. This typically causes “depressed” arcs, where the center of the arc lies below the real axis of the Nyquist plot. One way to simulate the nonideal behavior is to replace the capacitor with a constant phase element (CPE) in the equivalent circuit. The CPE has the following impedance relationship:

$$Z(\omega) = \frac{1}{Y_0(j\omega)^n}$$

where Y_0 is a constant, ω is angular frequency, and n is a measure of arc depression

$$n = 1 - \frac{2b}{\pi}$$

The angle of the arc depression below the real axis of the Nyquist plot is given by ϕ. For $n = 0$, the impedance reduces to a resistor with a value of Y_0^{-1}, and for $n = 1$, the impedance reduces to a capacitor with a value of Y_0. For values of n approaching 1, it is common practice to use the Y_0 value as an approximation for capacitance.

It should be noted that interpretation of the Nyquist plot is not always straightforward. For instance, while changes in resistive behavior are clearly evidenced by decreasing arc diameters, for example with the addition of NO$_x$, changes in capacitive behavior are not as easily quantified. For this reason, equivalent circuit analysis is commonly used to quantify the response of electrochemical cells in terms of various circuit elements (i.e., resistors, capacitors, inductors, etc.). In the present work using the model electrochemical cell, the addition of NO$_x$ induces changes primarily in the low-frequency behavior, which can be approximated with a single arc and is considered separately from the remaining higher-frequency response.

Figure 4 shows the equivalent circuit used to fit the low-frequency arc where a resistor (R_s) is in series with a subcircuit that consists of a resistor (R_L) in parallel with a constant phase element (CPE). The subscripts “S” and “LF” stand for series and low-frequency respectively.
frequency, respectively. Note that the value of R_S approximates the high-frequency contribution to the total cell resistance. The value of R_{LF} corresponds to the diameter of the low-frequency arc, where the CPE (defined by Y_n and n, see Eq. 5) is related to the frequency at the top of the low-frequency arc and the amount of arc depression. The experimental impedance data were fit by using the partial nonlinear least squares fitting routine in the Boukamp Eqivcrt.com software. The n values derived from the fitting procedure vary from -0.88 to -0.90 and show no temperature or concentration dependence. Since these values of n approach one, the best-fit values of Y_n in the CPE are used to approximate capacitance. Typical results from the fitting procedure using the equivalent circuit are shown as solid lines in Fig. 5 and are discussed in detail below.

Modeled behavior: Low-frequency arc.—Figure 5 shows typical behavior of the model electrochemical cell at 600°C in 2% O$_2$ and with 10, 50, and 100 ppm additions of NO. Discrete points represent the experimentally measured data, and the solid lines are the best fit using the equivalent circuit in Fig. 4. Although the behavior predicted by the equivalent circuit deviates from the experimental data in the frequency extremes $<$1 Hz and $>$1 kHz (as seen in Fig. 5), there is excellent agreement over most of the frequency range. More importantly, the equivalent circuit accurately describes the behavior of the model electrochemical cell in the frequency range around 10 Hz, which is the desired frequency range for sensor operation.

The Nyquist behavior of the model electrochemical cell with the addition of 8.5% O$_2$ (for a total of 10.5% O$_2$), as represented by the shaded squares, is shown in Fig. 5. The Nyquist behavior shows comparable decreases in the low-frequency arc diameters when either 8.5% O$_2$ or 100 ppm NO (open circles) is introduced. This corresponds to decreases in R_{LF} of $\sim64\%$ with the addition of 8.5% O$_2$ and $\sim52\%$ with the addition of 100 ppm NO. Therefore, the impedance response to O$_2$ and NO are similar when the NO$_x$ concentration is about three orders of magnitude smaller than the O$_2$ concentration (i.e., 8.5% \sim 85,000 ppm). The implication is that although O$_2$ and NO$_x$ reduce the low-frequency arc diameter (R_{LF}), NO$_x$ causes significantly more pronounced changes in the electrical response.

To develop a better understanding of the effects of O$_2$ and NO$_x$ with the model electrochemical cell, the impedance behavior is interpreted using the equivalent circuit to evaluate possible rate-limiting mechanisms. The approach involves comparing the calculated values of the circuit elements (i.e., the best fit of the equivalent circuit to the experimentally measured data) as a function of both gas concentration and temperature. Analysis of the effect of O$_2$ is presented first, followed by the analysis of the behavior when NO$_x$ is introduced.

Oxygen behavior.—The effect of oxygen partial pressure, P_{O_2}, on the values of the resistances (R_S and R_{LF}) is shown in Fig. 6a. R_S is insensitive to P_{O_2} and is likely dominated by the ohmic contributions from the leads and contacts and the ionic contribution from the dense YSZ electrolyte. R_{LF} shows identical P_{O_2} dependences at all temperatures, with $R_{LF} \propto P_{O_2}^{0.62}$. A P_{O_2} dependence of $R_{LF} \propto P_{O_2}^{0.3}$ has been suggested when dissociative adsorption of oxygen is the rate-limiting step. It is also possible that a surface diffusion process could produce a similar dependence on P_{O_2}; however, in that case diffusion-limited current behavior would be expected, and
that was not observed in the present cell. The deviation of the measured power-law exponent \(-0.62 \) from \(-0.5 \) could result from some additional contribution from processes other than dissociative adsorption. Possibilities include gas-phase diffusion or molecular adsorption, both of which produce a power-law exponent of \(-1.18 \). Therefore, dissociative adsorption probably dominates the response with some contribution from other processes.

Investigation of the temperature dependence yielded an apparent activation energy for \(R_{LF} \) of 98 kJ/mol for all \(O_2 \) concentrations, as shown in Fig. 6b. Since \(R_F \) does not show any \(P_{O_2} \) dependence, the average values at all \(O_2 \) concentrations investigated (2–18.9\%) are shown and used to calculate an apparent activation energy of 93 kJ/mol. This activation energy for \(R_F \) is consistent with ionic diffusion in the dense YSZ. The similarity between the apparent activation energies of \(R_F \) and \(R_{LF} \) may indicate that a diffusion mechanism is also responsible for \(R_{LF} \); however, no diffusion-limited current behavior was observed. The discrepancy could indicate a complex rate-limiting mechanism involving both diffusion and adsorption or similar activation energies for diffusion and adsorption.

Alternatively, an apparent activation energy of 89 kJ/mol has been reported for the electrode behavior of an Au, \(O_2(g)/YSZ \) system.\(^{21}\) In another study, Hertz et al. found that the electrode behavior of lithographically patterned electrodes on thin film YSZ electrolytes depends on the electrode material, exhibiting activation energies of 0.91 eV (88 kJ/mol) for gold electrodes and 0.77 eV (74 kJ/mol) for platinum electrodes.\(^{22}\) The similarity between these reported values and the measured apparent activation energies in the present work may indicate that the mechanism(s) responsible for the oxygen response are related to the Au/YSZ interface.

The \(P_{O_2} \) dependence of the capacitance calculated from the equivalent circuit is shown in Fig. 6c. Recall that for values of \(n \) approaching one, the best-fit values of \(Y_0 \) in the CPE approximate capacitance. As seen in Fig. 6c, the calculated capacitances exhibit only slight dependence on temperature or \(P_{O_2} \), in all cases within the range of 0.32–0.37 \(\mu \)F. However, general trends in the data indicate that capacitance increases with \(P_{O_2} \). For example, the capacitance increases similarly with \(P_{O_2} \) at 600 and 650°C, \(-9\%\), when \(P_{O_2} \) increases from 2 to 10.5\%, and \(-14\%\) when \(P_{O_2} \) increases from 2 to 18.9\%. This increase in capacitance with \(P_{O_2} \) may be related to an increase in the fraction of adsorbed \(O_2 \) species at the Au/YSZ interface.\(^{21,22}\) At 700°C, the capacitance increases only \(-2\%\) when \(P_{O_2} \) increases from 2 to 10.5\% and \(-4\%\) when \(P_{O_2} \) increases from 2 to 18.9\%. The amount of capacitance change at 700°C is not significant. Since the measured capacitance changes are small, care should be taken in making concrete conclusions. Nevertheless, the trends, especially at lower temperatures, indicate that adsorbed \(O_2 \) species at the Au/YSZ interface may be important in determining the measured capacitance values.

\(NO \), behavior.—The response of the electrochemical cell to either \(NO \) or \(NO_2 \) is similar under all test conditions. The symmetric electrode configuration with both electrodes exposed to the same atmosphere seems a likely explanation for the similar response to \(NO \) and \(NO_2 \). The similar response may also be due to thermodynamic equilibration of the \(NO/NO_2 \) ratio, which will result in identical gas compositions regardless of whether \(NO \) or \(NO_2 \) is introduced initially. \(NO \) is more stable than \(NO_2 \) at temperatures <700°C, but \(NO_2 \) is more stable than \(NO \) above this temperature.\(^{24,25}\) Therefore, larger deviations from the equilibrated \(NO/NO_2 \) ratio are related to the \(Au/YSZ \) interface.

\[R_{LF}\text{(NO)} = R_{LF(NO)+NO} - R_{LF(NO_2)} \] \([8] \)

where \(R_{LF(NO)} \) is the resistance contribution for \(NO \), \(R_{LF(NO)+NO} \) is the \(R_{LF} \) measured when both \(O_2 \) and \(NO \) are present, and \(R_{LF(NO_2)} \) is the \(R_{LF} \) measured when only \(O_2 \) is present. In the range 10–100 ppm of \(NO \), the \(R_{LF(NO)} \) \(\propto [NO]^\alpha \), with \(\alpha = -0.96 \pm 0.04 \) and \(a = -1.02 \pm 0.16 \) for \(NO \) and \(NO_2 \), respectively, as shown in Fig. 7. \(R_{LF(NO_2)} \) was effectively insensitive to temperature and \(P_{O_2} \), so the average values are shown in Fig. 7 with error bars indicating the standard deviation.

A possible explanation for the dependence of \(R_{LF(NO)} \) on the \(NO \) concentration is a rate-limiting step controlled by the molecular adsorption of \(NO \) (non dissociative adsorption). This is analogous to the case of molecular adsorption of \(O_2 \) which, when acting as the rate-limiting step, results in a power-law exponent of \(-1.18 \). In the current cell, dissociative adsorption of \(NO \) is not expected based on prior reports that the process requires either an appropriate catalyst (e.g., Pt, Rh, and Pd\(^{26,27}\)) or high electric fields.\(^{26,28}\) In addition, the absence of limiting current behavior suggests that gas phase diffusion is not responsible for the \(NO \) behavior. Thus, the \(NO \) dependence of \(R_{LF(NO)} \) appears to be consistent with the non-dissociative adsorption of \(NO \). Furthermore, since the calculated \(R_{LF(NO)} \) from Eq. 8 is independent of \(O_2 \), it appears that the impedance behaviors of \(O_2 \) and \(NO \) have parallel contributions to the overall measured impedance. Therefore, the parallel behavior of \(O_2 \) and \(NO \), which have different concentration dependences, \(R_F \propto P_{O_2}^{0.626,28} \) and \(R_{LF(NO)} \propto [NO]^1 \), results in larger changes in impedance for \(NO \) compared to \(O_2 \).
In general, the temperature dependence of R_{LF/NO_x} results in negative apparent activation energies, which indicates an increase in R_{LF/NO_x} with temperature. This is in contrast to the response of the cell in the absence of NO, where R_{LF} decreases with temperature (see Fig. 6b). Increasing resistance with temperature has been attributed to adsorption processes, where the magnitude of the apparent activation energy is related to the surface coverage. The magnitude of the apparent activation energies for NO range from 0.3 to 6 kJ/mol for varying relative concentrations of NO (10–100 ppm) and O$_2$ (2–18.9%), indicating little temperature sensitivity. The exception is a mixture of 18.9% O$_2$ (high oxygen) and 10 ppm NO gas mixture, which produces a slightly larger magnitude of 12 kJ/mol for the apparent activation energy. The magnitude of the apparent activation energies in O$_2$ mixtures for NO is larger than those for NO. For 50 and 100 ppm NO, apparent activation energies range from 1 to 14 kJ/mol. For 10 ppm NO, apparent activation energies range from 37 to 54 kJ/mol. In general, the magnitude of the apparent activation energy appears to decrease as NO concentration increases and O$_2$ concentration decreases. However, there is considerable scatter in the data. If surface coverage is the dominant factor, the results may indicate larger surface coverage for either larger concentrations of NO, or smaller concentrations of O$_2$, with NO showing more pronounced adsorption than NO$_2$, as discussed above. Although further studies are needed to explain the temperature dependence of R_{LF/NO_x}, the data seem to support a rate-limiting adsorption mechanism being responsible for the sensing behavior.

The capacitance values for any combination of O$_2$ (2, 10.5, and 18.9%) and NO (10, 50, and 100 ppm) concentrations and temperatures (600, 650, and 700°C) were similar, with values ranging from 0.31 to 0.39 μF. At 650 and 700°C, NO had no effect, within experimental error, on the measured capacitance calculated from the low-frequency arc. Larger changes in capacitance were measured at 600°C; however, the differences are <9%. The small changes in capacitance (<9%) at all temperatures do not allow any definitive mechanistic conclusions, regarding the effect of either O$_2$ or NO$_x$, to be made in the concentration ranges investigated.

O_2 and NO$_x$ Interaction

The P_{O_2} dependence of the cell was calculated at each NO$_x$ concentration and temperature. The behavior is similar to that when only oxygen is present with $R_{LF} \propto P_{O_2}^\beta$, but with variations in the power-law exponent depending on the NO$_x$ concentration and temperature, as seen in Table I. The absolute value of β decreases with additions of NO$_x$, an effect that becomes more pronounced at lower temperatures. The values of β range from −0.62 to −0.49, where the smallest absolute value of β occurs for 100 ppm NO at 600°C.

The overall apparent activation energy of R_{LF} when both O$_2$ and NO$_x$ are present varies as a function of gas composition. Figure 8 shows the temperature dependence for the three levels of NO concentration in 2% O$_2$, where the activation energy decreases for larger amounts of NO. Quantitatively, similar results were observed for NO$_2$. Measured apparent activation energies for R_{LF} are higher for the larger O$_2$ concentrations and always decrease with the addition of NO$_x$. Table II lists the apparent activation energy values for the various O$_2$ and NO$_x$ concentrations. The lowest activation energy occurs for 2% O$_2$ and 100 ppm NO gas composition, with a value of 64 kJ/mol.

The trends, as seen in Tables I and II, result from the parallel contributions of O$_2$ and NO$_x$, each having different concentration and temperature behavior, and seem to indicate a competition be-

Table I. Power-law exponent ($R_{LF} \propto P_{O_2}^\beta$) for various NO$_x$ concentrations and temperatures.

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>10 ppm NO</th>
<th>10 ppm NO$_2$</th>
<th>50 ppm NO</th>
<th>50 ppm NO$_2$</th>
<th>100 ppm NO</th>
<th>100 ppm NO$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>600°C</td>
<td>−0.63</td>
<td>−0.60</td>
<td>−0.61</td>
<td>−0.53</td>
<td>−0.55</td>
<td>−0.49</td>
</tr>
<tr>
<td>650°C</td>
<td>−0.63</td>
<td>−0.62</td>
<td>−0.62</td>
<td>−0.57</td>
<td>−0.58</td>
<td>−0.54</td>
</tr>
<tr>
<td>700°C</td>
<td>−0.62</td>
<td>−0.61</td>
<td>−0.62</td>
<td>−0.59</td>
<td>−0.60</td>
<td>−0.57</td>
</tr>
</tbody>
</table>
The concentration and temperature dependences of the rate of adsorption could be changes in the available adsorption sites for O₂ and NO₂, which may indicate changes in the adsorption energy and heat of adsorption. The amount of equilibrium adsorbed oxygen may affect the interaction between NO₂ and the surface and leads to changes that depend on both O₂ and NO₂ concentrations.

Conclusions

Electrochemical characterization of an Au/ytria-stabilized zirconia (YSZ)/Au cell demonstrates that increases in either O₂ or NO₂ concentrations decrease the low-frequency arc diameter (R_LF), while high-frequency behavior remains unaffected. An equivalent circuit consisting of a resistor in series with a subcircuit containing a resistor and constant phase element in parallel was used to fit the experimental data, where the resistor in the subcircuit (R_EQ) corresponded to behavior associated with impedancemetric NO₂ sensing. Examination of the concentration and temperature dependences of R_LF provided mechanistic information. In the absence of NO₂, a single power-law exponent (−0.62) describes the P_O₂ dependence (2–18.9%) of R_LF at all temperatures (600–700°C). Dissociative adsorption of oxygen is suggested as a possibility for the rate-limiting step. Also, when only O₂ is present, a single apparent activation energy of 98 kJ/mol describes the temperature dependence for all concentrations, which may indicate the possible role of the Au/YSZ interface.

The dependence of R_EQ/NO₂ on NO₂ concentration (10–100 ppm) yields a power-law exponent of −1, and the molecular adsorption of NO is proposed as the rate-limiting step. When both O₂ and NO₂ are present, the resulting apparent activation energies and P_O₂ dependence vary with gas compositions and temperature, which may indicate competition between the two species. One possible explanation could be changes in the available adsorption sites for O₂ and NO₂, which vary with temperature and gas concentrations.

If adsorption processes are primarily responsible for the cell response, surface treatments of the YSZ could help to increase sensitivity and sensor signal. Also, other contributions to the impedance response, e.g., diffusion, should be minimized. Further studies to elucidate the mechanisms are currently in progress.

Acknowledgments

This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory, under contract no. W-7405-Eng-48. Support for the work at the University of Pennsylvania was provided by the U.S. Department of Energy’s Hydrogen Fuel Initiative (grant no. DE-FG02-05ER15721). Two of the coauthors (R.S.G. and L.P.M.) are also supported through the DOE Office of Freedom Car and Vehicle Technologies. We gratefully acknowledge the support of the Program Manager, Rogelio Sullivan.

Lawrence Livermore National Laboratory assisted in meeting the publication costs of this article.

References

11. B. A. Boukamp, Equivalent Circuit (equivalent), University of Twente, Dept. of Chemical Engineering, The Netherlands (1990).